Advertisement for orthosearch.org.uk
Results 1 - 50 of 598
Results per page:
Bone & Joint Open
Vol. 2, Issue 2 | Pages 111 - 118
8 Feb 2021
Pettit M Shukla S Zhang J Sunil Kumar KH Khanduja V

Aims. The ongoing COVID-19 pandemic has disrupted and delayed medical and surgical examinations where attendance is required in person. Our article aims to outline the validity of online assessment, the range of benefits to both candidate and assessor, and the challenges to its implementation. In addition, we propose pragmatic suggestions for its introduction into medical assessment. Methods. We reviewed the literature concerning the present status of online medical and surgical assessment to establish the perceived benefits, limitations, and potential problems with this method of assessment. Results. Global experience with online, remote virtual examination has been largely successful with many benefits conferred to the trainee, and both an economic and logistical advantage conferred to the assessor or organization. Advances in online examination software and remote proctoring are overcoming practical caveats including candidate authentication, cheating prevention, cybersecurity, and IT failure. Conclusion. Virtual assessment provides benefits to both trainee and assessor in medical and surgical examinations and may also result in cost savings. Virtual assessment is likely to be increasingly used in the post-COVID world and we present recommendations for the continued adoption of virtual examination. It is, however, currently unable to completely replace clinical assessment of trainees. Cite this article: Bone Jt Open 2021;2(2):111–118


Bone & Joint Open
Vol. 2, Issue 6 | Pages 405 - 410
18 Jun 2021
Yedulla NR Montgomery ZA Koolmees DS Battista EB Day CS

Aims. The purpose of our study was to determine which groups of orthopaedic providers favour virtual care, and analyze overall orthopaedic provider perceptions of virtual care. We hypothesize that providers with less clinical experience will favour virtual care, and that orthopaedic providers overall will show increased preference for virtual care during the COVID-19 pandemic and decreased preference during non-pandemic circumstances. Methods. An orthopaedic research consortium at an academic medical system developed a survey examining provider perspectives regarding orthopaedic virtual care. Survey items were scored on a 1 to 5 Likert scale (1 = “strongly disagree”, 5 = “strongly agree”) and compared using nonparametric Mann-Whitney U test. Results. Providers with less experience were more likely to recommend virtual care for follow-up visits (3.61 on the Likert scale (SD 0.95) vs 2.90 (SD 1.23); p = 0.006) and feel that virtual care was essential to patient wellbeing (3.98 (SD 0.95) vs 3.00 (SD 1.16); p < 0.001) during the pandemic. Less experienced providers also viewed virtual visits as providing a similar level of care as in-person visits (2.41 (SD 1.02) vs 1.76 (SD 0.87); p = 0.006) and more time-efficient than in-person visits (3.07 (SD 1.19) vs 2.34 (SD 1.14); p = 0.012) in non-pandemic circumstances. During the pandemic, most providers viewed virtual care as effective in providing essential care (83.6%, n = 51) and wanted to schedule patients for virtual care follow-up (82.2%, n = 50); only 10.9% (n = 8) of providers preferred virtual visits in non-pandemic circumstances. Conclusion. Orthopaedic providers with less clinical experience seem to favourably view virtual care both during the pandemic and under non-pandemic circumstances. Providers in general appear to view virtual care positively during the pandemic but are less accommodating towards it in non-pandemic circumstances. Cite this article: Bone Jt Open 2021;2(6):405–410


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1170 - 1175
1 Sep 2012
Palan J Roberts V Bloch B Kulkarni A Bhowal B Dias J

The use of journal clubs and, more recently, case-based discussions in order to stimulate debate among orthopaedic surgeons lies at the heart of orthopaedic training and education. A virtual learning environment can be used as a platform to host virtual journal clubs and case-based discussions. This has many advantages in the current climate of constrained time and diminishing trainee and consultant participation in such activities. The virtual environment model opens up participation and improves access to journal clubs and case-based discussions, provides reusable educational content, establishes an electronic record of participation for individuals, makes use of multimedia material (including clinical imaging and photographs) for discussion, and finally, allows participants to link case-based discussions with relevant papers in the journal club. The Leicester experience highlights the many advantages and some of the potential difficulties in setting up such a virtual system and provides useful guidance for those considering such a system in their own training programme. As a result of the virtual learning environment, trainee participation has increased and there is a trend for increased consultant input in the virtual journal club and case-based discussions. It is likely that the use of virtual environments will expand to encompass newer technological approaches to personal learning and professional development


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 709 - 714
1 Jun 2022
Stirling PHC Simpson CJ Ring D Duckworth AD McEachan JE

Aims. The aim of this study was to describe the introduction of a virtual pathway for the management of patients with a suspected fracture of the scaphoid, and to report patient-reported outcome measures (PROMs) and satisfaction following treatment using this service. Methods. All adult patients who presented with a clinically suspected scaphoid fracture that was not visible on radiographs at the time of presentation during a one-year period were eligible for inclusion in the pathway. Demographic details, findings on examination, and routine four-view radiographs at the time of presentation were collected. All radiographs were reviewed virtually by a single consultant hand surgeon, with patient-initiated follow-up on request. PROMs were assessed at a minimum of one year after presentation and included the abbreviated version of the Disabilities of the Arm, Shoulder and Hand Score (QuickDASH), the EuroQol five-dimension five-level health questionnaire (EQ-5D-5L), the Net Promoter Score (NPS), and return to work. Results. A total of 221 patients were referred to the virtual pathway. Their mean age was 41 years (range 16 to 87) and there were 99 male patients (45%). A total of 189 patients (86%) were discharged with advice and 19 (9%) were recalled for clinical review: seven with an undisplaced scaphoid fracture, six with another fracture of the hand or wrist, two with a scapholunate ligament injury, and four in whom no abnormality was detected. A total of 13 patients (6%) initiated follow-up with the hand service: no fracture or ligament injury was identified in this group. PROMs were available for 179 patients (81%) at a mean follow-up of 19 months (range 13 to 33). The median QuickDASH score was 2.3 (interquartile range (IQR) 0 to 15.9), the median EQ-5D-5L was 0.85 (IQR 0.73 to 1.00), the NPS was 76, and 173 patients (97%) were satisfied with their treatment. There were no documented cases of symptomatic nonunion one year following injury. Conclusion. We describe the introduction of a virtual pathway for the management of patients with a suspected scaphoid fracture. We found high levels of patient satisfaction, excellent PROMs, and no detrimental effects in the vast majority of cases. Cite this article: Bone Joint J 2022;104-B(6):709–714


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 18 - 18
7 Jun 2023
Schapira B Spanoudakis E Jaiswal P Patel A
Full Access

Surgical trainees are finding it increasingly more challenging to meet operative requirements and coupled with the effects of COVID-19, we face a future of insufficiently trained surgeons. As a result, virtual reality (VR) simulator training has become more prevalent and whilst more readily accepted in certain arthroscopic fields, its use in hip arthroscopy (HA) remains novel. This project aimed to validate VR high-fidelity HA simulation and assess its functional use in arthroscopic training. Seventy-two participants were recruited to perform two basic arthroscopic tasks on a VR HA simulator, testing hip anatomy, scope manipulation and triangulation skills. They were stratified into novice (39) and experienced (33) groups based on previous arthroscopy experience. Metric parameters recorded from the simulator were used to assess construct validity. Face validity was evaluated using a Likert-style questionnaire. All recordings were reviewed by 2 HA experts for blinded ASSET score assessment. Experienced participants were significantly faster in completing both tasks compared with novice participants (p<0.001). Experienced participants damaged the acetabular and femoral cartilage significantly less than novice participants (p=0.011) and were found to have significantly reduced path length of both camera and instrument across both tasks (p=0.001, p=0.007), demonstrating significantly greater movement economy. Total ASSET scores were significantly greater in experienced participants compared to novice participants (p=0.041) with excellent correlation between task time, cartilage damage, camera and instrument path length and corresponding ASSET score constituents. 62.5% of experienced participants reported a high degree of realism in all facets of external, technical and haptic experience with 94.4% advising further practice would improve their arthroscopic skills. There was a relative improvement of 43% in skill amongst all participants between task 1 and 2 (p<0.001). This is the largest study to date validating the use of simulation in HA training. These results confirm significant construct and face validity, excellent agreement between objective measures and ASSET scores, significant improvement in skill with continued use and recommend VR simulation to be a valuable asset in HA training for all grades


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 46 - 46
11 Apr 2023
Boljanovic D Razmjou H Wainwright A
Full Access

Virtual physiotherapy has been provided to hundreds of patients at the Holland Centre during the COVID pandemic. As we plan for virtual care to be one part of our care delivery we want to evaluate it and ensure the care delivery is safe and effective. The objectives of this project was two-fold: 1) to examine the outcome of virtual physiotherapy and/ or a hybrid of virtual and in-person care in patients who received post-operative treatment following total knee replacement at the Holland Centre, 2) to explore the challenges of virtual care participation in the joint replacement population. Patients who received either virtual care or a combination of in-person and virtual care (hybrid model) based on the patients’ needs were included. Patient-related outcomes were the Patient Specific Functional Scale (PSFS) and pain scale. Flexion and extension range of motion were measured before and after treatment. A modified Primary Care Patient Experience Virtual Care Survey was used to examine barriers for virtual care. Sixty patients, mean age 68(8), ranging between 45-83 years, 34(57%) females, who received either virtual care or a combination of in-person and virtual care based on the patients’ needs were included. Patients showed improvement in the PSFS and pain scores (p<0.0001). Flexion (p<0.0001) and extension (p=0.02) improved at a statistically significant level. A separate sample (N=54) (age range 50-85 years) completed the patient experience survey. A well-designed post-operative virtual physiotherapy program, initially implemented to maintain continuity of care during the pandemic, continues to be an important part of our model of care as we normalize our activities. Clear understanding of barriers to virtual care and mitigation strategies will help us create virtual care standards, meet our patient needs, optimize our care delivery and potentially increase the use of virtual rehab in the future


Bone & Joint Open
Vol. 2, Issue 5 | Pages 301 - 304
17 May 2021
Lee G Clough OT Hayter E Morris J Ashdown T Hardman J Anakwe R

