header advert
Results 1 - 50 of 290
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 11 - 19
1 Jan 2018
Darrith B Courtney PM Della Valle CJ

Aims. Instability remains a challenging problem in both primary and revision total hip arthroplasty (THA). Dual mobility components confer increased stability, but there are concerns about the unique complications associated with these designs, as well as the long-term survivorship. Materials and Methods. We performed a systematic review of all English language articles dealing with dual mobility THAs published between 2007 and 2016 in the MEDLINE and Embase electronic databases. A total of 54 articles met inclusion criteria for the final analysis of primary and revision dual mobility THAs and dual mobility THAs used in the treatment of fractures of the femoral neck. We analysed the survivorship and rates of aseptic loosening and of intraprosthetic and extra-articular dislocation. Results. For the 10 783 primary dual mobility THAs, the incidence of aseptic loosening was 1.3% (142 hips); the rate of intraprosthetic dislocation was 1.1% (122 hips) and the incidence of extra-articular dislocation was 0.46% (41 hips). The overall survivorship of the acetabular component and the dual mobility components was 98.0%, with all-cause revision as the endpoint at a mean follow-up of 8.5 years (2 to 16.5). For the 3008 revision dual mobility THAs, the rate of aseptic acetabular loosening was 1.4% (29 hips); the rate of intraprosthetic dislocation was 0.3% (eight hips) and the rate of extra-articular dislocation was 2.2% (67 hips). The survivorship of the acatabular and dual mobility components was 96.6% at a mean of 5.4 years (2 to 8). For the 554 dual mobility THAs which were undertaken in patients with a fracture of the femoral neck, the rate of intraprosthetic dislocation was 0.18% (one hip), the rate of extra-articular dislocation was 2.3% (13 hips) and there was one aseptic loosening. The survivorship was 97.8% at a mean of 1.3 years (0.75 to 2). Conclusion. Dual mobility articulations are a viable alternative to traditional bearing surfaces, with low rates of instability and good overall survivorship in primary and revision THAs, and in those undertaken in patients with a fracture of the femoral neck. The incidence of intraprosthetic dislocation is low and limited mainly to earlier designs. High-quality, prospective, comparative studies are needed to evaluate further the use of dual mobility components in THA. Cite this article: Bone Joint J 2018;100-B:11–19


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 27 - 32
1 Jul 2020
Heckmann N Weitzman DS Jaffri H Berry DJ Springer BD Lieberman JR

Aims. Dual mobility (DM) bearings are an attractive treatment option to obtain hip stability during challenging primary and revision total hip arthroplasty (THA) cases. The purpose of this study was to analyze data submitted to the American Joint Replacement Registry (AJRR) to characterize utilization trends of DM bearings in the USA. Methods. All primary and revision THA procedures reported to AJRR from 2012 to 2018 were analyzed. Patients of all ages were included and subdivided into DM and traditional bearing surface cohorts. Patient demographics, geographical region, hospital size, and teaching affiliation were assessed. Associations were determined by chi-squared analysis and logistic regression was performed to assess outcome variables. Results. A total of 406,900 primary and 34,745 revision THAs were identified, of which 35,455 (8.7%) and 8,031 (23.1%) received DM implants respectively. For primary THA, DM usage increased from 6.7% in 2012 to 12.0% in 2018. Among revision THA, DM use increased from 19.5% in 2012 to 30.6% in 2018. Patients < 50 years of age had the highest rates of DM implantation in every year examined. For each year of increase in age, there was a 0.4% decrease in the rate of DM utilization (odds ratio (OR) 0.996 (95% confidence interval (CI) 0.995 to 0.997); p < 0.001). Females were more likely to receive a DM implant compared to males (OR 1.077 (95% CI 1.054 to 1.100); p < 0.001). Major teaching institutions and smaller hospitals were associated with higher rates of utilization. DM articulations were used more commonly for dysplasia compared with osteoarthritis (OR 2.448 (95% CI 2.032 to 2.949); p < 0.001) during primary THA and for instability (OR 3.130 (95% CI 2.751 to 3.562) vs poly-wear; p < 0.001) in the revision setting. Conclusion. DM articulations showed a marked increase in utilization during the period examined. Younger patient age, female sex, and hospital characteristics such as teaching status, smaller size, and geographical location were associated with increased utilization. DM articulations were used more frequently for primary THA in patients with dysplasia and for revision THA in patients being treated for instability. Cite this article: Bone Joint J 2020;102-B(7 Supple B):27–32


