Advertisement for orthosearch.org.uk
Results 1 - 50 of 129
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 123 - 123
11 Apr 2023
Ghaffari A Rahbek O Lauritsen R Kappel A Rasmussen J Kold S
Full Access

The tendency towards using inertial sensors for remote monitoring of the patients at home is increasing. One of the most important characteristics of the sensors is sampling rate. Higher sampling rate results in higher resolution of the sampled signal and lower amount of noise. However, higher sampling frequency comes with a cost. The main aim of our study was to determine the validity of measurements performed by low sampling frequency (12.5 Hz) accelerometers (SENS) in patients with knee osteoarthritis compared to standard sensor-based motion capture system (Xsens). We also determined the test-retest reliability of SENS accelerometers. Participants were patients with unilateral knee osteoarthritis. Gait analysis was performed simultaneously by using Xsens and SENS sensors during two repetitions of over-ground walking at a self-selected speed. Gait data from Xsens were used as an input for AnyBody musculoskeletal modeling software to measure the accelerations at the exact location of two defined virtual sensors in the model (VirtualSENS). After preprocessing, the signals from SENS and VirtualSENS were compared in different coordinate axes in time and frequency domains. ICC for SENS data from first and second trials were calculated to assess the repeatability of the measurements. We included 32 patients (18 females) with median age 70.1[48.1 – 85.4]. Mean height and weight of the patients were 173.2 ± 9.6 cm and 84.2 ± 14.7 kg respectively. The correlation between accelerations in time domain measured by SENS and VirtualSENS in different axes was r = 0.94 in y-axis (anteroposterior), r = 0.91 in x-axis (vertical), r = 0.83 in z-axis (mediolateral), and r = 0.89 for the magnitude vector. In frequency domain, the value and the power of fundamental frequencies (F. 0. ) of SENS and VirtualSENS signals demonstrated strong correlation (r = 0.98 and r = 0.99 respectively). The result of test-retest evaluation showed excellent repeatability for acceleration measurement by SENS sensors. ICC was between 0.89 to 0.94 for different coordinate axes. Low sampling frequency accelerometers can provide valid and reliable measurements especially for home monitoring of the patients, in which handling big data and sensors cost and battery lifetime are among important issues


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 454 - 454
1 Sep 2009
Verlaan L Senden R Storken G Heyligers I Grimm B
Full Access

To clinically diagnose and postoperatively monitor the younger or more demanding orthopaedic patients it becomes increasingly important to measure function beyond the capacity of classic scores suffering from subjectivity, pain dominance and ceiling effects. This study investigates whether a stair climbing test with accelerometer derived motion parameters in a group of healthy subjects is clinically feasible and valid to distinguish between demographic differences. The ascending and descending of stairs (preferred speed, no handrails) was measured in 46 healthy subjects (19m/27f, no orthopaedic pathology) using a triaxial accelerometer attached with a belt to the sacrum. The study group was divided in two age groups: young group (15m/16f; age: 25 [21–38]) and old group (4m/11f; age: 67 [54–74]). Motion parameters were derived by acceleration peak detection algorithms based on step times: tup, tdown, tup-tdown,, step irregularity: irrup, irrdown and asymmetry: asymup, asymdown. Step times were slightly higher ascending (tup=606ms) than descending (tdown=575ms, p< 0.05). The step time difference between ascending and descending (tup-tdown=31ms) showed a significant difference between the young (47ms) and elderly (−7ms). All subjects with descending times ≥20ms slower than ascending (6/46) were elderly. Irregularity and asymmetry were similar between stepping direction and age groups. Asymmetry identified the dominant leg with equal or faster steps than the non-dominant leg in 43/46 cases. Motion parameters were not correlated to gender, height or BMI. Slower step times down than up seem a promising parameter to detect general or bilateral orthopaedic pathologies. Asymmetry identifying the dominant leg shall detect unilateral pathologies. The accelerometer assessed stair test seems suitable for routine clinical follow-up complementing classic scores


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 274 - 274
1 Jul 2014
Hendriks G Senden R Heyligers I Meijer K Grimm B
Full Access

Summary. Upper extremity activity was similar in patients and healthy subjects, showing no significant asymmetry between arms within subjects. Further improvements (e.g. thresholds, filters, inclinometer function) are needed to show the clinical value of AM for patients suffering shoulder complaints. Introduction. Activity monitoring is becoming a popular outcome tool especially in orthopaedics. The suitability of a single 3D acceleration-based activity monitor (AM) for patients with lower-extremity problems has been shown. However less is known about its feasibility to monitor upper-extremity activity. Insight into the amount and intensity of upper-extremity activity of the affected and non-affected arm (asymmetry) may be of added value for diagnostics, therapy choice and evaluating treatment effects. This study investigates the feasibility of a single AM to evaluate (asymmetry in) upper-extremity activity in daily life. Methods. Upper-extremity activity was measured in 12 patients with subacromial impingent syndrome (59±12yr) and 10 healthy subjects (29±11yrs). Subjects wore a single 3D accelerometer at both arms, just above the base of the Hueter triangle, for one day (min. 8 hours). Specific algorithms were used to derive quantity (activity duration, rest periods) and intensity (low-high) activity parameters (% of the day). The ratio in % activity between non-affected (dominant) and affected (non-dominant) arm was calculated. Asymmetry was expressed as the %-difference in activity between arms with regards to the non-affected (dominant) arm. Also popular PROMs were completed: DASH score (range 0–100;0=best) and SST score (range 0–12; 0=best). Independent t-test, Mann-Whitney U test, Pearson's r correlations were performed. Results. No significant differences in activity duration (Healthy: 50%, patients: 57% of the day) and intensity of upper-extremity activity were found between patients and healthy subjects, although PROMs were significantly worse in patients. Patients and healthy subjects use both arms in similar amounts of time per day. This corresponds to the ratio which almost equals 1 and the low asymmetry values (<10%) in both groups. Also the amount activity in low and high intensity was comparable between affected (non-dominant) and non-affected (dominant) arm. No correlations were found between AM data and PROMs. Discussion and Conclusion. Patients and healthy subjects move their upper arms approximately 53% of the day. No differences in amount and intensity of upper-extremity activity were found between healthy subjects and patients, neither between both arms. This suggests that subjects perform daily activities independent of pain, complaints or arm dominance. It could also hint at the algorithm operating with a too low activity threshold to include shuffling or misclassifying excitations from walking as intense arm movement. Both issues can be adjusted by adjusting thresholds and filter settings. The asymmetry in upper-extremity activity of healthy subjects (9.1%) assumes that a 10% asymmetry in arm activity seems natural, which coincides with similar values reported for functional shoulder tests (Koerver et al. CORS 2010). The lack of correlations between AM and PROMs suggests that both measure different outcome dimensions. The AM has some limitations which should be considered when improving the clinical feasibility of upper-extremity activity monitoring. The AM only allows to measure acceleration-related activities (speed, intensity), while upper-extremity activity often involves static force-related activities. However, the inclinometer capacity of accelerometers allows to measure upper-extremity activity at different elevations (upper arm above/below shoulder). This may add qualitative information, relevant for clinical purposes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 275 - 275
1 Jul 2014
Hendriks G Aquilina A Senden R Blom A Meijer K Heyligers I Grimm B
Full Access

Summary. A single 3D accelerometer is accurate in measuring upper-extremity activity durations, rest periods and intensities, suggesting its feasibility for daily life measurements with patients. Further enhancements are feasible to reduce residual false classifications of intensity from certain activities. Introduction. Physical activity is an important outcome measure in orthopaedics as it reflects how surgically restored functional capacity is used in daily life. Accelerometer-based activity monitors (AM) are objective, reliable and valid to determine lower extremity activity in orthopaedic patients. However the suitability of a single AM to monitor upper-extremity activity, in terms of quantity and intensity, has not been investigated. This study investigates the suitability and validity of a single AM to measure quantity and intensity of upper-extremity activity. Method. Five healthy young subjects (25 ± 3 yrs) were included. Subjects underwent a standardised protocol consisting of walking, combing hair, cleaning a desk while standing, brushing teeth and cleaning a window. All one-handed activities were performed with the right arm, as all subjects were right handed. The activities were performed in a fixed order, at self selected speed, for at least 30s. Between the activities, subjects stood still for 10s with their arms next to the body. A light-weight (18g) 3D-accelerometer (f=40Hz) was taped to the right elbow, just above the base of the Hueter triangle, using double sided tape. During the measurement, patients were recorded by a video camera analyzed by an independent human observer as validation reference. AM data and video-recordings were analyzed per second. The time being active (% of time) was determined over the whole measurement and for every activity separately, the percentage of the active time spend in high and low intensity was determined. Video-recording and AM-output were compared by determining Mean Percentage Error (MPE) and the accuracy (100-MPE). Results. High agreement in measuring upper-extremity (in-) activity was found between AM and video-recordings, showing an accuracy of 93%. Except for walking and combing hair, high agreement between AM and video-recordings was found in measuring activity intensity (accuracy range: 83–100%). 97% of walking was misclassified: video-recordings classify walking as low intensity, the AM as high intensity. Low agreement (58% agreement) for intensity was also found for combing hair. Discussion and Conclusion. A single AM is accurate in measuring the duration of upper-extremity activity and rest periods in healthy subjects under controlled circumstances. This suggests the suitability of AM to monitor real life upper-extremity activity, which can serve as objective clinical outcome in patients with shoulder complaints. Beyond durations, the AM seems also suitable for measuring activity intensity, showing high accuracy for most activities. The low accuracy in intensity classification of walking and combing hair can be explained by the different interpretations of intensity by observer and AM. For the observer, intensity classification may be force-related (feeling a resistance may refer to high intensity), while intensity classification is acceleration-related for the AM. The false classification of shoulder movement during walking as intense can be resolved by dedicated filters in the detection algorithms. Future algorithms will allow measurement of arm elevations (elbow below/above shoulder) which may be another relevant outcome parameter. However, already this basic AM application validated here may help e.g. in therapeutic decision making, in evaluating therapy effects or providing biofeedback


Bone & Joint Research
Vol. 12, Issue 3 | Pages 165 - 177
1 Mar 2023
Boyer P Burns D Whyne C

Aims

An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise.