The response to the COVID-19 pandemic has raised the profile and level of interest in the use, acceptability, safety, and effectiveness of virtual outpatient consultations and telemedicine. These models of care are not new but a number of challenges have so far hindered widespread take-up and endorsement of these ways of working. With the response to the COVID-19 pandemic, remote and virtual working and consultation have become the default. This paper explores our experience of and learning from virtual and remote consultation and questions how this experience can be retained and developed for the future. Cite this article: Bone Jt Open 2021;2(5):301–304


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 51 - 51
11 Apr 2023
Robarts S Palinkas V Boljanovic D Razmjou H
Full Access

The Severity Scoring System (SSS) is a guide to interpreting findings across clinical, functional, and radiological findings, used by qualified, specially trained physiotherapists in the advanced practice role in order to provide consistency in determining the severity of the patient's condition and need for surgical consultation. The system has been utilized for over 14 years as a part of standardized assessment and management care and was incorporated into virtual care in 2020 following the pandemic restrictions. The present study examined the validity of the modified SSS in virtual care. Patients who were referred to the Rapid Access Clinic (RAC), were contacted via phone by two experienced advanced practice practitioners (APPs) from May to July 2020, when in-person care was halted due to the pandemic. The virtual interview included taking history, completing self-reported measures for pain and functional ability and reviewing the radiological reports. A total of 63 patients were interviewed (mean age 68, SD=9), 34 (54%) females. Of 63 patients, 33 (52%) were considered a candidate for total knee arthroplasty (TKA). Men and women were comparable in age, P4 and LEFS scores. The TKA candidates had a significantly higher SSS (p<0.0001) and pain scores (p=0.024). The variability of the total SSS score explained by the functional, clinical and radiological components of the tool were 55%, 48% and 4% respectively, highlighting the more important role of patient's clinical history and disability in the total SSS. The virtual SSS is a valid tool in directing patients for surgical management when used by highly trained advanced practice physiotherapists. A large component of the SSS is based on clinical data and patient disability and the APP's skillset rather than severity of pathology found on imaging


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 13 - 13
1 Jun 2022
Stirling P Simpson C Ring D Duckworth A McEachan J
Full Access

This study describes the introduction of a virtual pathway for the management of suspected scaphoid fractures and reports patient-reported outcome measures (PROMs) and satisfaction following treatment with this service. All adult patients that presented with a clinically suspected scaphoid fracture that was not visible on presentation radiographs over a one-year period were eligible for inclusion in the pathway. Demographics, examination findings, clinical scaphoid score (CSS) and standard four view radiographs were collected at presentation. All radiographs were reviewed virtually by a single consultant hand surgeon, with patient-initiated follow-up on request. PROMs were assessed at a minimum of one year post presentation and included the QuickDASH, EQ-5D-5L, the Net Promoter Score (NPS) and return to work. There were 221 patients referred to the virtual pathway. The mean age was 41 (range 16–87; SD 18.4 years) and there were 99 men (45%). There were 189 (86%) patients discharged with advice and 19 (9%) patients were recalled for clinical review (seven undisplaced scaphoid fractures, six other acute fractures of the hand or wrist, two scapholunate ligament injuries, and four cases where no abnormality was detected). Thirteen patients (6%) initiated follow-up with the hand service; no fracture or ligament injury was identified within this group. PROMs were available for 179 (81%) patients at a mean of 19 months follow-up (range: 13 – 33 months). The median QuickDASH score was 2.3 (IQR, 0–15.9), the median EQ-5D-5L was 0.85 (IQR, 0.73–1.00), the NPS was 76, and 173 (97%) patients were satisfied with their treatment. There were no documented cases of symptomatic non-union one year following injury. This study reports the introduction of a virtual pathway for suspected scaphoid fractures, demonstrating high levels of patient satisfaction, excellent PROMs, and no detrimental effects in the vast majority of cases


Bone & Joint Open
Vol. 1, Issue 6 | Pages 272 - 280
19 Jun 2020
King D Emara AK Ng MK Evans PJ Estes K Spindler KP Mroz T Patterson BM Krebs VE Pinney S Piuzzi NS Schaffer JL

Virtual encounters have experienced an exponential rise amid the current COVID-19 crisis. This abrupt change, seen in response to unprecedented medical and environmental challenges, has been forced upon the orthopaedic community. However, such changes to adopting virtual care and technology were already in the evolution forecast, albeit in an unpredictable timetable impeded by regulatory and financial barriers. This adoption is not meant to replace, but rather augment established, traditional models of care while ensuring patient/provider safety, especially during the pandemic. While our department, like those of other institutions, has performed virtual care for several years, it represented a small fraction of daily care. The pandemic required an accelerated and comprehensive approach to the new reality. Contemporary literature has already shown equivalent safety and patient satisfaction, as well as superior efficiency and reduced expenses with musculoskeletal virtual care (MSKVC) versus traditional models. Nevertheless, current literature detailing operational models of MSKVC is scarce. The current review describes our pre-pandemic MSKVC model and the shift to a MSKVC pandemic workflow that enumerates the conceptual workflow organization (patient triage, from timely care provision based on symptom acuity/severity to a continuum that includes future follow-up). Furthermore, specific setup requirements (both resource/personnel requirements such as hardware, software, and network connectivity requirements, and patient/provider characteristics respectively), and professional expectations are outlined. MSKVC has already become a pivotal element of musculoskeletal care, due to COVID-19, and these changes are confidently here to stay. Readiness to adapt and evolve will be required of individual musculoskeletal clinical teams as well as organizations, as established paradigms evolve. Cite this article: Bone Joint Open 2020;1-6:272–280


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 951 - 959
1 Aug 2019
Preston N McHugh GA Hensor EMA Grainger AJ O’Connor PJ Conaghan PG Stone MH Kingsbury SR

Aims. This study aimed to develop a virtual clinic for the purpose of reducing face-to-face orthopaedic consultations. Patients and Methods. Anonymized experts (hip and knee arthroplasty patients, surgeons, physiotherapists, radiologists, and arthroplasty practitioners) gave feedback via a Delphi Consensus Technique. This consisted of an iterative sequence of online surveys, during which virtual documents, made up of a patient-reported questionnaire, standardized radiology report, and decision-guiding algorithm, were modified until consensus was achieved. We tested the patient-reported questionnaire on seven patients in orthopaedic clinics using a ‘think-aloud’ process to capture difficulties with its completion. Results. A patient-reported 13-item questionnaire was developed covering pain, mobility, and activity. The radiology report included up to ten items (e.g. progressive periprosthetic bone loss) depending on the type of arthroplasty. The algorithm concludes in one of three outcomes: review at surgeon’s discretion (three to 12 months); see at next available clinic; or long-term follow-up/discharge. Conclusion. The virtual clinic approach with attendant documents achieved consensus by orthopaedic experts, radiologists, and patients. The robust development and testing of this standardized virtual clinic provided a sound platform for organizations in the United Kingdom to adopt a virtual clinic approach for follow-up of hip and knee arthroplasty patients. Cite this article: Bone Joint J 2019;101-B:951–959


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 89 - 89
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students. A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group. 50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356). In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 9 - 9
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students. A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group. 50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356). In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 16 - 16
10 May 2024
Bartle D Wesley J Bartlett J
Full Access

INTRODUCTION. Simulation plays an important role in surgical education and the ability to perfect surgical performance. Simulation can be enhanced by adding various layers of realism to the experience. Haptic feedback enhances the simulation experience by providing tactile responses and virtual reality imagery provides an immersive experience and allows for greater appreciation of three-dimensional structures. In this study, we present a proof-of-concept haptic simulator to replicate key steps of a cervical laminoplasty procedure. The technology uses affordable components and is easily modifiable so that it can be used from novice through to expert level. Custom models can be easily added ensuring the simulator can be used in a wide range of orthopaedic applications from baseline education through to day of surgery pre-operative simulation. METHOD. We used the Unity Game Engine, the 3D Systems “Touch” Haptic Feedback Device (HFD), and a Meta Quest VR headset. Our system uses a number of complex algorithms to track the shape and provide haptic feedback of a virtual bone model. This allows for simulation of various tools including a high-speed burr, Kerrison rongeur and intraoperative X-rays. RESULTS. Our simulator replicates the tactile sensations of bone-burring tasks. Although we focused on the cervical laminoplasty procedure, the system can load data from CT scans, enabling the simulation of multiple other procedures. The parts cost of our system, $10,000 NZD, is a fraction of the cost of traditional surgical simulators. DISCUSSION. Our simulator reduces financial barriers to accessing orthopaedic simulators. Trainees can perform hands-on practice without compromising patient safety. The immersive nature of VR, combined with realistic haptic feedback, enables trainees to develop the dexterity and three-dimensional understanding of detailed bony work. Further refinements are needed before we can perform validation studies on our system. CONCLUSIONS. We present an affordable surgical simulator capable of simulating bony surgical procedures in a VR environment using haptic feedback technology and consumer-grade components. ACKNOWLEDGEMENTS. This research was made possible by the generosity of the Wishbone Trust


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 9 - 9
1 Dec 2021
Edwards T Soussi D Gupta S Patel A Liddle A Khan S Cobb J Logishetty K
Full Access

Abstract. Objectives. Non-technical skills including teamwork play a pivotal role in surgical outcomes. Virtual reality is effective at improving technical skills, however there is a paucity of evidence on team-based virtual reality (VR) training. This study aimed to assess if multiplayer virtual reality training was superior to solo training for acquisition of both technical and non-technical skills in learning the complex anterior approach total hip arthroplasty operation. Methods. 10 novice surgeons and 10 novice scrub nurses, were randomised to solo or team virtual reality training to perform anterior approach total hip arthroplasty. Solo participants trained with virtual avatar counterparts, whilst teams trained in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Then, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and solo participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. Outcomes were procedure time, procedural errors from an expert pre-defined protocol and acetabular component positioning. Non-technical skills were assessed using the NOTECHs II and NOTSS scores. Results. Teams were 28.11% faster than solos in the real world assessment (31.22 minutes ±2.02 vs 43.43 ±2.71, p=0.01), with 34.91% less errors (−15.25 errors ±3.09 vs −23.43 ±1.84, p=0.04). Teams had significantly higher NOTSS and NOTECHS II scores when compared to solos (p<0.001). 8/10 surgeons placed the acetabular component within the target safe zone. Conclusions. Multiplayer training appears to lead to faster surgery with fewer technical errors and the development of superior non-technical skills. VR learnt skills appear to translate to the physical world. This supports the application of multidisciplinary learning to create a more integrated approach to surgical team training