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 20 - 26
1 Jul 2020
Romero J Wach A Silberberg S Chiu Y Westrich G Wright TM Padgett DE

Aims. This combined clinical and in vitro study aimed to determine the incidence of liner malseating in modular dual mobility (MDM) constructs in primary total hip arthroplasties (THAs) from a large volume arthroplasty centre, and determine whether malseating increases the potential for fretting and corrosion at the modular metal interface in malseated MDM constructs using a simulated corrosion chamber. Methods. For the clinical arm of the study, observers independently reviewed postoperative radiographs of 551 primary THAs using MDM constructs from a single manufacturer over a three-year period, to identify the incidence of MDM liner-shell malseating. Multivariable logistic regression analysis was performed to identify risk factors including age, sex, body mass index (BMI), cup design, cup size, and the MDM case volume of the surgeon. For the in vitro arm, six pristine MDM implants with cobalt-chrome liners were tested in a simulated corrosion chamber. Three were well-seated and three were malseated with 6° of canting. The liner-shell couples underwent cyclic loading of increasing magnitudes. Fretting current was measured throughout testing and the onset of fretting load was determined by analyzing the increase in average current. Results. The radiological review identified that 32 of 551 MDM liners (5.8%) were malseated. Malseating was noted in all of the three different cup designs. The incidence of malseating was significantly higher in low-volume MDM surgeons than high-volume MDM surgeons (p < 0.001). Pristine well-seated liners showed significantly lower fretting current values at all peak loads greater than 800 N (p < 0.044). Malseated liner-shell couples had lower fretting onset loads at 2,400 N. Conclusion. MDM malseating remains an issue that can occur in at least one in 20 patients at a high-volume arthroplasty centre. The onset of fretting and increased fretting current throughout loading cycles suggests susceptibility to corrosion when this occurs. These results support the hypothesis that malseated liners may be at risk for fretting corrosion. Clinicians should be aware of this phenomenon. Cite this article: Bone Joint J 2020;102-B(7 Supple B):20–26


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 423 - 425
1 Apr 2020
Hoggett L Cross C Helm A

Aims. Dislocation remains a significant complication after total hip arthroplasty (THA), being the third leading indication for revision. We present a series of acetabular revision using a dual mobility cup (DMC) and compare this with our previous series using the posterior lip augmentation device (PLAD). Methods. A retrospective review of patients treated with either a DMC or PLAD for dislocation in patients with a Charnley THA was performed. They were identified using electronic patient records (EPR). EPR data and radiographs were evaluated to determine operating time, length of stay, and the incidence of complications and recurrent dislocation postoperatively. Results. A total of 28 patients underwent revision using a DMC for dislocation following Charnley THA between 2013 and 2017. The rate of recurrent dislocation and overall complications were compared with those of a previous series of 54 patients who underwent revision for dislocation using a PLAD, between 2007 and 2013. There was no statistically significant difference in the mean distribution of sex or age between the groups. The mean operating time was 71 mins (45 to 113) for DMCs and 43 mins (21 to 84) for PLADs (p = 0.001). There were no redislocations or revisions in the DMC group at a mean follow-up of 55 months (21 to 76), compared with our previous series of PLAD which had a redislocation rate of 16% (n = 9) and an overall revision rate of 25% (n = 14, p = 0.001) at a mean follow-up of 86 months (45 to 128). Conclusion. These results indicate that DMC outperforms PLAD as a treatment for dislocation in patients with a Charnley THA. This should therefore be the preferred form of treatment for these patients despite a slightly longer operating time. Work is currently ongoing to review outcomes of DMC over a longer follow-up period. PLAD should be used with caution in this patient group with preference given to acetabular revision to DMC. Cite this article: Bone Joint J 2020;102-B(4):423–425


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 18 - 24
1 Jan 2017
De Martino I D’Apolito R Soranoglou VG Poultsides LA Sculco PK Sculco TP