Methods

A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 405 - 410
1 Feb 2021
Leo DG Perry DC Abdullah B Jones H

Aims. The reduction in mobility due to hip diseases in children is likely to affect their physical activity (PA) levels. Physical inactivity negatively influences quality of life and health. Our aim was to objectively measure PA in children with hip disease, and correlate it with the Patient-Reported Outcomes Measurement Information System (PROMIS) Mobility Score. Methods. A total of 28 children (12 boys and 16 girls) with hip disease aged between 8and 17 years (mean 12 (SD 3)) were studied between December 2018 and July 2019. Children completed the PROMIS Paediatric Item Bank v. 2.0 – Mobility Short Form 8a and wore a hip accelerometer (ActiGraph) for seven consecutive days. Sedentary time (ST), light PA (LPA), moderate to vigorous PA (MVPA), and vigorous PA were calculated from the accelerometers' data. The PROMIS Mobility score was classified as normal, mild, and moderate functions, based on the PROMIS cut scores on the physical function metric. A one-way analysis of covariance (ANCOVA) was used to assess differences among mobility (normal; mild; moderate) and measured PA and relationships between these variables were assessed using bivariate Pearson correlations. Results. Children classified as normally functioning on the PROMIS had less ST (p = 0.002), higher MVPA, (p = 0.002) and VPA (p = 0.004) compared to those classified as mild or moderate function. A moderate correlation was evident between the overall PROMIS score and daily LPA (r = 0.462, n = 28; p = 0.013), moderate-to-vigorous PA (r = 0.689, n = 28; p = 0.013) and vigorous PA (VPA) (r = 0.535, n = 28; p = 0.013). No correlation was evident between the mean daily ST and overall PROMIS score (r = -0.282, n = 28; p = 0.146). Conclusion. PROMIS Pediatric Mobility tool correlates well with experimentally measured levels of physical activity in children with hip disease. We provide external validity for the use of this tool as a measure of physical activity in children. Cite this article: Bone Joint J 2021;103-B(2):405–410


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 90 - 90
19 Aug 2024
Sakai T Kaneoka T Okazaki T Matsuki Y Kawakami T Yamazaki K Imagama T
Full Access

Recently, some smart media devices including portable accelerometers have been used to measure objective physical activity (OPA) after total hip arthroplasty (THA). The aim of this study was to longitudinally assess OPA changes in patients who underwent THA using a compact triaxial accelerometer and to investigate the impact of this recovery process on patient-reported outcomes. This prospective cohort study involved 163 consecutive patients who had unilateral osteoarthritis of the hip and were followed up for 12 months after THA. There were 132 women and 31 men with average age of 66 years. OPA was measured using a compact triaxial accelerometer preoperatively and at 1, 3, 6, and 12 months postoperatively. This study investigated the recovery process of OPA in four patient groups classified by the median of age and preoperative activity levels (younger and higher activity (YH), younger and lower activity (YL), older and higher activity (OH), and older and lower activity (OL)), and examined its impact on patient-reported outcomes, including forgotten joint score-12 (FJS-12). The target period for regaining preoperative activity levels was approximately 3 months for patients with lower preoperative activity, and about 6 months for those with higher preoperative activity. The OPA at 12 months postoperatively was higher in the patients with higher preoperative activity levels than in those with lower preoperative activity levels. In patients with higher preoperative activity levels, FJS-12 scores significantly increased between 6 and 12 months postoperatively (p=0.018). FJS-12 at 12 months postoperatively was best in YH (81.7±18.9), followed by YL (73.5±22.9), OH (73.2±17.4), and OL (66.3±21.8). Differences in the recovery process of postoperative activity levels impacted the duration required for improvement in FJS-12 scores. These results can serve as indicators for setting activity goals in patients undergoing THA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 134 - 134
4 Apr 2023
Arrowsmith C Alfakir A Burns D Razmjou H Hardisty M Whyne C
Full Access

Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises containing movement in multiple planes (flexion, extension, rotation). A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach. The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XBG model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.91±0.03). This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for low back pain. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 26 - 26
1 Feb 2021
Tanpure S Madje S Phadnis A
Full Access

The iASSIST system is a portable, accelerometer base with electronic navigation used for total knee arthroplasty (TKA) which guides the surgeon to align and validate bone resection during the surgical procedure. The purpose of this study was to compare the radiological outcome between accelerometer base iASSIST system and the conventional system. Method. A prospective study between two group of 36 patients (50 TKA) of primary osteoarthritis of the knee who underwent TKA using iASSIST ™ or conventional method (25 TKA in each group) from January 2018 to December 2019. A single surgeon performs all operations with the same instrumentation and same surgical approach. Pre-operative and postoperative management protocol are same for both groups. All patients had standardized scanogram (full leg radiogram) performed post operatively to determine mechanical axis of lower limb, femoral and tibial component alignment. Result. There was no significant difference between the 2 groups for Age, Gender, Body mass index, Laterality and Preoperative mechanical axis(p>0.05). There was no difference in proportion of outliers for mechanical axis (p=0.91), Coronal femoral component alignment angle (p=0.08), Coronal tibial component alignment angle (p=1.0). The mean duration of surgery, postoperative drop in Hb, number of blood transfusion didn't show significant difference between 2 groups (p>0.05). Conclusion. Our study concludes that despite being a useful guidance tool during TKA, iASSIST does not show any difference in limb alignment (mechanical axis), Tibial and femoral component alignment when compared with the conventional method


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 85 - 85
1 Feb 2020
Dessinger G LaCour M Komistek R
Full Access

Introduction. Diagnosis of osteoarthritis relies primarily on image-based analyses. X-ray, CT, and MRI can be used to evaluate various features associated with OA including joint space narrowing, deformity, articular cartilage integrity, and other joint parameters. While effective, these exams are costly, may expose the patient to ionizing radiation, and are often conducted under passive, non-weightbearing conditions. A supplemental form of analysis utilizing vibroarthrographic (VAG) signals provides an alternative that is safer and more cost-effective for the patient. The objective of this study is to correlate the kinematic patterns of normal, diseased (pre-operative), and implanted (post-operative) hip subjects to their VAG signals that were collected and to more specifically, determine if a correlation exists between femoral head center displacement and vibration signal features. Methods. Of the 28 hips that were evaluated, 10 were normal, 10 were diseased, and 8 were implanted. To collect the VAG signal from each subject, two uniaxial accelerometers were placed on bony landmarks near the joint; one was placed on the greater trochanter of the femur and the other along the anterior edge of the iliac crest. The subjects performed a single cycle gait (stance and swing phase) activity under fluoroscopic surveillance. The CAD models of the implanted components were supplied by the sponsoring company while the subject bone models were created from CT scans. 3D-to-2D registration was conducted on subject fluoroscopic images to obtain kinematics, contact area, and femoral center head displacement. The VAG signals were trimmed to time, passed with a denoise filter and wavelet decomposition. Results. When comparing the femoral head displacement to the vibration signals with respect to the normal hips, insignificant magnitudes of vibration were present (0.05 volts). For the diseased hips, greater magnitudes were seen (0.2 volts). For the implanted subjects, the overall vibration features were small (0.05 volts) much like the signals from the normal hips except for spikes that correlated to features within the gait cycle. Therefore, grinding sounds were heard from the degenerative hips, but not present for the normal or implanted hips in this study. Discussion. In regards to the normal hip subjects, the lesser magnitude of volts correlated well with the kinematic results showing no separation of the femoral head center (1 mm). For the diseased hips, the instances of greater feature quantity occurred at moments where the subjects experienced higher values of head center displacement (1 mm). These subjects also had an overall increase in average voltage magnitude likely due to the loss of cartilage about the articulating surface resulting in a rougher surface for the accelerometers to record. For the implanted subjects, due to no head center displacement and a smoother surface for joint articulation, the vibration signals were smaller than the diseased case but showed better correlation with features within the gait cycle. No exact quantification has been determined between separation and accelerometer voltage output, further studies and testing will need to be carried out in order to reach such a conclusion. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 113 - 113
2 Jan 2024
Ghaffari A Rasmussen J Kold S Rahbek O
Full Access

Gait measurements can vary due to various intrinsic and extrinsic factors, and this variability becomes more pronounced using inertial sensors in a free-living environment. Therefore, identifying and quantifying the sources of variability is essential to ensure measurement reliability and maintain data quality. This study aimed to determine the variability of daily accelerations recorded by an inertial sensor in a group of healthy individuals. Ten participants, four males and six females, with a mean age of 50 years (range: 29–61) and BMI of 26.9 kg/m. 2. (range: 21.4–36.8), were included. A single accelerometer continuously recorded lower limb accelerations over two weeks. We extracted and analyzed the accelerations of three consecutive strides within walking bouts if the time difference between the bouts was more than two hours. Multivariate mixed-effects modeling was performed on both the discretized acceleration waveforms at 101 points (0–100) and the harmonics of the signals in the frequency domain to determine the variance components for different subjects, days, bouts, and steps as the random effect variables. Intraclass correlation coefficients (ICCs) were calculated for between-day, between-bout, and between-step comparisons. The results showed that the ICCs for the between-day, between-bout, and between-step comparisons were 0.73, 0.82, 0.99 for the vertical axis; 0.64, 0.75, 0.99 for the anteroposterior axis; and 0.55, 0.96, 0.97 for the mediolateral axis. For the signal harmonics, the respective ICCs were 0.98, 0.98, 0.99 for the vertical axis; 0.54, 0.93, 0.98 for the anteroposterior axis; and 0.69, 0.78, 0.95 for the mediolateral axis. Overall, this study demonstrated that accelerations recorded continuously for multiple days in a free-living environment exhibit high variability, mainly between days, and some variability arising from differences between walking bouts during different times within days. However, reliable and repeatable gait measurements can be obtained by identifying and quantifying the sources of variability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS. Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle. To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm. Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured. Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is. In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques. Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 53 - 53
2 Jan 2024
Ghaffari A Clasen P Boel R Kappel A Jakobsen T Kold S Rahbek O
Full Access