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 62 - 62
1 Mar 2021
Wallace CN
Full Access

The British Orthopedic Association recommends that patients referred to fracture clinic are reviewed within 72 hours. With the increase in referrals and limited clinic capacity it is becoming increasingly difficult to see every referral with in a 72 hour time frame. Some patients are waiting 2 weeks or more before they can be seen in a fracture clinic. With the aim of improving care by seeking to meet BOAST 7 target, waiting times for fracture clinic appointments at the Homerton University Hospital were audited prospectively against this national guideline, before virtual fracture clinic was implemented and 6 weeks after the implementation of virtual fracture clinic at our hospital. Virtual fracture clinic is where an Orthopedic consultant reviews a patients x-rays and A&E documentation and decides if that patients needs to be seen in a face to face fracture clinic to discuss operative vs. non-operative management of their injury or if a treatment plan can be delivered without the patient having to come back to hospital. The study was conducted as a prospective closed-loop audit in which the second cycle took place after the implementation of the new virtual fracture clinic service. The first cycle showed a non-compliant waiting time with only 18% of patients being seen within 72 hours. Following the implementation of virtual fracture clinic, 84% of all patients were reviewed within 72 hours. Virtual fracture clinic delivered a significant reduction in waiting times. Virtual fracture clinic has only just been implemented at the Homerton University Hospital and hopefully at the next audit we will be 100% compliant with the BOA BOAST 7 Guideline. We would recommend that virtual fracture clinics being rolled out in Orthopedic departments in all hospitals which have Orthopedic services


Bone & Joint Open
Vol. 1, Issue 11 | Pages 683 - 690
1 Nov 2020
Khan SA Asokan A Handford C Logan P Moores T

Background. Due to the overwhelming demand for trauma services, resulting from increasing emergency department attendances over the past decade, virtual fracture clinics (VFCs) have become the fashion to keep up with the demand and help comply with the BOA Standards for Trauma and Orthopaedics (BOAST) guidelines. In this article, we perform a systematic review asking, “How useful are VFCs?”, and what injuries and conditions can be treated safely and effectively, to help decrease patient face to face consultations. Our primary outcomes were patient satisfaction, clinical efficiency and cost analysis, and clinical outcomes. Methods. We performed a systematic literature search of all papers pertaining to VFCs, using the search engines PubMed, MEDLINE, and the Cochrane Database, according to the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) checklist. Searches were carried out and screened by two authors, with final study eligibility confirmed by the senior author. Results. In total, 21 records were relevant to our research question. Six orthopaedic injuries were identified as suitable for VFC review, with a further four discussed in detail. A reduction of face to face appointments of up to 50% was reported with greater compliance to BOAST guidelines (46.4%) and cost saving (up to £212,000). Conclusions. This systematic review demonstrates that the VFC model can help deliver a safe, more cost-effective, and more efficient arm of the trauma service to patients. Cite this article: Bone Joint Open 2020;1-11:683–690


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_3 | Pages 4 - 4
23 Jan 2024
Clarke M Pinto D Ganapathi M
Full Access

Patient education programmes prior to hip and knee arthroplasty reduce anxiety and create realistic expectations. While traditionally delivered in-person, the Covid-19 pandemic has necessitated change to remote delivery. We describe a ‘Virtual Joint School’ (VJS) model introduced at Ysbyty Gwynedd, and present patient feedback to it. Eligible patients first viewed online educational videos created by our Multi-Disciplinary Team (MDT); and then attended an interactive virtual session where knowledge was reinforced. Each session was attended by 8–10 patients along with a relative/friend; and was hosted by the MDT consisting of nurses, physiotherapists, occupational therapists, and a former patient who provided personal insight. Feedback on the VJS was obtained prospectively using an electronic questionnaire. From July 2022 to February 2023, 267 patients attended the VJS; of which 117 (44%) responded to the questionnaire. Among them, 87% found the pre-learning videos helpful and comprehensible, 92% felt their concerns were adequately addressed, 96% felt they had sufficient opportunity to ask questions and 96% were happy with the level of confidentiality involved. While 83% felt they received sufficient support from the health board to access the virtual session, 63% also took support from family/friends to attend it. Only 15% felt that they would have preferred a face-to-face format. Finally, by having ‘virtual’ sessions, each patient saved, on average, 38 miles and 62 minutes travel (10,070 miles and 274 hours saved for 267 patients). Based on the overwhelmingly positive feedback, we recommend implementation of such ‘Virtual Joint Schools’ at other arthroplasty centres as well


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 40 - 40
7 Jun 2023
Edwards T Soussi D Gupta S Khan S Patel A Patil A Badri D Liddle A Cobb J Logishetty K
Full Access

Superior teamwork in the operating theatre is associated with improved technical performance and clinical outcomes. Yet modern rota patterns, workforce shortages, and increasing complexity of surgery, means that there is less familiarity between staff and the required choreography. Immersive Virtual Reality (iVR) can successfully train surgical staff individually, however iVR team training has yet to be investigated. We aimed to design a multiplayer iVR platform for anterior approach total hip arthroplasty (AA-THA) and assess if multiplayer iVR training was superior to single player training for acquisition of both technical and non-technical skills. An iVR platform with choreographed roles for the surgeon and scrub nurse was developed using Cognitive Task Analysis. Forty participants were randomised to individual or team iVR training. Individually- trained participants practiced alongside virtual avatar counterparts, whilst teams trained live in pairs. Both groups underwent five iVR training sessions over 6-weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated theatre. Teams performed together and individually trained participants were randomly paired up. Videos were marked by two blinded assessors recording the NOTSS, NOTECHS II and SPLINTS scores - validated technical and non-technical scores assessing surgeon and scrub nurse skills. Secondary outcomes were procedure time and number of technical errors. Teams outperformed individually trained participants for non-technical skills in the real-world assessment (NOTSS 13.1 ± 1.5 vs 10.6 ± 1.6, p =0.002, NOTECHS-II score 51.7 ± 5.5 vs 42.3 ± 5.6, p=0.001 and SPLINTS 10 ± 1.2 vs 7.9 ± 1.6, p = 0.004). They completed the assessment 28.1% faster (27.2 minutes ± 5.5 vs 41.8 ±8.9, p<0.001), and made fewer than half the number of technical errors (10.4 ± 6.1 vs 22.6 ± 5.4, p<0.001). Multiplayer training leads to faster surgery with fewer technical errors and the development of superior non-technical skills for anterior approach total hip arthroplasty. The convention of surgeons and nurses training separately, but undertaking real complex surgery together, can be supplanted by team training, delivered through immersive virtual reality


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 728 - 734
1 Jul 2024
Poppelaars MA van der Water L Koenraadt-van Oost I Boele van Hensbroek P van Bergen CJA

Aims. Paediatric fractures are highly prevalent and are most often treated with plaster. The application and removal of plaster is often an anxiety-inducing experience for children. Decreasing the anxiety level may improve the patients’ satisfaction and the quality of healthcare. Virtual reality (VR) has proven to effectively distract children and reduce their anxiety in other clinical settings, and it seems to have a similar effect during plaster treatment. This study aims to further investigate the effect of VR on the anxiety level of children with fractures who undergo plaster removal or replacement in the plaster room. Methods. A randomized controlled trial was conducted. A total of 255 patients were included, aged five to 17 years, who needed plaster treatment for a fracture of the upper or lower limb. Randomization was stratified for age (five to 11 and 12 to 17 years). The intervention group was distracted with VR goggles and headphones during the plaster treatment, whereas the control group received standard care. As the primary outcome, the post-procedural level of anxiety was measured with the Child Fear Scale (CFS). Secondary outcomes included the children’s anxiety reduction (difference between CFS after and CFS before plaster procedure), numerical rating scale (NRS) pain, NRS satisfaction of the children and accompanying parents/guardians, and the children’s heart rates during the procedure. An independent-samples t-test and Mann-Whitney U test (depending on the data distribution) were used to analyze the data. Results. The post-procedural CFS was significantly lower (p < 0.001) in the intervention group (proportion of children with no anxiety = 78.6%) than in the control group (56.8%). The anxiety reduction, NRS pain and satisfaction scores, and heart rates showed no significant differences between the control group and the intervention group. Subanalyses showed an increased effect of VR on anxiety levels in young patients, females, upper limb fractures, and those who had had previous plaster treatment. Conclusion. VR effectively reduces the anxiety levels of children in the plaster room, especially in young girls. No statistically significant effects were seen regarding pain, heart rate, or satisfaction scores. Cite this article: Bone Joint J 2024;106-B(7):728–734


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 13 - 13
11 Apr 2023
Edwards T Gupta S Soussi D Patel A Khan S Liddle A Cobb J Logishetty K
Full Access

Current evidence suggests that superior surgical team performance is linked to fewer intra-operative errors, reductions in mortality and even improved patient outcomes. Virtual reality has demonstrated excellent efficacy in training surgeons and scrub nurses individually, however its impact on training teams is currently unknown. This study aimed to assess if training together (scrub nurse and surgeon) in an innovative multiplayer virtual reality program was superior to single player training for novices learning anterior approach total hip arthroplasty (AA-THA). 40 participants (20 novice surgeons (CT1-ST3 level) and 20 novice scrub nurses) were enrolled in this study and randomised to individual or team virtual reality training. Individually-trained participants played with virtual avatar counterparts, whilst teams trained live in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and individually-trained participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. The primary outcome was team performance as graded by the validated NOTECHs II score. Secondary outcomes were procedure time and number of technical errors from an expert pre-defined protocol. Teams outperformed individually-trained participants for non-technical skills in the real-world assessment (NOTECHS-II score 50.3 ± 6.04 vs 43.90 ± 5.90, p=0.0275). They completed the assessment 28.1% faster (31.22 minutes ±2.02 vs 43.43 ±2.71, p=0.01), and made close to half the number of technical errors when compared to the individual group (12.9 ± 8.3 vs 25.6 ± 6.1, p=0.001). Multiplayer, team training appears to lead to faster surgery with fewer technical errors and the development of superior non-technical skills