Aims. The aim of this systematic review was to report the rate of dislocation following the use of dual mobility (DM) acetabular components in primary and revision total hip arthroplasty (THA). Materials and Methods. A systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines was performed. A comprehensive search of Pubmed/Medline, Cochrane Library and Embase (Scopus) was conducted for English articles between January 1974 and March 2016 using various combinations of the keywords “dual mobility”, “dual-mobility”, “tripolar”, “double-mobility”, “double mobility”, “hip”, “cup”, “socket”. The following data were extracted by two investigators independently: demographics, whether the operation was a primary or revision THA, length of follow-up, the design of the components, diameter of the femoral head, and type of fixation of the acetabular component. Results. In all, 59 articles met our inclusion criteria. These included a total of 17 908 THAs which were divided into two groups: studies dealing with DM components in primary THA and those dealing with these components in revision THA. The mean rate of dislocation was 0.9% in the primary THA group, and 3.0% in the revision THA group. The mean rate of intraprosthetic dislocation was 0.7% in primary and 1.3% in revision THAs. Conclusion. Based on the current data, the use of DM acetabular components are effective in minimising the risk of instability after both primary and revision THA. This benefit must be balanced against continuing concerns about the additional modularity, and the new mode of failure of intraprosthetic dislocation. Longer term studies are needed to assess the function of these newer materials compared with previous generations. . Cite this article: Bone Joint J 2017;99-B(1 Supple A):18–24


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 365 - 371
1 Apr 2019
Nam D Salih R Nahhas CR Barrack RL Nunley RM

Aims. Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design. Patients and Methods. This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m. 2. and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (. sd. 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral BMD were measured at baseline, as well as at one and two years postoperatively. Power analysis indicated 40 patients necessary to demonstrate a five-fold increase in cobalt levels from baseline (alpha = 0.05, beta = 0.80). A mixed model with repeated measures was used for statistical analysis. Results. Mean Harris Hip Scores improved from 54.1 (. sd. 20.5) to 91.2 (. sd. 10.8) at two years postoperatively (p < 0.001). All patients had radiologically well-fixed components, no patients experienced any instability, and no patients required any further intervention. Mean cobalt levels increased from 0.065 ug/l (. sd. 0.03) preoperatively to 0.30 ug/l (. sd. 0.51) at one year postoperatively (p = 0.01) but decreased at two years postoperatively to 0.16 ug/l (. sd. 0.23; p = 0.2). Four patients (9.3%) had a cobalt level outside the reference range (0.03 ug/l to 0.29 ug/l) at two years postoperatively, with values from 0.32 ug/l to 0.94 ug/l. The mean femoral BMD ratio was maintained in Gruen zones 2 to 7 at both one and two years postoperatively using this stem design. At two years postoperatively, mean BMD in the medial calcar was 101.5% of the baseline value. Conclusion. Use of a modular DM prosthesis and cementless, tapered femoral stem has shown encouraging results in young, active patients undergoing primary THA. Elevation in mean cobalt levels and the presence of four patients outside the reference range at two years postoperatively demonstrates the necessity of continued surveillance in this cohort. Cite this article: Bone Joint J 2019;101-B:365–371


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 49 - 49
1 Mar 2017
Nambu S Hines G Timmerman I
Full Access

Background. Published simulator studies for metal/UHMWPE bearings couples showed that increasing the femoral head diameter by 1 mm increases wear by approximately 10% due to increased contact area. Therefore, there are concerns about increased wear with dual mobility hip bearings. Purpose of the study. The purpose of the study was to compare wear from dual mobility hip bearings to that with traditional fixed bearings. In addition, for the dual mobility bearings, the effect of femoral head material type on the liner wear was also evaluated. Methods. The bearings selected for the study are listed in Table 1. Prior to the start of the test all liners were soaked in lubricant for 48 hours. Hip testing was performed on a Shore Western Orbital Bearing machine in the anatomically oriented position. A simulated gait profile (synchronized at +/-23° biaxial rocking motion) with a minimum/maximum 200/2000N force was applied to the bearings at frequency of 1Hz. The lubricant used for the testing was 25% bovine serum with 0.2 % sodium azide, 20 mMol EDTA and distilled water. The test was interrupted at regular intervals for gravimetric assessment of wear amount. Findings of Study. Figure 1 shows total wear at 3 Mc and wear rates (determined from the slope of the linear regression) for all the groups. At 3 Mc, dual mobility bearings with stainless steel femoral head demonstrated 5% lower wear rate than those articulated against CoCrMo femoral heads. However, there was no statistically significant difference in the observed wear rate due to the femoral head material type. The results from the study also exhibited lower wear and wear rate for dual mobility bearings compared to fixed bearings. Dual mobility bearings with CoCrMo femoral head and stainless steel femoral head demonstrated 17% and 21% lower wear rate when compared to fixed bearings. Although dual mobility bearings possess greater contact area (due to the contact between head-liner and liner-shell compared to only head-liner in fixed bearings), no such increased trend in wear was observed. Conclusions. Dual mobility hip bearings are designed to reduce the risk of dislocation and allow for increased range of motion thus improving joint function and stability. The results from the study demonstrate that dual mobility bearings have comparable wear properties when compared to fixed bearings. For figure/table, please contact authors directly