Wearable inertial sensors can detect abnormal gait associated with knee or hip osteoarthritis (OA). However, few studies have compared sensor-derived gait parameters between patients with hip and knee OA or evaluated the efficacy of sensors suitable for remote monitoring in distinguishing between the two. Hence, our study seeks to examine the differences in accelerations captured by low-frequency wearable sensors in patients with knee and hip OA and classify their gait patterns. We included patients with unilateral hip and knee OA. Gait analysis was conducted using an accelerometer ipsilateral with the affected joint on the lateral distal thighs. Statistical parametric mapping (SPM) was used to compare acceleration signals. The k-Nearest Neighbor (k-NN) algorithm was trained on 80% of the signals' Fourier coefficients and validated on the remaining 20% using 10-fold cross-validation to classify the gait patterns into hip and knee OA. We included 42 hip OA patients (19 females, age 70 [63–78], BMI of 28.3 [24.8–30.9]) and 59 knee OA patients (31 females, age 68 [62–74], BMI of 29.7 [26.3–32.6]). The SPM results indicated that one cluster (12–20%) along the vertical axis had accelerations exceeding the critical threshold of 2.956 (p=0.024). For the anteroposterior axis, three clusters were observed exceeding the threshold of 3.031 at 5–19% (p = 0.0001), 39–54% (p=0.00005), and 88–96% (p = 0.01). Regarding the mediolateral axis, four clusters were identified exceeding the threshold of 2.875 at 0–9% (p = 0.02), 14–20% (p=0.04), 28–68% (p < 0.00001), and 84–100% (p = 0.004). The k-NN model achieved an AUC of 0.79, an accuracy of 80%, and a precision of 85%. In conclusion, the Fourier coefficients of the signals recorded by wearable sensors can effectively discriminate the gait patterns of knee and hip OA. In addition, the most remarkable differences in the time domain were observed along the mediolateral axis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 133 - 133
11 Apr 2023
Namayeshi T Lee P
Full Access

Falls in adults are a major problem and can lead to injuries and death. In order to better understand falls and successful recoveries, identifying kinematics, kinetics, and muscle forces during recovery from loss of balance is crucial. To obtain reactive gait patterns, participants must be subjected to unexpected perturbations such as trips and slips. Previous researchers have reported kinetics recovery data following stumbling; however, the muscle force recovery patterns remain unknown. To better target exercises to reduce the risk of falls, we must first understand which muscles, their magnitude, and their coordination patterns, play a role in a successful recovery from a trip and a slip. Additionally, knowing the successful patterns of lower limb function can help with the diagnosis of faulty movements. A total of 20 healthy adults in their twenties with similar athletic backgrounds were perturbed on a split-belt treadmill using Computer-Assisted Rehabilitation Environment (Motkforce Link) at a preset speed of 1.1m/s. Two kinds of perturbations were administered: slip and trip. Slips were simulated by accelerating one belt, whereas trips were simulated by decelerating one belt. Both perturbations had similar intensity and only differed in the direction. Computational modeling was used to obtain lower-limb function during the compensatory step. SPM paired t-test was used to compare differences in recovery strategies between slip and trip through magnitude and patterns of joints. There were no significant differences in joint angles post tripping vs post-slipping. Results of net joint moments showed that compensating for the loss of balance due to tripping required a higher ankle plantarflexion moment than slipping (at 22-52%; 1.2± 0.3vs0.4±0.2, p<0.001). Additionally, larger gluteus maximus (at 40-50%;8.7±3.8vs2.7±1.1N/kg, p=0.001), gluteus medius (at23~33%; 22.6±5.7vs6.8±3.6N/kg, p<0.001) were generated than post-slipping, respectively. These findings suggested that greater GMAX and GMED forces are required post-trip recovery than slip. Future analysis of trip recovery showed the importance of ankle joint in recovering from forward and backward fall. These results can be used as references in remote diagnosis of joint and muscle weakness and assessment of the risk of falls with the use of accelerometers


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 6 - 6
17 Nov 2023
Luo J Lee R
Full Access

Abstract. Objectives. The aim of this study was to investigate whether mechanical loading induced by physical activity can reduce risk of sarcopenia in middle-aged adults. Methods. This was a longitudinal study based on a subset of UK Biobank data consisting of 1,918 participants (902 men and 1,016 women, mean age 56 years) who had no sarcopenia at baseline (assessed between 2006 and 2010). The participants were assessed again after 6 years at follow-up, and were categorized into no sarcopenia, probable sarcopenia, or sarcopenia according to the definition and algorithm developed in 2018 by European Working Group on Sarcopenia in Older People (EWGSOP). Physical activity was assessed at a time between baseline and follow-up using 7-day acceleration data obtained from wrist worn accelerometers. Raw acceleration data were then analysed to study the mechanical loading of physical activity at different intensities (i.e. very light, light, moderate-to-vigorous). Multinominal logistic regression was employed to examine the association between the incidence of sarcopenia and physical activity loading, between baseline and follow up, controlled for other factors at baseline including age, gender, BMI, smoking status, intake of alcohol, vitamin D and calcium, history of rheumatoid arthritis, osteoarthritis, secondary osteoporosis, and type 2 diabetes. Results. Among the 1918 participants with no sarcopenia at baseline, 230 (69 men and 161 women) developed probable sarcopenia and 37 (14 men and 23 women) developed sarcopenia at follow-up. Physical activity loading at moderate-to-vigorous intensity was higher in men (p<0.05), while women had higher physical activity loading at very light intensity (p<0.05). No significant difference was found in physical activity loading at light intensity between men and women (p>0.05). Logistic regression models showed that increase in physical activity loading at moderate-to-vigorous intensity significantly reduced the risk of sarcopenia (odds ratio = 0.368, p<0.05), but not probable sarcopenia (odds ratio = 0.974, p>0.05), while loading at light or very light activity intensity were not associated with the risk of sarcopenia or probable sarcopenia (p>0.05). Conclusion. Loading of physical activity at moderate-to-vigorous intensity could reduce risk of sarcopenia in middle-aged adults. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 134 - 134
1 Apr 2019
Adekanmbi I Ehteshami Z Hunt C Dressler M
Full Access

Introduction. In cementless THA the incidence of intraoperative fracture has been reported to be as high 28% [1]. To mitigate these surgical complications, investigators have explored vibro-acoustic techniques for identifying fracture [2–5]. These methods, however, must be simple, efficient, and robust as well as integrate with workflow and sterility. Early work suggests an energy-based method using inexpensive sensors can detect fracture and appears robust to variability in striking conditions [4–5]. The orthopaedic community is also considering powered impaction as another way to minimize the risk of fracture [6– 8], yet the authors are unaware of attempts to provide sensor feedback perhaps due to challenges from the noise and vibrations generated during powered impaction. Therefore, this study tests the hypothesis that vibration frequency analysis from an accelerometer mounted on a powered impactor coupled to a seated femoral broach can be used to distinguish between intact and fractured bone states. Methods. Two femoral Sawbones (Sawbones AB Europe, SKU 1121) were prepared using standard surgical technique up to a size 4 broach (Summit, Depuy Synthes). One sawbone remained intact, while a calcar fracture approximately 40mm in length was introduced into the other sawbone. Broaching was performed with a commercially available pneumatic broaching system (Woodpecker) for approximately 4 secs per test (40 impactions/sec) with hand-held support. Tests were repeated 3 times for fractured and intact groups as well as a ‘control’ condition with the broach handle in mid-air (ie not inserted into the sawbone). Two accelerometers (PCB M353B18) positioned on the femoral condyle and the Woodpecker impactor captured vibration data from bone-broach-impactor system (Fig1). Frequency analysis from impaction strikes were postprocessed (Labview). A spectrogram and area under FFT (AUFFT) [4] were analysed for comparisons between fractured and intact bone groups using a nested ANOVA. Results. Vibration frequency patterns between respective groups were best observed using an accelerometer positioned on the impaction device rather than on a sawbone (fig1). Qualitative assessment revealed that spectrograms showed no obvious difference for characteristic vibration frequencies between intact and fractured bone groups. A frequency signal at approximately 10kHz was absent for control impactions but present with bone impactions (Fig2). Quantitative assessment revealed AU-FFT was noticeably higher for intact bone groups than fractured bone groups for sampled impactions using a nested experimental design for statistics (p=0.11). Discussion. Our pilot study demonstrates that application of powered impaction combined with vibration frequency analysis has the potential to distinguish between an intact and fractured sawbone in a way that minimises instrumentation footprint and complexity of workflow in OR with a new generation of impaction device targeted at reducing and detecting bone fractures. Further investigation should validate these methods by evaluating the variation with sawbones and simulated bone fractures


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 415 - 425
1 Apr 2019
Thewlis D Bahl JS Fraysse F Curness K Arnold JB Taylor M Callary S Solomon LB

Aims. The purpose of this exploratory study was to investigate if the 24-hour activity profile (i.e. waking activities and sleep) objectively measured using wrist-worn accelerometry of patients scheduled for total hip arthroplasty (THA) improves postoperatively. Patients and Methods. A total of 51 THA patients with a mean age of 64 years (24 to 87) were recruited from a single public hospital. All patients underwent THA using the same surgical approach with the same prosthesis type. The 24-hour activity profiles were captured using wrist-worn accelerometers preoperatively and at 2, 6, 12, and 26 weeks postoperatively. Patient-reported outcomes (Hip Disability and Osteoarthritis Outcome Score (HOOS)) were collected at all timepoints except two weeks postoperatively. Accelerometry data were used to quantify the intensity (sedentary, light, moderate, and vigorous activities) and frequency (bouts) of activity during the day and sleep efficiency. The analysis investigated changes with time and differences between Charnley class. Results. Patients slept or were sedentary for a mean of 19.5 hours/day preoperatively and the 24-hour activity pattern did not improve significantly postoperatively. Outside of sleep, the patients spent their time in sedentary activities for a mean of 620 minutes/day (. sd. 143) preoperatively and 641 minutes/day (. sd. 133) six months postoperatively. No significant improvements were observed for light, moderate, and vigorous intensity activities (p = 0.140, p = 0.531, and p = 0.407, respectively). Sleep efficiency was poor (< 85%) at all timepoints. There was no postoperative improvement in sleep efficiency when adjusted for medications (p > 0.05). Patient-reported outcome measures showed a significant improvement with time in all domains when compared with preoperative levels. There were no differences with Charnley class at six months postoperatively. However, Charnley class C patients were more sedentary at two weeks postoperatively when compared with Charnley class A patients (p < 0.05). There were no further differences between Charnley classifications. Conclusion. This study describes the 24-hour activity profile of THA patients for the first time. Prior to THA, patients in this cohort were inactive and slept poorly. This cohort shows no improvement in 24-hour activity profiles at six months postoperative. Cite this article: Bone Joint J 2019;101-B:415–425


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 5 - 5
1 Apr 2017
Alshuhri A Miles A Cunningham J
Full Access