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 559 - 565
1 May 2018
Bartlett JD Lawrence JE Stewart ME Nakano N Khanduja V

Aims. The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods. A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results’ titles, abstracts, and references were examined for relevance. Results. A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion. The demonstration of ‘real-world’ benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559–65


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 32 - 32
1 Oct 2022
Astek A Sparkes V Sheeran L
Full Access

Background. Chronic low back pain (CLBP) is the leading cause of disability worldwide. Immersive virtual reality (IVR) can be delivered using head mounted display (HMD) to interact with 3D virtual environment (VE). IVR has shown promising results in management of chronic pain conditions, using different mechanisms (e.g., exposure to movement and distraction). However, it has not been widely tested for CLBP. Future development of IVR intervention needs inputs from gatekeepers to determine key considerations, facilitators and barriers. This qualitative study aimed to explore views and opinions of physiotherapists about IVR intervention for adults with CLBP. Methods. Four focus groups were conducted online, with 16 physiotherapists. A demonstration of existing IVR mechanisms was presented. The data were transcribed and analysed through descriptive thematic analysis. Results. IVR was thought to be a suitable adjunct for a subgroup of patients who are reluctant to engage with standard care. Motivation to perform challenging physical tasks was believed to be a potential benefit. Safety, possibility of addiction, and transferability of acquired skills from VE to ‘real world’ and hygiene were concerns and the intervention was preferred to be used under clinical supervision. VE personalisation to patient's goal and preference with delivery and progression being gradual depending upon patient's abilities was suggested. Technical knowledge was seen as a facilitator, while cost and technology acceptance were barriers for future implementation. Conclusion. Future studies would need to consider the reported views of physiotherapists to inform development and implementation of IVR intervention for CLBP. Conflicts of interest: No conflict of interest. Sources of funding: Funded by the government of Saudi Arabia


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 77 - 77
19 Aug 2024
Fu H Singh G H C Lam J Yan CH Cheung A Chan PK Chiu KY
Full Access

Hip precautions following total hip arthroplasty (THA) limits flexion, adduction and internal rotation, yet these precautions cause unnecessary psychological stress. This study aims to assess bony and implant impingement using virtual models from actual patient's bony morphology and spinopelvic parameters to deduce whether hip precautions are necessary with precise implant positioning in the Asian population. Individualized sitting and standing sacral slope data of robotic THAs performed at two tertiary referral centers in Hong Kong was inputted into the simulation system based on patients’ pre-operative sitting and standing lumbar spine X-rays. Three-dimensional dynamic models were reconstructed using the Stryker Mako THA 4.0 software to assess bony and implant impingement both anteriorly and posteriorly, with default cup placement at 40° inclination and 20° anteversion. Femoral anteversion followed individual patient's native version. A 36mm hip ball was chosen for all cups equal or above 48mm and 32mm for those below. Anterior impingement was assessed by hip flexion and posterior impingement was assessed by hip extension. 113 patients were included. At neutral rotation and adduction, no patients had anterior implant impingement at hip flexion of 100°. 1.7% had impingement at 110°, 3.5% had impingement at 120°, 9.7% had impingement at 130°. With 20° of internal rotation and adduction, 0.8% had anterior implant impingement at hip flexion of 90°, 7.1% had impingement at 100° and 18.5% had impingement at 110°. With the hip externally rotated by 20°, 0.8% of patients had posterior implant impingement, and 8.8% bony impingement at 0° extension. With enabling technology allowing accurate component positioning, hip precautions without limiting forward flexion in neutral position is safe given precise implant positioning and adequate osteophyte removal. Patients should only be cautioned about combined internal rotation, adduction with flexion


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 46 - 46
1 Nov 2015
Hussein A Young S Shepherd A Faisal M
Full Access

Introduction. Local commissioning groups are no longer funding outpatient follow up of joint replacements in an effort to save money. We present the costs of changing from traditional follow up methods to a virtual clinic at Warwick Hospital. Before September 2014 all joint replacements were seen in outpatients at six weeks, one year, five years, ten years and then every two years thereafter. They were usually reviewed, in a non-consultant led clinic, by a Band 7 specialist physiotherapist. This cost approximately £50 per patient including x-ray. Occasionally, the patients were seen in a consultant led clinic costing approximately £100. Methods and Results. Currently patients are reviewed in outpatients at six weeks and one-year post operation by a specialist physiotherapist. Patients over the age of 75 years (at time of surgery) are then discharged to the care of their GP. Patients under the age of 75 enter the virtual clinic. They receive an Oxford Hip/Knee Score and x-ray at seven years post op then every three years after. In order to set up and maintain the virtual clinic a midpoint band 3 administrator was employed. Based on 3000 follow up episodes per year the cost of administrating the database is £7 per patient; however this will vary dependent on actual activity. The cost of a virtual appointment with a specialist physiotherapist who will review the Oxford Hip/Knee Score and an x-ray is approximately £40 including x-ray. The total cost of a virtual clinic follow up is therefore approximately £47. Conclusion. Virtual clinics do not save large amounts of money compared to outpatient follow up by specialist physiotherapists and may actually cost more if significant numbers of patients need to be brought back to clinic. They incur significant administration costs (including set up) but do free up outpatient availability to see new patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 65 - 65
1 Jul 2020
Sahak H Hardisty M Finkelstein J Whyne C
Full Access

Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the facet joints, thickening of the ligaments, and bulging or collapse of the intervertebral discs contribute to the compression. Decompression surgery alleviates spinal stenosis through a laminectomy involving the resection of bone and ligament. Spinal decompression surgery requires appropriate planning and variable strategies depending on the specific situation. Given the potential for neural complications, there exist significant barriers to residents and fellows obtaining adequate experience performing spinal decompression in the operating room. Virtual teaching tools exist for learning instrumentation which can enhance the quality of orthopaedic training, building competency and procedural understanding. However, virtual simulation tools are lacking for decompression surgery. The aim of this work was to develop an open-source 3D virtual simulator as a teaching tool to improve orthopaedic training in spinal decompression. A custom step-wise spinal decompression simulator workflow was built using 3D Slicer, an open-source software development platform for medical image visualization and processing. The procedural steps include multimodal patient-specific loading and fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data, bone threshold-based segmentation, soft tissue segmentation, surgical planning, and a laminectomy and spinal decompression simulation. Fusion of CT and MRI elements was achieved using Fiducial-Based Registration which aligned the scans based on manually placed points allowing for the identification of the relative position of soft and hard tissues. Soft tissue segmentation of the spinal cord, the cerebrospinal fluid, the cauda equina, and the ligamentum flavum was performed using Simple Region Growing Segmentation (with manual adjustment allowed) involving the selection of structures on T1 and/or T2-weighted scans. A high-fidelity 3D model of the bony and soft tissue anatomy was generated with the resulting surgical exposure defined by labeled vertebrae simulating the central surgical incision. Bone and soft tissue resecting tools were developed by customizing manual 3D segmentation tools. Simulating a laminectomy was enabled through bone and ligamentum flavum resection at the site of compression. Elimination of the stenosis enabled decompression of the neural elements simulated by interpolation of the undeformed anatomy above and below the site of compression using Fill Between Slices to reestablish pre-compression neural tissue anatomy. The completed workflow allows patient specific simulation of decompression procedures by staff surgeons, fellows and residents. Qualitatively, good visualization was achieved of merged soft tissue and bony anatomy. Procedural accuracy, the design of resecting tools, and modeling of the impact of bone and ligament removal was found to adequately encompass important challenges in decompression surgery. This software development project has resulted in a well-characterized freely accessible tool for simulating spinal decompression surgery. Future work will integrate and evaluate the simulator within existing orthopaedic resident competency-based curriculum and fellowship training instruction. Best practices for effectively teaching decompression in tight areas of spinal stenosis using virtual simulation will also be investigated in future work


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 6 - 6
3 Mar 2023
Ramage G Poacher A Ramsden M Lewis J Robertson A Wilson C
Full Access

Introduction. Virtual fracture clinics (VFC's) aim to reduce the number of outpatient appointments while improving the clinical effectiveness and patients experience through standardisation of treatment pathways. With 4.6% of ED admissions due to trauma the VFC prevents unnecessary face to face appointments providing a cost savings benefit to the NHS. Methods. This project demonstrates the importance of efficient VFC process in reducing the burden on the fracture clinics. We completed preformed a retrospective cross-sectional study, analysing two cycles in May (n=305) and September (n=332) 2021. We reviewed all VFC referrals during this time assessing the quality of the referral, if they went on to require a face to face follow up and who the referring health care professional was. Following the cycle in May we provided ongoing education to A&E staff before re-auditing in September. Results. Between the two cycles there was an average 19% improvement in quality of the referrals, significant reduction in number of inappropriate referrals for soft tissue knee and shoulder injuries from 15.1% (n=50) to 4.5% (n=15) following our intervention. There was an 8% increase in number of fracture clinic appointments to 74.4% (n=247), primarily due to an increase number of referrals from nurse practitioners. Radial head fractures were targeted as one group that were able to be successfully managed in VFC, despite this 64% (n=27) of patients were still seen in the outpatient department following VFC referral. Conclusion. Despite the decrease in the number of inappropriate referrals, and the increase in quality of referrals following our intervention. The percentage of VFC referrals in CAVUHB is still higher than other centres in with established VFCs in England. This possibly highlights the need for further education to emergency staff around describing what injuries are appropriate for referral, specifically soft tissue injuries and radial head fractures. In order to optimise the VFC process and provide further cost savings benefits while reducing the strain on fracture clinics


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 60 - 60
1 Apr 2019
Ta M LaCour M Sharma A Komistek R
Full Access