Introduction. Aseptic loosening of the acetabular cup in total hip replacement (THR) remains a major problem. Current diagnostic imaging techniques are ineffective at detecting early loosening, especially for the acetabular component. The aim of this preliminary study was to assess the viability of using a vibration analysis technique to accurately detect acetabular component loosening. Methods. A simplified acetabular model was constructed using a Sawbones foam block into which an acetabular cup was fitted. Different levels of loosening were simulated by the interposition of thin layer of silicon between the acetabular component and the Sawbones block. This included a simulation of a secure (stable) fixation and various combinations of cup zone loosening. A constant amplitude sinusoidal excitation with a sweep range of 100–1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of the observed harmonic frequencies. Results. Both measurement methods were capable of measuring the output vibration. Preliminary findings show different patterns in the output signal spectra were visible when comparing the stable cup with the 1mm of simulated spherical loosening at driving frequencies 1050 Hz, 1100 Hz and 1150 Hz (p < 0.05) using the accelerometer, whereas for ultrasound at frequencies 950 Hz and 1350 Hz (p < 0.05). Conclusions. Experimental testing showed that vibration analysis could be used as a potential detection method for acetabular cup component loosening using either an accelerometer or ultrasound probe to detect the vibration. However, the capacity of ultrasound to overcome the attenuating effect of the surrounding soft tissues and its high signal to noise ratio suggest it has the best potential for clinical use


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 6 - 6
1 Nov 2018
Nuritdinow T Holzschuh J Keppler A Lederer C Boecker W Kammerlander C Daumer M Fuermetz J
Full Access

Capturing objective data of the postoperative changes in the mobility of patients is expected to generate a better understanding of the effect of postoperative treatment. Until recently, the collection of gait-related data was limited to controlled clinical environments. The emergence of accurate wearable accelerometers with sufficient runtime, however, enables the long-term measurement and extraction of mobility parameters, such as “real-world walking speed”. An interim analysis of 1967 hours of actibelt data (3D accelerometer, 100 Hz) from 5 patients (planned total 20) with a femur fracture and 5 patients (planned total 20) with a humerus fracture from a geriatric population at two different sites of the university hospital of the Ludwigs-Maximilian-University in Munich was performed. Mobility data was captured during several days of stationary treatment starting directly after surgery and during a short follow-up visit six weeks after the surgery. Preliminary results show an increase of the mean walking speed between the two visits independent of the type of fracture. Patients with a humerus fracture tended to walk faster than patients with a femur fracture during both visits. The data also reveals an unexpected low level of mobility during the stationary stay. Mobile accelerometry can be used to evaluate different postoperative mobilisation strategies and even provide near-time feedback in geriatric trauma patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 89 - 89
1 Jan 2017
Zaffagnini S Signorelli C Raggi F Grassi A Roberti Di Sarsina T Bonanzinga T Lopomo N Marcacci M
Full Access

The Pivot-shift phenomenon (PS) is known to be one of the essential signs of functional insufficiency of the anterior cruciate ligament (ACL). To evaluate the dynamic knee laxity is very important to accurately diagnose ACL injury, to assess surgical reconstructive techniques, and to evaluate treatment approaches. However, the pivot-shift test remains a subjective clinical examination difficult to quantify. The aim of the present study is to validate the use of an innovative non-invasive device based on the use of an inertial sensor to quantify PS test. The validation was based on comparison with data acquired by a surgical navigation system. The surgeon intraoperatively performed the PS tests on 15 patients just before fixing the graft required for the ACL reconstruction. A single accelerometer and a navigation system simultaneously acquired the joint kinematics. An additional optical tracker set to the accelerometer has allowed to quantify the movement of the sensor. The tibial anteroposterior acceleration obtained with the navigation system was compared with the acceleration acquired by the accelerometer. It is therefore estimated the presence of any artifacts due to the soft tissue as the test-retest repositioning error in the positioning of the sensor. It was also examined, the repeatability of the acceleration parameters necessary for the diagnosis of a possible ACL lesion and the waveform of the output signal obtained during the test. Finally it has been evaluated the correlation between the two acceleration measurements obtained by the two sensors. The RMS (root mean square) of the error of test-retest positioning has reported a good value of 5.5 ± 2.9 mm. While the amounts related to the presence of soft tissue artifacts was equal to 4.9 ± 2.6 mm. It was also given a good intra-tester repeatability (Cronbach's alpha = 0.86). The inter-patient similarity analysis showed a high correlation in the acceleration waveform of 0.88 ± 0.14. Finally the measurements obtained between the two systems showed a good correlation (rs = 0.72, p<0.05). This study showed good reliability of the proposed scheme and a good correlation with the results of the navigation system. The proposed device is therefore to be considered a valid method for evaluating dynamic joint laxity


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1450 - 1454
1 Nov 2016
Toogood PA Abdel MP Spear JA Cook SM Cook DJ Taunton MJ

Aims. Total hip arthroplasty (THA) has well known subjective benefits, but little is known objectively about the recovery of mobility in the early post-operative period. Patients and Methods. A total of 33 patients aged > 60 years who underwent elective primary THA had their activity monitored for 30 days post-operatively using an at-home (Fitbit) ankle accelerometer. Their mean age was 70.7 years (61 to 86); 15 (45.5%) were female. The rate of compliance and the mean level of activity were determined. Comparisons between subgroups based on age, body mass index (BMI), surgical approach, and the destination of the patients when discharged were also performed. Results. The mean compliance over the 30 days was 26.7 days (16 to 30; 89%) of use. The mean number of steps increased from 235 (5 to 1152) to 2563 (87 to 7280) (p < 0.001) between the first and the 30th post-operative day. Age < 70 years and an anterior surgical approach were significantly associated with higher levels of activity (1600 to 2400 (p = 0.016 to 0.031) and 1000 to 1800 (p = 0.017 to 0.037) more steps per day, respectively) between the second and the fourth week post-operatively. There was also a trend towards higher levels of activity in those who were discharged to their home rather than to a nursing facility (a mean of 1500 more steps per day, p = 0.02). BMI greater or less than 30 kg/m. 2. was not predictive of activity (p = 0.45 to 0.98). Conclusion. At-home remote mobility monitoring using existing commercially available technology is feasible in patients who have undergone THA. It showed a clear trend towards increased activity with the passage of time. Additionally, the remote device was able to detect differences in levels of activity clearly between patients in relation to variables of interest including age, BMI, surgical approach, and the destination of the patient at the time of discharge from hospital. Such monitoring may allow for the early identification and targeted intervention in patients who recover slowly. Cite this article: Bone Joint J 2016;98-B:1450–4


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 17 - 17
1 Apr 2018
Daumer M Fürmetz J Keppler A Höfling H Müller A Hariry S Schieker M Grassi M Greese B Nuritdinow T Aigner G Lederer C Böcker W
Full Access

Mobility plays an important role, in particular for patients with osteoporosis and after trauma surgery, both as an outcome and as treatment. Mobility is closely linked to the patient”s quality of life and exercise is a powerful additional treatment option. In order to be able to generate an evidence base to evaluate various surgical and non-surgical treatment options, objective measurements of patient mobility and exercise over a certain time period are needed. Wearables are a promising candidate, with obvious advantages compared to questionnaires and/or PROs. However, when extracting parameters with wearables, one often faces the problem of algorithms not performing well enough for special cases like slow gait speeds or impaired gait, as they typically appear in this patient group. We plan to further extend the applicability of the actibelt system (3D accelerometer, 100Hz), in particular to improve the measurement precision of real-world walking speed in slow and impaired walking. We are using a special measurement wheel including a rotating 3D accelerometer that allows to capture high quality real-world walking speed and distance measurements, and a mobile high resolution camera system. In a first block 20 patients with osteoporosis were included in the study at the Ludwigs-Maximilians-University”s Department of General, Trauma and Reconstructive Surgery in Munich, Germany and equipped with an actibelt. Patients were asked to walk as “normal” as possible, while wearing their usual apparel, in the building and outside the building. They climbed stairs and had to deal with all unexpected “stop and go” events that appear in real-world walking. Various gait parameters will be extracted from the recorded data and compared to the gold standard. We will then tune the existing algorithms as well as new algorithms (e.g. step detection based on continuous wavelet transformation) to explore potential improvements of both step detection and speed estimation algorithms. Further refinement and validation using real world data is warranted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 107 - 107
1 May 2016
Kirking B El-Gohary M Kwon Y
Full Access

Measurements of shoulder kinematics during activities of daily living (ADL) can be used to evaluate patient function before and after treatment and help define device testing conditions. However, due to the difficulties of making 3D motion measurements outside of laboratory conditions, there are few reports of measured shoulder 3D kinematics during ADL. The purpose of this study was to demonstrate the feasibility of using wearable inertial measurement units (IMUs) to track shoulder joint angles. A nonrandom sample of 5 subjects with normal shoulders was selected based on occupation. The occupations were: dental hygienist, primary school teacher, mechanical project engineer, administrative assistant, and retail associate. Subjects wore two OPAL IMUs (APDM, Portland OR) as shown in Figure 1 on the sternum and on the upper arm for approximately 4 hours while at their workplace performing their normal work place activities and then up to 4 hours while off-work. Orientation angles from IMUs have traditionally been estimated by integrating gyroscope data and calculating inclination angles relative to gravity with accelerometers. A significant problem is that inaccuracies inherent in the measurements can degrade accuracy. In this study, we used an Unscented Kalman Filter (UKF) with IMU output to track shoulder angles. The UKF mitigates the effect of random drift by incorporating domain knowledge about the shoulder normal range of motion, and the gyroscope and accelerometer characteristics into the state-space models. Initially, in the horizontal plane, without gravity measurements from the accelerometer to aid the gyroscope data, there were unacceptable errors in transverse rotation. To mitigate this error, additional constraints were applied to model gyroscope drift and a zero velocity update strategy was included. These additions decreased tracker errors in heading by 63%. The resulting accuracy with the modified tracker in all motion planes was about 2° (Figure 2). Subjects commented that the IMUs were well tolerated and did not interfere with their ability to perform tasks in a normal manner. The overall averaged 95th percentile angles (Figure 3) were: flexion 128.8°, adduction 128.4°, and external rotation 69.5°. These peaks angles are similar to other investigator's reports using laboratory simulations of ADL tasks measured with optical and electromagnetic technologies, though this study's observations did show 17% greater extension and 40% greater adduction. Additionally, in these observations, occurrences of maximal internal rotation were rare compared to maximal external rotation and when maximum external rotation did occur, it was in combination with an average flexion angle of 103°. Finally, by performing a Fourier transform of the arm angles and using the 50th percentile frequency the number of arm cycles in a 10 year period was calculated at over 600,000 cycles. Application of the UKF with the additional drift correction made substantial improvements in shoulder tracking performance and this feasibility data suggests that IMUs with the UKF are suitable for extended use outside of laboratory settings. The motion data collected provides a novel description of arm motion during ADLs including estimating the cycle count of the upper arm at more than 600,000 cycles over 10 years


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 18 - 18
1 Jun 2021
Cushner F Schiller P Gross J Mueller J Hunter W
Full Access

PROBLEM. Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor patient activity following TKA. SOLUTION. The Canturio™ TE∗ System (Canary Medical) functions structurally as a tibial extension for the Persona® cemented tibial plate (Zimmer Biomet). The stem is instrumented with internal motion sensors (3-D accelerometer and gyroscope) and telemetry that collects and transmits kinematic data. Raw data is converted by analytics into clinically relevant gait metrics using a proprietary algorithm. The Canturio™ TE∗ will monitor the patient's gait daily for the first year and then with lower frequency thereafter to conserve battery power enabling the potential for 20 years of longitudinal data collection and analysis. A base station in the OR activates the device and links the stem and data to the patient. A base station in the patient's home collects and uploads data to the Cloud Based Canary Data Management Platform (Canary Medical). The Canary Cloud is structured as an FDA regulated and HIPPA-compliant database with cybersecurity protocols integrated into the architecture. A third base station is an accessory used in the health care professional's office to perform an on-demand gait analysis of a patient. A dashboard allows the health care professional and patient to monitor objective data of the patient's activity and progress post treatment. MARKET. The early target market for this device includes total joint surgeons who are early adopters of technology and currently utilize technology in their practice. The kinematic data provided by the Canturio™ TE∗ System will enable clinicians to augment patient care by reviewing their objective gait metrics. In the future, this data has the potential to be integrated with other Zimmer Biomet technologies, such as the Rosa™ Knee robotic platform, mymobility™, and sensored devices like iAssist™, to provide the surgeon with a complete pre-surgical functional assessment, intraoperative data, and post-operative functional data. PRODUCT. Persona IQ will be the combination of the proven Persona personalized total knee system with the Canary Medical Canturio™ TE∗. TIMING AND FUNDING. The Canturio™ TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution. The plan is to launch the product in 2021 pending regulatory De Novo grant. This effort is a partnership between Zimmer Biomet and Canary Medical. ∗ The Canturio™ - TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution


Bone & Joint Research
Vol. 5, Issue 2 | Pages 61 - 65
1 Feb 2016
Scott EEF Hamilton DF Wallace RJ Muir AY Simpson AHRW

Objectives. Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods. Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results. The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion. Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. doi: 10.1302/2046-3758.52.2000484


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 160 - 160
1 Mar 2009
Jolles B Aminian K Bourgeois A Coley B Claude P Bassin J Leyvraz P Farron A
Full Access

Introduction. Quantification of daily upper-limb activity is a key determinant in evaluation of shoulder surgery. For a number of shoulder diseases, problem in performing daily activities have been expressed in terms of upper-limb usage and non-usage. Many instruments measure upper-limb movement but do not focus on the differentiations between the use of left or right shoulder. Several methods have been used to measure it using only accelerometers, pressure sensors or video-based analysis. However, there is no standard or widely used objective measure for upper-limb movement. We report here on an objective method to measure the movement of upper-limb and we examined the use of 3D accelerometers and 3D gyroscopes for that purpose. Methods. We studied 8 subjects with unilateral pathological shoulder (8 rotator cuff disease: 53 years old ± 8) and compared them to 18 control subjects (10 right handed, 8 left handed: 32 years old ± 8, younger than the patient group to be almost sure they don_t have any unrecognized shoulder pathology). The Simple Shoulder Test (SST) and Disabilities of the Arm and Shoulder Score (DASH) questionnaires were completed by each subject. Two modules with 3 miniature capacitive gyroscopes and 3 miniature accelerometers were fixed by a patch on the dorsal side of the distal humerus, and one module with 3 gyroscopes and 3 accelerometers were fixed on the thorax. The subject wore the system during one day (8 hours), at home or wherever he/she went. We used a technique based on the 3D acceleration and the 3D angular velocities from the modules attached on the humerus. Results. As expected, we observed that for the stand and sit postures the right side is more used than the left side for a healthy right-handed person(idem on the left side for a healthy left-handed person). Subjects used their dominant upper-limb 18% more than the non-dominant upper-limb. The measurements on patients in daily life have shown that the patient has used more his non affected and non dominant side during daily activity if the dominant side = affected shoulder. If the dominant side ≠ affected shoulder, the difference can be showed only during walking period. Discussion-Conclusion. The technique developed and used allowed the quantification of the difference between dominant and non dominant side, affected and unaffected upper-limb activity. These results were encouraging for future evaluation of patients with shoulder injuries, before and after surgery. The feasibility and patient acceptability of the method using body fixed sensors for ambulatory evaluation of upper limbs kinematics was shown


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 89 - 89
1 Apr 2018
Stoffels A Lipperts M van Hemert W Rijkers K Grimm B
Full Access

Introduction. Limited physical activity (PA) is one indication for orthopaedic intervention and restoration of PA a treatment goal. However, the objective assessment of PA is not routinely performed and in particular the effect of spinal pathology on PA is hardly known. It is the purpose of this study using wearable accelerometers to measure if, by how much and in what manner spinal stenosis affects PA compared to age-matched healthy controls. Patients & Methods. Nine patients (m/f= 5/4, avg. age: 67.4 ±7.7 years, avg. BMI: 29.2 ±3.5) diagnosed with spinal stenosis but without decompressive surgery or other musculoskeletal complaints were measured. These patients were compared to 28 age-matched healthy controls (m/f= 17/11, avg. age: 67.4 ±7.6 years, avg. BMI: 25.3±2.9). PA was measured using a wearable accelerometer (GCDC X8M-3) worn during waking hours on the lateral side of the right leg for 4 consecutive days. Data was analyzed using previously validated activity classification algorithms in MATLAB to identify the type, duration and event counts of postures or PA like standing, sitting, walking or cycling. In addition, VAS pain and OSWESTRY scores were taken. Groups were compared using the t-test or Mann-Whitney U-test where applicable. Correlations between PA and clinical scores were tested using Pearson”s r. Results. Spinal stenosis patients showed much lower PA than healthy controls regarding all parameters like e.g. daily step count (2946 vs 8039, −63%, p<0.01) or the relative daily time-on-feet (%) (8.6% vs 28.3%, −70%, p<0.01) which is matched with increased sitting durations (80.3% vs 58.8%, p<0.01). Also qualitative parameters such as walking cadence was reduced in stenosis patients (83.7 vs 97.8 steps/min). With stenosis no patient ever walked >1000 steps without interruption. Also the number of walking bouts between 250–1000 steps was 4.5 times lower than in healthy controls (p<0.01). When the relative distribution of walking bout length was calculated, it became visible that stenosis patients showed more short walking bouts of 10–50 steps (p<0.05). There were no strong and significant correlations between the clinical scores and PA parameters. Discussion & Conclusions. Spinal stenosis greatly reduced physical activity to levels below WHO guidelines (e.g. <5000 steps= sedentary lifestyle) where the risk for general health (overall mortality), cardiovascular or endocrinological health is significantly increased. Activity levels are lower than reported for end-stage hip or knee osteoarthritis. Therefore, spinal stenosis patients should not only receive pain medication, but be made aware of their limited PA and its detrimental health effects, participate in activation programs, or be considered for surgical intervention. The absence of long walking bouts and the relatively more frequent short walking bouts seem indicative of intermittent claudication as typical in spinal stenosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 212 - 212
1 Sep 2012
Walker P Kahn H Zuckerman J Slover J Jaffe F Karia R Kim J
Full Access

INTRODUCTION. Total Knee Arthroplasty (TKA) is a durable procedure which allows most patients to achieve a satisfactory functional level, but there can be instability under stressful conditions. Instability is one cause of early revision, often due to misalignment or inadequate ligament balancing. Persistent instability may cause elevated polyethylene wear. Lower levels of instability may cause patient discomfort with certain stressful activities. Hence quantifying instability may have an important role in the functional evaluation of TKA. Several previous studies showed that accelerometers have advantages in kinematic studies including low cost, ease of application, and application to any activity. The aim of this study was to demonstrate the use of an accelerometer attached to the anterior of the tibia, as an evaluation of knee stability of TKA patients. It was postulated that accelerations between TKAs and normal controls will be different, which could indicate abnormal TKA kinematics involving instability, especially for high intensity activities. METHODS & MATERIALS. We tested 38 TKA knees in 27 patients, in the age range of 50–80 years, with a minimum follow up of 6 months; and 25 knees in 16 shoulder patients, who had no known knee pathology as age-matched controls. A tri-axial accelerometer was firmly attached to the anterior proximal tibia to measure 3-axis accelerations with a sample rate of 100 Hz. Four activities were tested;. Starting with the test leg, walk 3 steps then come to a sudden stop. Take one step forward with the non-tested leg and make a tight 90. ∗∗∗∗∗. turn towards the non- tested knee direction. Sit down for 3–4 seconds then stand back up. Step up on a 7″ inches high box with the test leg, followed by the non-test leg. Then step down from the box with the test leg, followed by the non-test leg. During the activities, the patients responded to a questionnaire on instability and pain for each activity. For each test at the time of foot impact, there was a high/low peak acceleration, the peak-to-valley being taken as the indicator. The mean total magnitude of the acceleration was compared between the TKA and control groups in the anterior-posterior direction using the Student's t-test. Statistical significance was at p-value < 0.05. RESULTS. Significant differences were seen between TKR and normal controls for stepping down, and for turning. Significance was close for a sudden stop. From the instability questionnaire, 15 knees had pain and 13 knees felt unstable, most of the pain and instability (13 and 11 respectively) while performing stepping up and down activity. This was followed by the sudden stop activity which had 8 painful and 6 unstable knees. DISCUSSION. The significant differences between TKR and normal control knees indicated that TKR did not restore normal kinetics, which could be due to TKR design, persistent muscle weakness or other factors. ACKNOWLEDGEMENTS. Funded by New York University Medical School – NYU-Polytechnic Seed Grant Program


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 95 - 97
1 Jan 2016
Robertson NB Battenberg AK Kertzner M Schmalzried TP