Currently, hip implant designs are evaluated experimentally using mechanical simulators or cadavers, and total hip arthroplasty (THA) postoperative outcomes are evaluated clinically using long-term follow-up. However, these evaluation techniques can be both costly and time-consuming. Neither can provide an assessment of post-operative results at the onset of implant development. More recently, a forward-solution mathematical model was developed that functions as theoretical joint simulator, providing instant feedback to designers and surgeons alike. This model has been validated by comparing the model predictions with kinematic results from fluoroscopy for both implanted and non-implanted hips and kinetics from a telemetric hip. The model allows surgical technique modifications and implant component placement under in vivo conditions. The objective of this study was to further expand the capabilities of the model to function as an intraoperative virtual surgical tool (Figure 1). This new module allows the surgeon to simulate surgery, then predict, compare, and optimize postoperative THA outcomes based on component placement, sizing choices, reaming and cutting locations, and surgical methods. This virtual surgery tool simulates the quadriceps, hamstring, gluteus, iliopsoas, tensor fasciae latae, and an adductor muscle groups, as well as the hip capsular ligament groups. The model can simulate resecting, weakening, loosening, or tightening of soft tissues based on surgical techniques. Additionally, the model can analyze a variety of activities, including gait and deep flexion activities. Initially, the virtual surgery module offers theoretical surgery tools that allow surgeons to alter surgical alignments, component designs, offsets, as well as reaming and cutting simulations. The virtual model incorporates a built-in CT scan bone database which will assist in determining muscle and ligament attachment sites as well as bony landmarks. The virtual model can be used to assist in the placement of both the femoral component and the acetabular cup (Figure 2). Moreover, once the surgeon has decided on the placements of the components, they can use the simulation capabilities to run virtual human body maneuvers based on the chosen parameters. The simulations will reveal force, contact stress, and motion predictions of the hip joint (Figure 3). The surgeon can then choose to modify the positions accordingly or proceed with the surgery. This new virtual surgical tool will allow surgeons to gain a better understanding of possible post-operative outcomes under pre-operative conditions or intra-operatively. Simulations using the virtual surgery model has revealed that improper component placement may lead to non-ideal post-operative function, which has been simulated using the model. Further evaluation is ongoing so that this new module can reveal more information pre-operatively, allowing a surgeon to gain ample information before surgery, especially with difficult and revision cases


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 37 - 37
7 Jun 2023
Edwards T Kablean-Howard F Poole I Edwards J Karia M Liddle A Cobb J Logishetty K
Full Access

Superior team performance in surgery leads to fewer technical errors, reduced mortality, and improved patient outcomes. Scrub nurses are a pivotal part of this team, however they have very little structured training, leading to high levels of stress, low confidence, inefficiency, and potential for harm. Immersive virtual reality (iVR) simulation has demonstrated excellent efficacy in training surgeons. We tested the efficacy of an iVR curriculum for training scrub nurses in performing their role in an anterior approach total hip arthroplasty (AA-THA). Sixty nursing students were included in this study and randomised in a 1:1 ratio to learning the scrub nurse role for an AA-THA using either conventional training or iVR. The training was derived through expert consensus with senior surgeons, scrub nurses and industry reps. Conventional training consisted of a 1-hour seminar and 2 hours of e-learning where participants were taught the equipment and sequence of steps. The iVR training involved 3 separate hour-long sessions where participants performed the scrub nurse role with an avatar surgeon in a virtual operation. The primary outcome was their performance in a physical world practical objective assessment with real equipment. Data were confirmed parametric using the Shapiro-Wilk test and means compared using the independent samples student's t-test. 53 participants successfully completed the study (26 iVR, 27 conventional) with a mean age of 31±9 years. There were no significant differences in baseline characteristics or baseline knowledge test scores between the two groups (p>0.05). The iVR group significantly outperformed the conventionally trained group in the real-world assessment, scoring 66.9±17.9% vs 41.3±16.7%, p<0.0001. iVR is an easily accessible, low cost training modality which could be integrated into scrub nursing curricula to address the current shortfall in training. Prolonged operating times are strongly associated with an increased risk of developing serious complications. By upskilling scrub nurses, operations may proceed more efficiently which in turn may improve patient safety


Bone & Joint Research
Vol. 6, Issue 5 | Pages 259 - 269
1 May 2017
McKirdy A Imbuldeniya AM

Objectives. To assess the clinical and cost-effectiveness of a virtual fracture clinic (VFC) model, and supplement the literature regarding this service as recommended by The National Institute for Health and Care Excellence (NICE) and the British Orthopaedic Association (BOA). Methods. This was a retrospective study including all patients (17 116) referred to fracture clinics in a London District General Hospital from May 2013 to April 2016, using hospital-level data. We used interrupted time series analysis with segmented regression, and direct before-and-after comparison, to study the impact of VFCs introduced in December 2014 on six clinical parameters and on local Clinical Commissioning Group (CCG) spend. Student’s t-tests were used for direct comparison, whilst segmented regression was employed for projection analysis. Results. There were statistically significant reductions in numbers of new patients seen face-to-face (140.4, . sd. 39.6 versus 461.6, . sd. 61.63, p < 0.0001), days to first orthopaedic review (5.2, . sd. 0.66 versus 10.9, . sd. 1.5, p < 0.0001), discharges (33.5, . sd. 3.66 versus 129.2, . sd. 7.36, p < 0.0001) and non-attendees (14.82, . sd. 1.48 versus 60.47, . sd. 2.68, p < 0.0001), in addition to a statistically significant increase in number of patients seen within 72-hours (46.4% 3873 of 8345 versus 5.1% 447 of 8771, p < 0.0001). There was a non-significant increase in consultation time of 1 minute 9 seconds (14 minutes 53 seconds . sd. 106 seconds versus 13 minutes 44 seconds . sd. 128 seconds, p = 0.0878). VFC saved the local CCG £67 385.67 in the first year and is set to save £129 885.67 annually thereafter. Conclusions. We have shown VFCs are clinically and cost-effective, with improvement across several clinical performance parameters and substantial financial savings for CCGs. To our knowledge this is the largest study addressing clinical practice implications of VFCs in England, using robust methodology to adjust for pre-existing trends. Further studies are required to appreciate whether our results are reproducible with local variations in the VFC model and payment tariffs. Cite this article: A. McKirdy, A. M. Imbuldeniya. The clinical and cost effectiveness of a virtual fracture clinic service: An interrupted time series analysis and before-and-after comparison. Bone Joint Res 2017;6:–269. DOI: 10.1302/2046-3758.65.BJR-2017-0330.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 57 - 57
1 Apr 2018
Hettwer W Petersen M
Full Access

Background. In certain clinical situations, complex local anatomy and limitations of surgical exposure can make adequate and bone tumor ablation, resection and reconstruction very challenging. We wished to review our clinical experience and accuracy achieved with entirely virtually planned single stage tumor ablation/resection and reconstructions. Methods. We report 6 cases of bone tumors in which tumor removal (by radio-frequency (RF) ablation and/or resection) and subsequent reconstruction were based entirely on pre-operative virtual analysis and planning. All interventions were accomplished with specifically designed and pre-operatively manufactured 3D-printed drill & resection guides. Immediate subsequent defect reconstruction was either performed with a precisely matching allograft (n=1) or composite metal implant (n=5) consisting of a defect specific titanium scaffold and multiple integrated fixation features to provide optimal immediate stability as well as subsequent opportunity for osseointegration. We reviewed the sequence of all procedural steps as well as the accuracy of each saw blade or drill trajectory by direct intra-operative measurement, post-operative margin status and virtual comparison of pre- and post-operative CT scans. Results. Intra-operative application/assembly of the resection guides could be accomplished with relative ease in all cases, permitting quick and efficient reproduction of the planned osteotomies as well as RF-probe trajectories with a high degree of accuracy. Histologically all resection margins were negative as planned except in one case where one pelvic resection was extended due to intraoperative concern of possible local tumor progression. All implants could be placed as planned, with post-operative imaging demonstrating satisfactory implant position. Virtual analysis of post-operative CT scans confirmeded minimal deviation of final implant position from the pre-operative plan. Conclusion. Reliable, accurate placement of tumor biopsy/ablation tracts and resection planes and their optimal alignment with respect to critical structures, tumor extent and desired preservation of unaffected bone is the most challenging and time consuming step during the analysis and planning phase. However it is also the crucial step with regard to subsequent design and production of clinically and oncologically meaningful case-specific drill/resection guides and implants. If these prerequisites are met, computer assisted virtual planning along with 3Dprinting-technology can afford high intraoperative accuracy, contribute to increased intra-operative surgeon confidence and decreased operative time


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 236 - 236
1 Jul 2008
MERLOZ P VOUAILLAT H EID A VASILE C BLENDEA S VARGAS-BARRETO B ROSSI J PLAWESKI S
Full Access

Purpose of the study: We describe a surgery navigation system based on virtual fluoroscopy images established with a 3D optic localizer. The purpose of this work was to check the accuracy of the system for posterior spinal implants in comparison with conventional surgery. Duration of radiation and duration of surgery were compared. Material and methods: A 3D optic localizer was used to monitor the position of the instruments in the operative field, as well as the fluoroscopy receptor. The surgeon took two views, ap and lateral, with a total exposure of two seconds. The C arm was then removed. After image correction, the ap and lateral views were displayed on the work station screen where the computer superimposed to tools on each image. Twenty osteosynthesis procedures for implantation of pedicular screws via a posterior approach to the thoracolumbar spine were performed with this virtual fluoroscopy technique (20 patients, 68 screws). During the same study period, twenty other procedures were performed with the conventional technique (ap and lateral x-ray with the C-arm after drilling the pedicle, 20 patients, 72 screws). The position of the spinal implants was compared between the two series on the ap and lateral views and postoperative CT. Similarly time of exposure to x-rays and duration of the surgical procedure were recorded. Results: The rate of strictly intrapedicular implantation was less than 8% (5/68 screws) in the virtual fluoroscopy series versus 15% (11/72 screws) in the conventional series. Time of exposure to radiation was significantly lower in the virtual fluoroscopy series with a 1 to 3 improvement (3.5 s versus 11.5 s on average) over the conventional method. With training, this method is not more time consuming (10 min per screw for the conventional method versus 11.25 min for virtual fluoroscopy). Discussion and conclusion: Compared with conventional fluoroscopy, the virtual technique enables real time navigation while significantly reducing the dose of radiation, both for the patient and the surgery team. There are two types of advantages of virtual fluoroscopy over CT-based systems: first virtual fluoroscopy is immediately available without specific preoperative imaging and secondly it provides real non-magnified images acquired once during the procedure, after which the C-arm is removed. 3D virtual fluoroscopy is probably the next step but requires further experience