There is evidence that high levels of physical activity following arthroplasty of the hip or knee can lead to early revision. However, the term ‘highly active’ is not well defined. . A validated ankle accelerometer was used to quantify activity in 13 patients, who had undergone a total of 20 arthroplasties of the lower limbs and who had active lifestyles. The assessments were taken at a mean of 8.7 years post-operatively (1.8 to 15.8). The mean gait cycles per day was 8273 (5964 to 12 557), which extrapolates to 3.0 million cycles per year (cpy) (2.2 to 4.6). The mean percentage of time spent in high activity mode was 4.3%, or about one hour per day. The mean percentage of cycles in high activity was 40%. . Based on these data, we propose the following definitions of high activity: > 3 million cpy; one hour per day in high activity mode; 40% of cycles in high activity mode. . Extrapolating the sample of activity over the time since operation, the mean cycles per arthroplasty was 25.2 million, with a maximum of 44.1 million. No joint has been revised, or shows evidence of impending failure. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):95–7


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 59 - 59
1 Mar 2017
Noble P Foley E Simpson J Gold J Choi J Ismaily S Mathis K Incavo S
Full Access

Introduction. Numerous factors have been hypothesized as contributing to mechanically-assisted corrosion at the head-neck junction of total hip prostheses. While variables attributable to the implant and the patient are amenable to investigation, parameters describing assembly of the component parts can be difficult to determine. Nonetheless, increasing evidence suggests that the manner of intraoperative assembly of modular components plays a critical role in the fretting and corrosion of modular implants. This study was undertaken to measure the magnitude and direction of the impaction forces applied by surgeons in assembling modular head-neck junctions under operative conditions where both the access and visibility of the prosthesis may potentially compromise component fixation. Methods. A surrogate consisting of the lower limb with overlying soft tissue was developed to simulate THR performed via a 10cm incision using the posterior approach. The surrogate was modified to match the resistance of the body to retraction of the incision, mobilization of the femur and hammering of the implanted femoral component. An instrumented femoral stem (SL PLUS) was surgically implanted into the bone after attachment of 3 miniature accelerometers (Dytran Inc) in an orthogonal array to the proximal surface of the prosthesis. A 32mm cobalt chrome femoral head was mounted on the trunnion (12/14 taper, machined) of the femoral stem. 15 Board-certified and trainee surgeons replicated their surgical technique in exposing the femur and impacting the modular head on the tapered trunnion. Impaction was performed using an instrumented hammer (5000 Lbf Dytran impact hammer) that provided measurements of the magnitude and temporal variation of the impact force. The components of force acting along the axis aof the neck and in the AP and ML directions were continuously samples using the accelerometers. Results. For all surgeons, the average value of the peak impaction force was 3765±1094N (range: 2358 to 6225N). Head impact was delivered in an average direction of 24.4±7.5 degrees more vertical than the trunnion axis, though this value varies from 14 to 43 degrees between individual surgeons. On average, the off-axis force perpendicular to the trunnion axis was 1586±736N, however, this value ranged from 634 to 2895N with peak loading of both the head and the implant in varus. Almost all of the applied impact was directed within 10 degrees of the mid-plane of the stem (average deviation: 2.5±5.9 degrees of with only a small force directed anteriorly or posteriorly (average force: 140±396N, anterior). The variability in the magnitude and direction of the impaction force was not associated with the level of training or the surgical experience of the participants (p>0.05). Conclusions. This study shows that large off-axis forces are developed during manual impaction of modular heads onto stem trunnions via the posterior approach. The variation in magnitude and direction of these forces varies between individual surgeons and is not systematically related to the training or experience of each surgeon in joint replacement. This variability in intraoperative assembly of head-neck junctions may contribute to the severity and incidence of mechanically assisted corrosion in total hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 755 - 759
1 Jun 2011
Brennan SA Brabazon D O’Byrne JM

We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment. Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation.

Cite this article: Bone Joint J 2022;104-B(10):1104–1109.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 26 - 26
1 Feb 2020
Bloomfield R McIsaac K Teeter M
Full Access

Objective. Emergence of low-cost wearable systems has permitted extended data collection for unsupervised subject monitoring. Recognizing individual activities performed during these sessions gives context to recorded data and is an important first step towards automated motion analysis. Convolutional neural networks (CNNs) have been used with great success to detect patterns of pixels in images for object detection and recognition in many different applications. This work proposes a novel image encoding scheme to create images from time-series activity data and uses CNNs to accurately classify 13 daily activities performed by instrumented subjects. Methods. Twenty healthy subjects were instrumented with a previously developed wearable sensor system consisting of four inertial sensors mounted above and below each knee. Each subject performed eight static and five dynamic activities: standing, sitting in a chair/cross-legged, kneeling on left/right/both knees, squatting, laying, walking/running, biking and ascending/descending stairs. Data from each sensor were synchronized, windowed, and encoded as images using a novel encoding scheme. Two CNNs were designed and trained to classify the encoded images of both static and dynamic activities separately. Network performance was evaluated using twenty iterations of a leave-one-out validation process where a single subject was left out for test data to estimate performance on future unseen subjects. Results. Using 19 subjects for training and a single subject left out for testing per iteration, the average accuracy observed when classifying the eight static activities was 98.0% ±2.9%. Accuracy dropped to 89.3% ±10.6% when classifying all dynamic activities using a separate model with the same evaluation process. Ascending/descending stairs, walking/running, and sitting on a chair/squatting were most commonly misclassified. Conclusions. Previous related work on activity recognition using accelerometer and/or gyroscope raw signals fails to provide sufficient data to distinguish static activities. The proposed method operating on lower limb orientations has classified eight static activities with exceptional accuracy when tested on unseen subject data. High accuracy was also observed when classifying dynamic activities despite the similarity of the activities performed and the expected variance of individuals’ gait. Accuracy reported in existing literature classifying comparable activities from other wearable sensor systems ranges between 27.84% to 84.52% when tested using a similar leave-one-subject-out validation strategy[1]. It is expected that incorporating these trained models into the previously developed wearable system will permit activity classification on unscripted instrumented activity data for more contextual motion analysis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 70 - 70
1 Nov 2018
Grimm B
Full Access

The relevance of physical activity (PA) for general health and the value of assessing PA in the free-living environment especially for assessing orthopaedic conditions and outcome are discussed. Available methods for assessing PA such as self-reports, trackers, phone apps and clinical grade monitors are introduced. An overview of devices such as accelerometers for research quality assessments is given and aspects for choosing them such as wear location, usability or study population are reviewed. Basic principles to derive mobility parameters from the PA related sensor signals are presented. The symposium explains mobility parameters, their types, definitions, validity, analysis and those with particular relevance to assess orthopaedic conditions. The application of activity monitors is orthopaedic patient studies is demonstrated in various examples such as knee and hop osteoarthritis and total joint arthroplasty, in frail elderly subjects at fall risk or patients with shoulder pathologies


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 96 - 96
1 May 2019
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even in experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in (THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus, has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intraoperative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intraoperative fluoroscopy time


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 26 - 26
1 Feb 2013
Brunton L Bolink S van Laarhoven S Lipperts M Grimm B Heyligers I Blom A
Full Access

Accelerometer based gait analysis (AGA) is a potential alternative to the more commonly used skin marker based optical motion analysis system(OMAS). The use of gyroscopes in conjunction with accelerometers (i.e. inertial sensors), enables the assessment of position and angular movements of body segments and provides ambulatory kinematic characterisation of gait. We investigated commonly used gait parameters and also a novel parameter, Pelvic obliquity (PO) and whether they can be used as a parameter of physical function and correlate with classic clinical outcome scores. Gait was studied in healthy subjects (n=20), in patients with end stage hip OA (n=20) and in patients with end stage knee OA (n=20). Subjects walked 20 metres in an indoor environment along a straight flat corridor at their own preferred speed. A 3D inertial sensor was positioned centrally between the posterior superior iliac spines (PSIS) overlying S1. Comparing gait parameters of end stage hip OA patients with an age and gender matched healthy control group, significantly lower walking speed, longer step duration and shorter step length was observed. After correcting for walking speed between groups, significantly less average range of motion of PO (RoM. po. ) was observed for patients with end stage hip OA compared to healthy subjects and patients with end stage knee OA. IGA allows objective assessment of physical function for everyday clinical practice and allows assessment of functional parameters beyond time only. IGA measures another dimension of physical function and could be used supplementary to monitor recovery of OA patients after TJR


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 764 - 774
1 Aug 2024
Rivera RJ Karasavvidis T Pagan C Haffner R Ast MP Vigdorchik JM Debbi EM

Aims

Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 40 - 40
1 May 2019
Gustke K
Full Access

Fifteen-year survivorships studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Total knee imbalance with either too tight or loose soft tissues account for up to 54% of revisions in one series. This may account for many of the 20% unsatisfactory total knee arthroplasty outcomes. Soft tissue balancing technique is more like an art. The surgeon relies on subjective feel for appropriate ligamentous tension. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensor tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, imbalance situations such as a too tight MCL or ITB, an incompetent or too tight PCL, or malrotated femoral or tibial component can be identified. A decision can be made as to whether to recut the bone to realign components, do a soft tissue release, or a combination of both. Soft tissue releases can be titrated while observing equalizing compartment pressures. Sensor feedback improves soft tissue balancing. More balanced compartments occur using a sensor trial than with standard soft tissue balancing technique blinded to sensor information. A multicenter three year study has shown that having the medial and lateral compartments in flexion and extension balanced within 15 pounds provides better outcomes. Patients with quantitatively balanced TKA with <15lbf mediolateral load differential have better forgotten knee scores at six weeks and six months. Use of smart trials is a new approach to total knee replacement surgery allowing fine tune balancing and takes soft tissue balancing from art to science


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 93 - 94
1 May 2011
Naal F Impellizzeri F
Full Access

Physical inactivity is a modifiable lifestyle-related risk factor considered one of the leading causes for the major noncommunicable chronic diseases and relates to approximately 250,000 deaths per year in the United States. While the benefits of physical activity (PA) are many and well-known, qualitative research defining the type and amount of PA in total joint arthroplasty (TJA) patients that improves health without disproportionally increasing wear and revision rates does unfortunately not exist in the literature. As the basis for future research, this systematic review therefore aimed to identify the different instruments used up to now to quantify PA in TJA patients and to determine how active these patients really are. Within the 26 studies included (n=2460 patients), motion sensors and recall questionnaires were most commonly used. The reported Results were mainly descriptive and research aims and goals varied widely between the studies. We were able to meta-analytically summarize the Results of those studies quantifying PA using pedometers and accelerometers. Patients took a weighted mean of 6,721 steps/day (95% CI: 5,744 to 7,698). Steps per day determined by accelerometers were 2.2 times more than steps assessed by pedometers. Meta-regression demonstrated that walking activity decreased by 90 steps/day (95% CI: −156 to −23) every year of patient age. These summarized Results clearly indicate that TJA patients are less active than recommended to achieve health-enhancing activity levels (currently > 10,000 steps/day), but they are more active than normally assumed in wear-simulations. Hence, such simulator Results have to be interpreted cautiously, taking into account that one million cycles correspond to less than one year in vivo. Future investigations have to evolve more standardization in the assessment and reporting of PA in TJA patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 12 - 12
1 Nov 2018
Grassi M Grimm B Nuritdinow T Lederer C Daumer M Hellsten Y
Full Access

Lower limb fractures are commonly treated with cast immobilization, and as a main consequence of strict immobilization this typically leads to loss in muscle mass, decrease of bone density and decline in functional abilities. Body-worn sensors are increasingly used to assess outcome in clinical trials by providing objective mobility parameters in a real-world environment. The aim of this study is to investigate the usability aspects and potential changes in mobility parameters in partial-immobilization patients in real-world conditions. Six healthy young males (age 22.2 ± 1.2 years; weight 76.5 ± 6.7 kg, height 185.8 ± 6.1 cm. Mean ± standard deviation) wore a leg cylinder cast with walker boot to immobilize their dominant leg for two consecutive weeks. Subjects were asked to continuously wear a tri-axial accelerometer on the waist (actibelt) during waking hours for 6 weeks including 2 weeks before, during and after cast immobilisation. The total amount of days of continuous recording was 339 days with a total wearing time of 120 days. Software packages which allow to detect steps and to estimate real-world walking speed were used to analyse the accelerometry data. It was suspected that knee immobilization would affect strongly the wave form of the signal with an impact on the accuracy of the speed algorithm, whereas the step detection should be more robust. This effect was confirmed in a preliminary study performed to quantify the accuracy under immobilization conditions. On the other hand, step numbers are known to be sensitive to fluctuations in wearing time which was not uniform throughout the entire study. We concluded that in this setting step frequency is the most reliable parameter. Step frequency showed a systematic decrease in the values during the immobilization period which recovered to pre-immobilisation values after cast removal. This confirms the usability of accelerometry and sensitivity of its mobility parameters for clinical outcome assessment


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 454 - 454
1 Sep 2009
Senden R Meijer K Savelberg H Heyligers I Grimm B
Full Access

In joint arthroplasty the currently used patient assessment scores suffer from subjectivity, a low ceiling effect and pain dominance. These effects mask functional differences which are important for today’s demanding patients. Functional assessment tools are needed which can objectively monitor patient outcome. This study investigates whether an acceleration based gait test is able to assess TKR patients. A cohort of 24 patients (11m, 13f) operated for osteoarthritis receiving unilateral TKR (Stryker Scorpio) were monitored for 3 months post-operative. Classic scores including subscores (KSS, Womac, VAS, PDI) and a gait test were measured pre-operative, at 2 weeks, 6 weeks and 3 months post-operative. Gait was analyzed using a triaxial accelerometer fixed to the sacrum while walking 6 times a 20m distance at preferred speed. Movement parameters like step frequency, step time, step number, vertical displacement, asymmetry and irregularity were calculated based on a peak detection algorithm. All classic scores were significantly intercorrelated (e.g. KSS and Womac, R=−0.73) indicating a degree of redundancy. Significant correlations were shown between several gait parameters and the KSS, PDI and VAS. Most correlations between gait parameters and a classical score were found for the KSS function subscore indicating it as the most objective functional assessement amongst the classic scores. In contrast Womac did not correlate with any gait parameter. This lack WOMAC capturing objective function was reported before using functional tests. The classic scales and the gait test cover different dimensions of surgical outcome supporting their combined use to follow up patients The accelerometer based gait test is clinically valid for the follow-up of TKR patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 8 - 8
1 Apr 2019
Adekanmbi I Ehteshami Z Hunt C Dressler M
Full Access

Introduction. In Total Hip Arthroplasty (THA), proper bone preparation technique is fundamental to preventing intraoperative fracture. Anecdotally, surgeons suggest they can avoid fracture by listening for changes in the pitch of a mallet strike during broaching. Consequently, it is not surprising that researchers have explored vibroacoustic methods to prevent [1] and identify bone fractures [2, 3]. For instance, a shift in frequency of the acoustic signals during impaction has been correlated with initial stability [4, 5]. In-spite of these research-based successes, we are unaware of an intraoperative application for THA. We submit that idiosyncratic variability during impaction [6] may overwhelm analytical techniques developed in a controlled laboratory environment. The purpose of this test, therefore, was to evaluate the effect of several strike parameters on the vibro-acoustic response during impaction. Specifically, we hypothesized that the angle, location, and force of impaction would produce ‘false-positives’ in frequency regions that have been used to identify fracture [7]. Methods. A Sawbones femur (SKU1121, Medium) was prepared and broached using standard surgical technique for the Summit hip system (DePuy Synthes) progressing from size 0 to 4. The size 4 broach was firmly seated and impacted ten times (n=10) for each of the prescribed conditions (Table 1) while securely holding the femur by hand. Vibroacoustic data from an accelerometer attached distally on the femur and a directional microphone located within 1 metre (Figure 1) were acquired at a sampling rate of 40kHz and postprocessed using LabView. Spectrograms were generated for qualitative comparisons, while fast fourier transform (FFT) with normalised amplitudes for each strike facilitated quantitative analysis of the area under the FFT curve (AU-FFT). Strike conditions were monitored to ensure the groups were consistent and distinct (Table 1). Results. There were statistically significant differences in strike conditions for angle (30°vs 60°), location (centre vs medial and lateral) and force (medium vs low and high) (Figure 2). Data describing the strike conditions revealed consistent and distinct groups (data not shown). Discussion and Conclusion. We have demonstrated that variability in striking does influence the vibroacoustic signal during impaction; however, contrary to our hypothesis, this variability does not overwhelm the ability to distinguish between fractured and intact impaction signals. Consequently, the AU-FFT comparator could be a robust and useful metric. Future work could evaluate this technique under more diverse conditions with multiple samples of varying anatomies, densities, and degrees of fracture. The above methods and paradigms could further be investigated to discern when a broach is properly seated and thereby avoid the risk of fracture altogether


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 433 - 433
1 Nov 2011
Currier J Van Citters D Currier B Perry A Collier J
Full Access

Squeaking of ceramic-on-ceramic (CoC) hips is a clinical phenomenon that is concerning with regard to the long term performance of these joint devices. Investigations into the cause of the squeaking have focused on patient factors and demographics, surgical placement, and other non-ceramic components in the devices. The current study tests latest-generation CoC devices to measure the vibration modes and frequencies of the components individually as well as assembled in the complete surgical construct. Audio data from clinical cases of squeaking hips were analysed to determine the frequencies present. Retrieved CoC hips (n = 7) and never-implanted CoC bearing couples (n = 3) were tested in the laboratory for squeaking under loaded articulation. Bovine serum was introduced into the CoC articulation and dried to promote stick-slip motion at the articulation. Squeaking sounds from the in vitro tests were recorded for audio analysis. Low mass, high frequency-response ceramic shear piezoelectric accelerometers (PCB Piezotronics) were adhered to the hip components along multiple axes to measure vibrations during testing. Clinical audio shows that squeaking occurs at fundamental frequencies in the range of 1 to 3 kHz, with harmonics above the fundamental frequency. Retrieved CoC bearing couples squeaked at fundamental frequencies from 1.5 kHz to 3.8 kHz. Fourier Transform analysis of the audio closely matched the concurrent output from the accelerometers mounted directly on the ceramic components. This held true even in the absence of metal components in the system. With metal components included in the test construct (acetabular shell, acetabular cup, femoral stem), those components also vibrated at the same frequencies as the ceramic bearing couples, indicating that the CoC articulation is the source of the vibrations, with metal components conducting and emanating the sound. The never-implanted bearing couples were made to squeak and vibrated at fundamental frequencies ranging from 1 kHz to 8 kHz. Squeaking from CoC hips can be reproduced in the lab using components from clinical retrievals. Instrumentation of the explanted hips confirms that the vibration frequencies of the ceramic components themselves match the audible squeaking. The squeaking of ceramic components mounted with soft polymers and with no metal contact at any point indicates that the ceramic components themselves are the source of the clinical squeaking. The measured vibration of ceramic components in the audible range is an observation not predicted by modeling studies reported in the literature to date


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 39 - 39
1 Sep 2012
Leszko F Zingde S Argenson J Dennis D Wasielewski R Mahfouz M Komistek R De Bock T
Full Access

Anterior knee pain is one of the most frequently reported musculoskeletal complaints in all age groups. However, patient's complaints are often nonspecific, leading to difficulty in properly diagnosing the condition. One of the causes of pain is the degeneration of the articular cartilage. As the cartilage deteriorates, its ability to distribute the joint reaction forces decreases and the stresses may exceed the pain threshold. Unfortunately, the assessment of the cartilage condition is often limited to a detailed interview with the patient, careful physical examination and x-ray imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissues' conditions. More advanced imaging tools such as MRI or CT are available, but these are expensive, time consuming and are only suitable for detection of advanced arthritis. Arthroscopic surgery is often the only reliable option, however due to its semi-invasive nature, it cannot be considered as a practical diagnostic tool. However, as the articular cartilage degenerates, the surfaces become rougher, they produce higher vibrations than smooth surfaces due to higher friction during the interaction. Therefore, it was proposed to detect vibrations non-invasively using accelerometers, and evaluate the signals for their potential diagnostic applications. Vibration data was collected for 75 subjects; 23 healthy and 52 subjects suffering from knee arthritis. The study was approved by the IRB and an Informed Consent was obtained prior to data collection. Five accelerometers were attached to skin around the knee joint (at the patella, medial and lateral femoral condyles, tibial tuberosity and medial tibial plateau). Each subject performed 5 activities; (1) flexion-extension, (2) deep knee bend, (3) chair rising, (4) stair climbing and (5) stair descent. The vibration and motion components of the signals were separated by a high pass filter. Next, 33 parameters of the signals were calculated and evaluated for their discrimination effectiveness (Figure 1). Finally the pattern recognition method based on Baysian classification theorem was used for classify each signal to either healthy or arthritic group, assuming equal prior probabilities. The variance and mean of the vibration signals were significantly higher in the arthritic group (p=2.8e-7 and p=3.7e-14, respectively), which confirms the general hypothesis that the vibration magnitudes increase as the cartilage degenerates. Other signal features providing good discrimination included the 99. th. quantile, the integral of the vibration signal envelope, and the product of the signal envelope and the activity duration. The pattern classification yielded excellent results with the success rate of up to 92.2% using only 2 features, up to 94.8% using 3 (Figure 2), and 96.1% using 4 features. The current study proved that the vibrations can be studied non-invasively using a low-cost technology. The results confirmed the hypothesis that the degeneration of the cartilage increases the vibration of the articulating bones. The classification rate obtained in the study is very encouraging, providing over 96% accuracy. The presented technology has certainly a potential of being used as an additional screening methodology enhancing the assessment of the articular cartilage condition