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2022
Trisolino G Frizziero L Santi GM Alessandri G Liverani A Menozzi GC Depaoli A Martinelli D Di Gennaro GL Vivarelli L Dallari D
Full Access

Paediatric musculoskeletal (MSK) disorders often produce severe limb deformities, that may require surgical correction. This may be challenging, especially in case of multiplanar, multifocal and/or multilevel deformities. The increasing implementation of novel technologies, such as virtual surgical planning (VSP), computer aided surgical simulation (CASS) and 3D-printing is rapidly gaining traction for a range of surgical applications in paediatric orthopaedics, allowing for extreme personalization and accuracy of the correction, by also reducing operative times and complications. However, prompt availability and accessible costs of this technology remain a concern. Here, we report our experience using an in-hospital low-cost desk workstation for VSP and rapid prototyping in the field of paediatric orthopaedic surgery. From April 2018 to September 2022 20 children presenting with congenital or post-traumatic deformities of the limbs requiring corrective osteotomies were included in the study. A conversion procedure was applied to transform the CT scan into a 3D model. The surgery was planned using the 3D generated model. The simulation consisted of a virtual process of correction of the alignment, rotation, lengthening of the bones and choosing the level, shape and direction of the osteotomies. We also simulated and calculated the size and position of hardware and customized massive allografts that were shaped in clean room at the hospital bone bank. Sterilizable 3D models and PSI were printed in high-temperature poly-lactic acid (HTPLA), using a low-cost 3D-printer. Twenty-three operations in twenty patients were performed by using VSP and CASS. The sites of correction were: leg (9 cases) hip (5 cases) elbow/forearm (5 cases) foot (5 cases) The 3D printed sterilizable models were used in 21 cases while HTPLA-PSI were used in five cases. customized massive bone allografts were implanted in 4 cases. No complications related to the use of 3D printed models or cutting guides within the surgical field were observed. Post-operative good or excellent radiographic correction was achieved in 21 cases. In conclusion, the application of VSP, CASS and 3D-printing technology can improve the surgical correction of complex limb deformities in children, helping the surgeon to identify the correct landmarks for the osteotomy, to achieve the desired degree of correction, accurately modelling and positioning hardware and bone grafts when required. The implementation of in-hospital low-cost desk workstations for VSP, CASS and 3D-Printing is an effective and cost-advantageous solution for facilitating the use of these technologies in daily clinical and surgical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1520 - 1523
1 Nov 2005
Attias N Lindsey RW Starr AJ Borer D Bridges K Hipp JA

We created virtual three-dimensional reconstruction models from computed tomography scans obtained from patients with acetabular fractures. Virtual cylindrical implants were placed intraosseously in the anterior column, the posterior column and across the dome of the acetabulum. The maximum diameter which was entirely contained within the bone was determined for each position of the screw. In the same model, the cross-sectional diameters of the columns were measured and compared to the maximum diameter of the corresponding virtual implant. We found that the mean maximum diameter of virtual implant accommodated by the anterior columns was 6.4 mm and that the smallest diameter of the columns was larger than the maximum diameter of the equivalent virtual implant. This study suggests that the size of the screw used for percutaneous fixation of acetabular fractures should not be based solely on the measurement of cross-sectional diameter and that virtual three-dimensional reconstructions might be useful in pre-operative planning


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 35 - 35
7 Aug 2024
Alotibi FS Hendrick P Moffatt F
Full Access

Background. Immersive virtual reality (VR) demonstrates potential benefits in patients with chronic low back pain (CLBP). However, few studies have investigated the feasibility and the acceptability of introducing immersive VR for use with patients with CLBP and in the Kingdom of Saudi Arabia (KSA). Aim. To investigate immersive VR's feasibility, tolerability, and acceptability as a rehabilitation intervention for adult patients with CLBP and explore the views of relevant Health Care Practitioners (HCPs) in the KSA. Methodology and Methods. A multi-centre, mixed-methods, explanatory sequential design was adopted to test immersive VR's feasibility, tolerability, and acceptability. An uncontrolled feasibility trial was conducted. The immersive VR intervention involved a training session followed by three sessions over one week using commercially available hardware and software. Feasibility outcomes were collected from patients immediately post-intervention. Patients and HCPs were recruited for semi-structured interviews. Results. Thirty-three patients and three HCPs were recruited. The feasibility a priori criteria were met for recruitment, retention, dropout, completeness of questionnaire data, treatment compliance and fidelity. Adverse events included one who reported aggravation of tinnitus, whereas two experienced dizziness. Qualitative data suggested that entertainment and motivation were key enablers. Barriers included technological capability and HCPs’ perceptions that immersive VR was time-consuming. Conclusion. The results suggested that immersive VR was feasible, acceptable, and tolerable among patients with CLBP and HCPs in clinical settings in the KSA. Further research focusing on the effectiveness is warranted in this field. Conflicts of Interest. None. Sources of Funding. None. Trial registration number. ISRCTN14434517


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 6 - 6
1 May 2018
Bartlett J Lawrence J Yan M Guevel B Stewart M Khanduja V
Full Access

Introduction. Decreases in trainees' working hours, coupled with evidence of worse outcomes when hip arthroscopies are performed by inexperienced surgeons, mandate the development of additional means of arthroscopic training. Though virtual reality simulation training has been adopted by other surgical specialities, its slow uptake in arthroscopic training is due to a lack of evidence as to its benefits. These benefits can be demonstrated through learning curves associated with simulator training – with practice reflecting measurable increases in validated performance metrics. Materials & Methods. Twenty-five medical students completed seven simulated arthroscopies of a healthy virtual hip joint in the supine position on a simulator previously shown to have construct validity. Twelve targets had to be visualised within the central compartment; six via the anterior portal, three via the anterolateral portal and three via the posterolateral portal. Eight students proceeded to complete seven probe examinations of a healthy virtual hip joint. Eight targets were probed via the anterolateral portal. Task duration, number of collisions with soft tissue and bone, and distance travelled by arthroscope were measured by the simulator for every session. Results. A learning curve was demonstrated by the students, with significant improvements in time taken (P<0.01), number of collisions (P<0.01), collision severity (P<0.01), and efficiency of movement (P<0.01). The largest difference between consecutive sessions was seen between sessions 1 and 2, with sessions thereafter showing only minimal rates of improvement. Similar improvements were found in the probe examination with students showing significant improvements in time taken (P<0.01), number of collisions (P<0.01), collision severity (P<0.01) and distance travelled by arthroscope (P<0.01). Conclusion. The results of this study demonstrate a learning curve for a previously validated hip arthroscopy simulator, confirming improved performance with repeated use. These results support the use of virtual reality as a potential means of developing basic hip arthroscopic skills


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 90 - 90
4 Apr 2023
Sharma M Khanal P Patel N Patel A
Full Access

To investigate the utility of virtual reality (VR) simulators in improving surgical proficiency in Orthopaedic trainees for complex procedures and techniques. Fifteen specialty surgeons attending a London Orthopaedic training course were randomised to either the VR (n = 7) or control group (n = 8). All participants were provided a study pack comprising an application manual and instructional video for the Trochanteric Femoral Nail Advanced (TFNA) procedure. The VR group underwent additional training for TFNA using the DePuy Synthes (Johnson and Johnson) VR simulator. All surgeons were then observed applying the TFNA in a Sawbones model and assessed by a blinded senior consultant using three metrics: time to completion, 22-item procedure checklist and 5-point global assessment scale. Participant demographics for the VR and control groups were similar in context of age (mean [SD]: VR group, 31.0 [2.38] years; control group, 30.6 [2.39] years), gender (VR group, 5 [71%] men; control group, 8 [100%] men) and prior experience with TFNA (had applied TFNA as primary surgeon: VR group, 6 [86%]; control group, 7 [88%]). Although statistical significance was not reached, the VR group, on average, outperformed the control group on all three metrics. They completed the TFNA procedure faster (mean [SD]: 18.2 [2.16] minutes versus 19.78 [1.32] minutes; p<0.189), performed a greater percentage of steps correctly (79% versus 66%; p<0.189) and scored a higher percentage on the global assessment scale (75% versus 65%; p<0.232). VR simulators offer a safe and accessible means for Orthopaedic trainees to prepare for and supplement their theatre-based experience. It is vital, therefore, to review and validate novel simulation-based systems and in turn facilitate their improvement. We intend to increase our sample size and expand this preliminary study through a second upcoming surgical course for Orthopaedic trainees in London


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 130 - 130
1 Nov 2021
Giorgino R Luca A Ruberto E Besozzi G Banfi G Peretti G
Full Access

Introduction and Objective. Over the past few years, a reorganization of the educational pathways has been promoted with the purpose of optimizing the acquisition of competences and their assessment, so as to reduce the risks to both health care professionals and end users. Virtual reality (VR) has been repeatedly tested, initially as a positive reinforcement for more traditional educational pathways and, more recently, as their potential substitute. The aim of this study was to demonstrate the potentiality of VR simulation training in spine surgery. Materials and Methods. The VR simulator reproduced the lateral lumbar access to the spine. The simulation included a tutorial, the preoperative settings, and the surgical session with different levels of procedural complexity. A total of 10 users were recruited for this study: 3 senior surgeons (group A) and 7 orthopedic residents or junior orthopedic surgeons (group B). Each user completed the simulation twice. Results. The user's age or previous experience with VR technology did not show any relevance. On average, the entire simulation was completed in 24 minutes and 36 seconds. Group B showed an improvement between the 2 attempts in both sessions, the preoperative settings and the surgical simulation. The number of major errors dropped from an average of 5.2 to 1.8 and from an average of 4 (1–6) to 1.4, respectively. The simulation was never interrupted because of technical bugs or adverse effects related to the technology. Conclusions. VR-based training pathways might promote a high standard of care. Our preliminary experience suggests an effective implementation of the traditional coaching process


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 128 - 128
1 Nov 2021
Stallone S Trisolino G Zarantonello P Ferrari D Papaleo P Napolitano F Santi GM Frizziero L Liverani A Gennaro GLD
Full Access