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 14 - 15
1 Jan 2004
Meijer O van den Dikkenberg N van der Slikke R van Lummel R van Dieën J Pijls B Benink R Wuisman P
Full Access

We present the rationale and design of the DynaPort KneeTest. The test aims at measuring knee patients’ functional abilities in an unobtrusive, user-friendly way. Test persons wear several belts around their trunk and legs. The belts contain accelerometers, the signals of which are stored in a recorder, embedded in one of the belts. The knee test consists of a set of 29 tasks related to activities of daily life (“test items”). Accelerometer signals are analysed in terms of 30 “movement features” (accelerations, angles, durations, frequencies, and some dimensionless numbers). In data analysis, the beginning and end of each test item is marked by hand; otherwise, analysis is automatic. We compared 140 knee patients with 32 healthy controls and found 541 of the 29 x 30 =870 test item movement feature combinations differed significantly between the two groups. From these 541 combinations the DynaPort knee score is calculated by the weighted averages of movement features per item, then weighted averages of items per cluster (locomotion, rising and descending, transfers, lifting and moving objects), and finally the average of the clusters. In an initial study the test-retest reliability of the knee test proved high, and the test turned out to be sufficiently responsive (0.7 patients’ standard deviations improvement after 24 months). However, it remains difficult to interpret the scores in more meaningful terms than merely “better” or “worse”. Extensive reliability studies in the future will further assess the validity of the test and provide more insight into the meaning of the scores. The DynaPort knee test may thus become an important instrument for evaluating patients’ functional abilities in knee-related clinical practice and research


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 123 - 123
1 Jun 2018
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores do so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra-operatively and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensor tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide if compartment loading differences are greater than 15 pounds whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes out to three years


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 63 - 63
1 Apr 2018
Daugaard R Tjur M Sliepen M Rosenbaum D Grimm B Mechlenburg I
Full Access

Introduction. Knee osteoarthritis (KOA) causes impairment through pain, stiffness and malalignment and knee joint replacement (KJR) may be necessary to alleviate such symptoms. There is disagreement whether patients with KJR increases their level of physical activity after surgery. The aim of this study is to investigate whether patients with KJR have a higher level of physical activity than patients with KOA, as measured by accelerometer-based method. Furthermore, to investigate whether patients achieve the same level of activity as healthy subjects five years post TJR. Material and method. 54 patients with KOA (29 women, mean age 62±8.6, mean BMI 27±5), 53 patients who had KJR five years earlier (26 women, mean age 66±7.2, mean BMI 30±5) and 171 healthy subjects (76 women, mean age 64±9.7, mean BMI 26±5) were included in this cross sectional study. The level of physical activity was measured over a mean of 5.5 days with a tri-axial accelerometer mounted on the thigh. Number of daily short walking bouts of. Results. Patients with KJR had 10.1 fewer short walking bouts (p=0.04), 745 fewer steps (p=0.19) and 6.2 fewer transfers (p=0.09) per day than patients with KOA. In addition, patients with KJR performed 21.7 fewer short walking bouts (p=0.001), 281 fewer steps (p=0.60) and 3.2 fewer transfers (p=0.32) per day than healthy subjects. Conclusion. Patients with KJR do not seem to be more physically active than patients with KOA. Neither do the seem to be as active as healthy subjects, However, the results may suffer from selection bias and thus the results ought to be confirmed in a bigger cohort study


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 319 - 319
1 May 2010
Grimm B Grimm B Van hemert W Meijer K Savelberg H Heyligers I
Full Access

In joint arthroplasty and in knee replacement in particular, the currently used patient assessment scores like KSS, are characterized by subjective ceiling effects. To monitor patients accurately in time, objective function assessment is required which is impossible with the classic scores. A single time point comparison study showed that an acceleration based gait test is reliable to analyze gait and to distinguish between knee pathologies. How-ever the use of an accelerometer to monitor functional changes over time is never reported before and will be investigated in this study. A representative group of 29 TKP patients (11 men, mean age 72yrs, weight 85kg, height 1.68m) operated for osteoarthritis receiving unilateral TKP (Stryker Scorpio) were monitored for 3 months. Classic scores (ROM, KSS, WOMAC, VAS, PDI) and the gait test was performed pre, 2 and 6 weeks and 3 months postoperative. Gait was analyzed using a triaxial accelerometer fixed to the sacrum while walking 6 times 20meters at preferred speed. Movement parameters like step frequency, step time, step length, speed and up/down displacement were calculated based on a peak detection algorithm. The gait test was compared with the classic scores using Pearson correlation. The paired t-test was used to investigate the changes after surgery (p< 0.05). Significant correlations were shown between all classic scores and all movement parameters (except up/down displacement and step length). The function KSS and PDI showed significant correlations with most gait parameters, while all Womac scores did not. Two weeks after surgery, the classic scores reached the preoperative scores. For instance function KSS was 57.21 preoperative and reached a score of 59.75 at 2 weeks postoperative. No significant changes were shown between preoperative and 2 weeks postoperative for the VAS, KSS and PDI. In contrast all gait parameters were significantly impaired at 2 weeks postoperative (step time of 0.63s) compared to preoperative (step time of 0.72s) and reached the preoperative functional abilities only at 6 week follow up or still later (step time of 0.64s). Between the 2nd and 6th week postoperative, significant changes were shown in all classic scores, ROM and in speed, up/down displacement. After 6 weeks postoperative KSS, PDI, ROM and the frequency improved significantly. The correlations between all movement parameters and function KSS and PDI indicates that these scores are more function based due to inclusion of objective function measures like ROM, while the Womac contains only questions about ADLs. According to the classic scales, patients show at 2 weeks similar skills as preoperative, while the gait test shows that patients are performing less at 2 weeks and reach the pre operative ability at 6 weeks. This suggest that the addition of the gait test give more information about the functional changes a patient experiences after surgery


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 46 - 46
1 Jan 2018
Taunton M Sierra R Kaufman K Trousdale R Pagnano M
Full Access

115 patients undergoing primary unilateral THA were randomized to either DAA or MPA. Groups did not differ in mean age, sex, or mean body mass index. Functional results included time to discontinue gait aids, discontinue all narcotics, and independence with various activities of daily living. Activity in study subjects was measured with 5 wearable activity monitoring sensors with tri-axial MEMS accelerometers and validated custom algorithms and conducted over three days at pre-op, 2 weeks, 8 weeks, and one year. SF-12, WOMAC, and HHS scores to one year were also tabulated. Early functional recovery slightly favoured DAA compared to MPA; time to discontinue walker (10 vs. 14.5 days), time to discontinue all gait aids (17.3 vs 23.6 days), ascend stairs with gait aid (5.4 vs. 10.3 days), and to walk 6 blocks (20.5 vs. 26.0 days). There were no other differences in early functional milestones. Activity monitoring at two weeks postoperatively slightly favoured DAA; mean steps per day were 3897 versus MPA 2,235, percent of day active, DAA 10.5% versus MPA 6.9%. There was no difference in activity monitoring pre-operatively, at two months, or at one year. There was no difference at one year with the SF-12. There was no difference in the SF-12 mental component or the HOOS at any time point. There was no loosening or subsidence of any of the components in any hip. Both the direct anterior and posterior approach provided excellent early postoperative recovery with a low complication rate. The direct anterior patients had slightly faster recovery than the mini-posterior approach patients, with slightly shorter times to achieve milestones of function and as measured by advanced, quantitative activity monitoring at 2 weeks postoperatively


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 12 - 12
1 Aug 2018
Solomon L Bahl J Arnold J Curness K Fraysse F Howie D Thewlis D
Full Access

Subjective outcomes used in THA show outstanding improvements in patient-reported outcomes. However, recent evidence suggests that there may be a disconnect between patient-reported and objectively measured function. The aim of this study was to investigate if physical activity and sleep patterns change from pre- to six months post primary THA. 54 patients scheduled for THA were recruited. Patients were given a wrist-worn accelerometer (GeneActiv, UK) to wear continuously for one week pre-operatively and six weeks, three months and six months post-operatively. The device was also fitted to the patient immediately following surgery to capture data for the first two post-operative weeks. The following parameters were calculated: (1) sleep efficiency; (2) the amount of time (and length of each bout and fragmentation of the activity) spent in sedentary activity; and (3) time spent in light, moderate and vigorous physical activity. Sedentary activities showed no change in the number, duration or fragmentation (p= 0.382, 0.288, 0.382, respectively). Patients were sedentary for 5–6 bouts/day with each bout lasting 50–76 minutes/day. A significant main effect was identified for time spent in light intensity activities (p=0.049). Prior to surgery, patients spent 201 minutes/day in light intensity activity. This decreased significantly to 133 minutes/day (p=0.025) in the first two postoperative weeks before returning close to pre-operative levels (192 minutes/day) at six weeks (p=0.025). No further changes were observed in light intensity activities. A significant main effect was identified for time spent in moderate intensity activities (p=0.003). Prior to surgery, patients spent 45 minutes/day in moderate intensity activities. This dropped to 18 minutes/day in the first two postoperative weeks (p=0.190). By three months this had increased to 66 minutes/day (p=0.049). No further changes were seen. There were no significant differences in time spent in vigorous intensity activities (p=0.244). Patients spent <1minute/day in vigorous intensity activities. Sleep efficiency did not change significantly from pre- (82%) to six months post-operative (75%) (p=0.067) − 85% is typically considered good sleep efficiency. Patients discharged to a regional hospital had significantly poorer sleep efficiency than those discharged home (mean difference=14%, p=<0.001) or to a rehabilitation centre (mean difference=15%, p=0.001). This patient cohort didn't demonstrate an overall improvement in objectively measured physical activity patterns from pre- to six months post-operative. Sleep efficiency, did not improve and remained sub-optimal