Introduction and Objective. Virtual Surgical Planning (VSP) is becoming an increasingly important means of improving skills acquisition, optimizing clinical outcomes, and promoting patient safety in orthopedics and traumatology. Pediatric Orthopedics (PO) often deals with the surgical treatment of congenital or acquired limbs and spine deformities during infancy. The objective is to restore function, improve aesthetics, and ensure proper residual growth of limbs and spine, using osteotomies, bone grafts, age-specific or custom-made hardware and implants. Materials and Methods. Three-dimensional (3D) digital models were generated from Computed Tomography (CT) scans, using free open-source software, and the surgery was planned and simulated starting from the 3D digital model. 3D printed sterilizable models were fabricated using a low-cost 3D printer, and animations of the operation were generated with the aim to accurately explain the operation to parents. All procedures were successfully planned using our VSP method and the 3D printed models were used during the operation, improving the understanding of the severely abnormal bony anatomy. Results. The surgery was precisely reproduced according to VSP and the deformities were successfully corrected in eight cases (3 genu varum in Blount disease, 2 coxa vara in pseudo achondroplasia, 1 SCFE, 1 missed Monteggia lesion and 1 post-traumatic forearm malunion deformity). In one case, a focal fibrocartilaginous dysplasia, the intraoperative intentional undersizing of the bone osteotomy produced an incomplete correction of a congenital forearm deformity. Conclusions. Our study describes the application of a safe, effective, user-friendly, VSP process in PO surgery. We are convinced that our study will stimulate the widespread adoption of this technological innovation in routine clinical practice for the treatment of rare congenital and post-traumatic limb deformities during childhood


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation.

Cite this article: Bone Joint J 2022;104-B(10):1104–1109.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 125 - 125
4 Apr 2023
Heylen J Macdonald N Larsson E Moon K Vaughan A Owens R
Full Access

In current practice in the UK there are three main approaches to investigating suspected scaphoid fractures not seen on initial plain film x-rays. Early MRI of all cases. Review all cases in clinic at two weeks with repeat x-rays. Hybrid model. Virtual Fracture Clinic (VFC) triage to reduce those who are seen in clinic at two weeks by:. ∘. Organising early MRI for those with high-risk presentation. ∘. Discharging those with an alternative more likely diagnosis. Our unit uses the VFC model. We aimed to evaluate its efficiency, safety, clinical outcomes and economic viability. All patients attending the emergency department with either a confirmed or suspected scaphoid fracture between March and December 2020 were included (n=305). Of these 297 were referred to the VFC: 33 had a confirmed fracture on x-ray and 264 had a suspected fracture. Of the suspected fractures reviewed in VFC 14% had an MRI organised directly owing to a high-risk presentation, 79% were brought for fracture clinic review and 17% discharged with an alternative diagnosis such as osteoarthritis. Of those subsequently reviewed in fracture clinic at two weeks: 9% were treated as scaphoid fractures (based on clinical suspicion and repeat x-rays), 17% had MRI or CT imaging organised, 5% did not attend and 69% were discharged. Overall, 17% of cases initially triaged, had further imaging – 41 MRIs and 5 CTs. MRI detected: 5% scaphoid fracture, 17% other fracture, 24% bone contusion, complete ligament tear 10%, partial ligament tear 39% and normal study 10%. The results of MRI minimally affected management. 3 patients were taken out of plaster early, 1 patient was immobilized who was not previously and no patients underwent operative management. In the following 12-month period one patient re-presented with a hand or wrist issue. This approach avoided 218 MRIs, equating to £24000 and 109 hours of scanner time. VFC triage and selective use of MRI scanning is a safe, efficient and cost-effective method for the management suspected scaphoid fractures. This can be implemented in units without the resource to MRI all suspected scaphoid fractures from the emergency department


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 79 - 79
1 Jan 2016
Jenny J Diesinger Y
Full Access

Objectives. An optimal reconstruction of the joint anatomy and physiology during revision total knee replacement (RTKR) is technically demanding. The standard navigation systems were developed for primary procedures, and their adaptation to RTKR is difficult. We present a new navigation software dedicated to RTKR. The rationale of this new software was to allow a virtual planning of the joint reconstruction just after removal of the primary prosthesis. Methods. The new software was developed on the basis of a non-image based navigation system which has been extensively validated for implantation of a primary TKR. Following changes have been implemented: 1) to define and control the vertical level of the joint space on both tibia and femoral side; 2) to measure the tibio-femoral gaps independently in flexion et en extension on both medial and lateral tibio-femoral joints; 3) to virtually plan and control the vertical level and the orientation of the tibia component; 4) to virtually plan and control the sizing and the 3D positioning of the femoral component (figure 1); 5) to virtually plan and control the potential bone resection; 6) to virtually plan and control the potential bone defects and their reconstruction (bone graft or augments) (figure 2); 7) to virtually plan and control the size, the length and the orientation of the stems extensions independently on the femoral and on the tibia side (figure 3). The validity of the concept has been tested by 20 patients operated on for RTKR for any reason, with a routine reconstruction with a cemented, unconstrained revision implant. The accuracy of the experimental software was assessed 1) during the procedure after implantation of the RTKR by measuring the medial and lateral laxity in full extension and 90° of knee flexion with the navigation system, and 2) on post-operative radiographs. Results. No system failure was observed. The virtual planning of the reconstruction was possible in all cases. The intra-operative control of the different reconstruction steps was possible in all cases. The mean coronal tibio-femoral angle was 0+3°, and no outlier was observed. Coronal and sagittal orientation of the prosthetic components was considered satisfactory in all directions for 16 cases. The desired vertical level of the joint space was achieved in all cases. The desired patella height was achieved in 15 cases. The measurement of the knee laxity was satisfactory in 16 cases. A good bone-prosthesis contact was achieved in 17 cases for the tibia, but it was not possible to analyze accurately this criterion for the femur. Conclusion. The software used in the current study allowed performing a straightforward reconstruction of the knee joint anatomy and physiology during RTKR. The virtual planning prevented to perform repetitive trials with different technical solutions which are often necessary during conventional RTKR. The operating time may be consequently decreased


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1585 - 1592
1 Dec 2019
Logishetty K Rudran B Cobb JP

Aims. Arthroplasty skills need to be acquired safely during training, yet operative experience is increasingly hard to acquire by trainees. Virtual reality (VR) training using headsets and motion-tracked controllers can simulate complex open procedures in a fully immersive operating theatre. The present study aimed to determine if trainees trained using VR perform better than those using conventional preparation for performing total hip arthroplasty (THA). Patients and Methods. A total of 24 surgical trainees (seven female, 17 male; mean age 29 years (28 to 31)) volunteered to participate in this observer-blinded 1:1 randomized controlled trial. They had no prior experience of anterior approach THA. Of these 24 trainees, 12 completed a six-week VR training programme in a simulation laboratory, while the other 12 received only conventional preparatory materials for learning THA. All trainees then performed a cadaveric THA, assessed independently by two hip surgeons. The primary outcome was technical and non-technical surgical performance measured by a THA-specific procedure-based assessment (PBA). Secondary outcomes were step completion measured by a task-specific checklist, error in acetabular component orientation, and procedure duration. Results. VR-trained surgeons performed at a higher level than controls, with a median PBA of Level 3a (procedure performed with minimal guidance or intervention) versus Level 2a (guidance required for most/all of the procedure or part performed). VR-trained surgeons completed 33% more key steps than controls (mean 22 (. sd. 3) vs 12 (. sd. 3)), were 12° more accurate in component orientation (mean error 4° (. sd. 6°) vs 16° (. sd. 17°)), and were 18% faster (mean 42 minutes (. sd. 7) vs 51 minutes (. sd. 9)). Conclusion. Procedural knowledge and psychomotor skills for THA learned in VR were transferred to cadaveric performance. Basic preparatory materials had limited value for trainees learning a new technique. VR training advanced trainees further up the learning curve, enabling highly precise component orientation and more efficient surgery. VR could augment traditional surgical training to improve how surgeons learn complex open procedures. Cite this article: Bone Joint J 2019;101-B:1585–1592


Bone & Joint Open
Vol. 2, Issue 3 | Pages 211 - 215
1 Mar 2021
Ng ZH Downie S Makaram NS Kolhe SN Mackenzie SP Clement ND Duckworth AD White TO

Aims. Virtual fracture clinics (VFCs) are advocated by recent British Orthopaedic Association Standards for Trauma and Orthopaedics (BOASTs) to efficiently manage injuries during the COVID-19 pandemic. The primary aim of this national study is to assess the impact of these standards on patient satisfaction and clinical outcome amid the pandemic. The secondary aims are to determine the impact of the pandemic on the demographic details of injuries presenting to the VFC, and to compare outcomes and satisfaction when the BOAST guidelines were first introduced with a subsequent period when local practice would be familiar with these guidelines. Methods. This is a national cross-sectional cohort study comprising centres with VFC services across the UK. All consecutive adult patients assessed in VFC in a two-week period pre-lockdown (6 May 2019 to 19 May 2019) and in the same two-week period at the peak of the first lockdown (4 May 2020 to 17 May 2020), and a randomly selected sample during the ‘second wave’ (October 2020) will be eligible for the study. Data comprising local VFC practice, patient and injury characteristics, unplanned re-attendances, and complications will be collected by local investigators for all time periods. A telephone questionnaire will be used to determine patient satisfaction and patient-reported outcomes for patients who were discharged following VFC assessment without face-to-face consultation. Ethics and dissemination. The study results will identify changes in case-mix and numbers of patients managed through VFCs and whether this is safe and associated with patient satisfaction. These data will provide key information for future expert-led consensus on management of trauma injuries through the VFC. The protocol will be disseminated through conferences and peer-reviewed publication. This protocol has been reviewed by the South East Scotland Research Ethics Service and is classified as a multicentre audit. Cite this article: Bone Jt Open 2021;2(3):211–215


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 76 - 76
1 Aug 2013
Franke J Vetter S Mühlhäuser I Grützner P von Recum J
Full Access

Background. Digital planning of implants in regard to position and size is done preoperatively in most cases. Intraoperative it can only be made by navigation systems. With the development of the VIPS-method (Virtual Implant Planning System) as an application for mobile C-arms, it is possible to do an intraoperative virtual planning of the screws near the joint in treatment of distal radius fractures by plating. Screw misplacement is a well known complication in the operative treatment of these fractures. The aim of this prospective randomised trial was to gain first clinical experiences and to compare VIPS with the conventional technique. The study hypothesis was that there will be less screw misplacement in the VIPS group. Methods. We included 40 patients with distal radius fractures type A3, C1 and C2 according to the AO-classification. In a pilot study the first 10 Patients were treated by the VIPS method to gain experience with VIPS in a clinical set-up. The results of the pilot-study are not part of this analysis. Then 15 Patients were web-based randomised into two groups. After diaphysial fixation of a 2.4 mm Variable Angle Two-Column Volar Distal Radius Plate and fracture reduction matching of a three-dimensional virtual plate to the two-dimensional image of the plate in the fluoroscopy shots in two plains was performed automatically in the VIPS group. The variable angle locking screws were planed in means of direction and length. Drilling was done by the use of the Universal Variable Angle Locking Drill Guide that was modified by laser marks at the rim of the cone to transfer the virtual planning. The drill guide enables drilling in a cone of 30°. In the control group the same implant was used in a conventional technique that means screw placement by the surgeon without digital planning. After implant placement an intraoperative three-dimensional scan was performed to check the position and length of the screws near the joint. OR- and fluoroscopy-time was documented. In addition the changes of misplaced screws were engaged. Results. In the VIPS group six A3-fractures, one C1-fracture and eight C2-fractures were included. In the control group six A3-fractures and nine C2-fractures were included. The intraoperative fluoroscopy time was 2.53 min (SD 1.44, range 1.27–7.14) in the VIPS group and 2.26 min (SD 0.51, range 1.55–3.39) in the control group (p=0.40). The OR-time was 53.33 min (SD 34.49, range 34–171) in the VIPS group and 42.27 min (SD 8.76, range 20–58) in the control group (p=0.23). In the VIPS group we changed three screws (two were too long, one was borderline near the joint) and two screws in the control group (one was too long, one was borderline near the joint) (p=0.24). Conclusions. The Virtual Implant Planning System is a reliable method that can be integrated easily in the workflow in treatment of distal radius fractures. There is a tendency that the virtual implant planning needs additional time, but there are no significant differences between the two groups. Further development is necessary to make the VIPS method beneficial


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 65 - 65
1 Aug 2013
Jenny J
Full Access

Introduction. An optimal reconstruction of the joint anatomy and physiology during revision total knee replacement (RTKR) is technically demanding. A new software was developed to allow a virtual planning of the joint reconstruction just after removal of the primary prosthesis. Material. Following changes have been implemented to the standard navigation software: 1) to define and control the vertical level of the joint space on both tibia and femoral side, and to allow performing the potential change decided prior to the revision procedure according to the preoperative imaging planning; 2) to measure the tibio-femoral gaps independently in flexion et en extension on both medial and lateral tibio-femoral joints; 3) to virtually plan and control the vertical level and the orientation of the tibia component; 4) to virtually plan and control the sizing and the 3D positioning of the femoral component; 5) to virtually plan and control the potential bone resection; 6) to virtually plan and control the potential bone defects and their reconstruction (bone graft or augments); 7) to virtually plan and control the size, the length and the orientation of the stems extensions independently on the femoral and on the tibia side. Methods. The validity of the concept has been tested by 20 patients operated on for RTKR for any reason, with a routine reconstruction with a cemented, unconstrained revision implant. The accuracy of the experimental software was assessed 1) during the procedure after implantation of the RTKR by measuring the medial and lateral laxity in full extension and 90° of knee flexion with the navigation system, and 2) on post-operative radiographs: coronal tibio-femoral angle, coronal and sagittal orientation of both tibia and femur components, vertical level of the reconstructed joint space, patella height, quality of the bone-prosthesis contact of both tibia and femur components. Results. No system failure was observed. The virtual planning of the reconstruction was possible in all cases. The intra-operative control of the different reconstruction steps was possible in all cases. The mean coronal tibio-femoral angle was 0+3°, and no outlier was observed. Coronal and sagittal orientation of the prosthetic components was considered satisfactory in all directions for 16 cases. The desired vertical level of the joint space was achieved in all cases. The desired patella height was achieved in 15 cases. The measurement of the knee laxity was satisfactory in 16 cases. A good bone-prosthesis contact was achieved in 17 cases for the tibia, but it was not possible to analyse accurately this criterion for the femur. Discussion. The software used in the current study allowed performing a straightforward reconstruction of the knee joint anatomy and physiology during RTKR. The virtual planning prevented to perform repetitive trials with different technical solutions which are often necessary during conventional RTKR. The operating time may be consequently decreased


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 34 - 34
7 Aug 2024
Alghamdi MN Sparkes V Khot S Davies J
Full Access

Background. Embodiment- and distraction-based approaches to immersive virtual reality (IVR) show promise in treating persistent low back pain (PLBP). However, which approach is more effective is unclear. This study aims to evaluate the impact of distraction- and embodiment-based IVR on pain processing and patient-reported outcome measures in PLBP. Method. Individuals with PLBP were randomised to receive eight sessions of either distraction- or embodiment-based IVR over two weeks. Outcome measures were evaluated at baseline and after the eighth session. Pain processing was evaluated using conditioned pain modulation (CPM) and temporal summation (TS). Results. Three participants (n=2 embodiment, n=1 distraction) have completed all eight IVR sessions. Preliminary results indicate a decrease from pre to post-intervention in Numerical Pain Rating Scale score (pre: 5/10, 6/10, 5/10; post: 2/10, 5/10, 2/10) and Pain Catastrophising Scale score (pre: 34/52, 11/52, 38/52; post: 11/52, 8/52, 12/52), with no clear trend in other self-reported measures (Hospital Anxiety and Depression scale, Oswestry low back disability questionnaire, fear-avoidance beliefs questionnaire, Tampa scale of kinesiophobia). Preliminary results suggest a potential increase in NPRS absolute values from pre- to post-intervention in CPM (pre: -2.7, -2.3, -2.0; post: -3.3, -2.0, -4.3) and TS (pre-1.2, 2.5, 2.4; post: 1.4, 2.5, 3.1). Conclusion. Eight sessions of IVR may reduce pain severity and pain catastrophising in people with PLBP and may increase the efficacy of endogenous pain modulatory systems. Data collection is ongoing to compare the effect of distraction- and embodiment-based IVR. Conflicts of Interest. There are no conflicts of interest. Sources of Funding. This project is funded by the Saudi Arabia Cultural Bureau


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 27 - 27
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Cobb J
Full Access

Background. Virtual Reality (VR) uses headsets and motion-tracked controllers so surgeons can perform simulated total hip arthroplasty (THA) in a fully-immersive, interactive 3D operating theatre. The aim of this study was to investigate the effect of laboratory-based VR training on the ability of surgical trainees to perform direct anterior approach THA on cadavers. Methods. Eighteen surgical trainees (CT1-ST4) with no prior experience of direct anterior approach (DAA) THA completed an intensive 1-day course (lectures, dry-bone workshops and technique demonstrations). They were randomised to either a 5-week protocol of VR simulator training or conventional preparation (operation manuals and observation of real surgery). Trainees performed DAA-THA on cadaveric hips, assisted by a passive scrub nurse and surgical assistant. Performance was measured on the Intercollegiate Surgical Curriculum Project (ISCP) procedure-based assessment (PBA), on a 9-point global summary score (Table 1). This was independently assessed by 2 hip surgeons blinded to group allocation. The secondary outcome measure was error in cup orientation from a predefined target (40° inclination and 20° anteversion). Results. Surgeons trained using VR performed a cadaveric DAA-THA significantly better than those using conventional preparation, as assessed by acetabular cup orientation (p<0.001) and using the ISCP-PBA. Two VR surgeons achieved Level 3b, 6 were graded at Level 3a, and 1 was graded at Level 2b. Six non-VR surgeons achieved Level 2a and 3 were graded at Level 1b. Discussion. These data demonstrate transfer of procedural knowledge and psychomotor skills learnt from VR to a real-world setting. Conventional preparation had limited value for novice surgeons learning arthroplasty. VR training advanced them further up the learning curve. Implications. Virtual reality can augment surgical training for open procedures in orthopaedics curve, so opportunities in real surgery can be maximised. This has implications for how surgical training is delivered for surgeons learning a new, complex procedure. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 104 - 104
4 Apr 2023
Edwards T Khan S Patel A Gupta S Soussi D Liddle A Cobb J Logishetty K
Full Access

Evidence supporting the use of virtual reality (VR) training in orthopaedic procedures is rapidly growing. However, the impact of the timing of delivery of this training is yet to be tested. We aimed to investigate whether spaced VR training is more effective than massed VR training. 24 medical students with no hip arthroplasty experience were randomised to learning the direct anterior approach total hip arthroplasty using the same VR simulation, training either once-weekly or once-daily for four sessions. Participants underwent a baseline physical world assessment on a saw bone pelvis. The VR program recorded procedural errors, time, assistive prompts required and hand path length across four sessions. The VR and physical world assessments were repeated at one-week, one-month, and 3 months after the last training session. Baseline characteristics between the groups were comparable (p > 0.05). The daily group demonstrated faster skills acquisition, reducing the median ± IQR number of procedural errors from 68 ± 67.05 (session one) to 7 ± 9.75 (session four), compared to the weekly group's improvement from 63 ± 27 (session one) to 13 ± 15.75 (session four), p < 0.001. The weekly group error count plateaued remaining at 14 ± 6.75 at one-week, 16.50 ± 16.25 at one-month and 26.45 ± 22 at 3-months, p < 0.05. However, the daily group showed poorer retention with error counts rising to 16 ± 12.25 at one-week, 17.50 ± 23 at one-month and 41.45 ± 26 at 3-months, p<0.01. A similar effect was noted for the number of assistive prompts required, procedural time and hand path length. In the real-world assessment, both groups significantly improved their acetabular component positioning accuracy, and these improvements were equally maintained (p<0.01). Daily VR training facilitates faster skills acquisition; however weekly practice has superior skills retention