Aims. The optimal treatment for independent patients with a displaced intracapsular fracture of the hip remains controversial. The recognised alternatives are hemiarthroplasty and total hip arthroplasty. At present there is no established standard of care, with both types of arthroplasty being used in many centres. Patients and Methods. We conducted a feasibility study comparing the clinical effectiveness of a dual mobility acetabular component compared with standard polyethylene component in total hip arthroplasty for independent patients with a displaced intracapsular fracture of the hip, for a 12-month period beginning in June 2013. The primary outcome was the risk of dislocation one year post-operatively. Secondary outcome measures were EuroQol 5 Dimensions, ICEpop CAPability measure for Older people, Oxford hip score, mortality and re-operation. Results. Only 20 patients were recruited during this time. The baseline demographics were similar in the two groups and no patient suffered a dislocation. Differences in secondary outcomes were not analysed due to the small sample. Conclusion. This feasibility study suggests that any trial investigating the effectiveness of total hip arthroplasty for fracture of the hip might not be deliverable within the constraints of current systems of care in the United Kingdom. Cite this article: Bone Joint J 2016;98-B:1431–5


Bone & Joint Open
Vol. 2, Issue 10 | Pages 858 - 864
18 Oct 2021
Guntin J Plummer D Della Valle C DeBenedetti A Nam D

Aims. Prior studies have identified that malseating of a modular dual mobility liner can occur, with previous reported incidences between 5.8% and 16.4%. The aim of this study was to determine the incidence of malseating in dual mobility implants at our institution, assess for risk factors for liner malseating, and investigate whether liner malseating has any impact on clinical outcomes after surgery. Methods. We retrospectively reviewed the radiographs of 239 primary and revision total hip arthroplasties with a modular dual mobility liner. Two independent reviewers assessed radiographs for each patient twice for evidence of malseating, with a third observer acting as a tiebreaker. Univariate analysis was conducted to determine risk factors for malseating with Youden’s index used to identify cut-off points. Cohen’s kappa test was used to measure interobserver and intraobserver reliability. Results. In all, 12 liners (5.0%), including eight Stryker (6.8%) and four Zimmer Biomet (3.3%), had radiological evidence of malseating. Interobserver reliability was found to be 0.453 (95% confidence interval (CI) 0.26 to 0.64), suggesting weak inter-rater agreement, with strong agreement being greater than 0.8. We found component size of 50 mm or less to be associated with liner malseating on univariate analysis (p = 0.031). Patients with malseated liners appeared to have no associated clinical consequences, and none required revision surgery at a mean of 14 months (1.4 to 99.2) postoperatively. Conclusion. The incidence of liner malseating was 5.0%, which is similar to other reports. Component size of 50 mm or smaller was identified as a risk factor for malseating. Surgeons should be aware that malseating can occur and implant design changes or changes in instrumentation should be considered to lower the risk of malseating. Although further follow-up is needed, it remains to be seen if malseating is associated with any clinical consequences. Cite this article: Bone Jt Open 2021;2(10):858–864


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_16 | Pages 9 - 9
1 Oct 2017
Abdul W Goodson M Jones SA
Full Access

Dislocation and instability remain leading cause of failure following THA. We present a single-surgeon 10-year experience with use of Dual Mobility (DM) bearings in Primary and Revision THA using posterior approach. 127 DM bearings were implanted between September 2006 – September 2016; 102 in high-risk primary THA's and 25 revision THA's for either treatment or prevention of instability. Selection for DM bearing followed individual patient risk assessment. Criteria for use of DM bearing were presence of multiple risk factors. Mean age was 72.9 years. 100 Mono-block DM implants, 22 Modular DM implants and 5 custom-made DM devices were implanted. Revision cohort included those used in conjunction with a cage or porous metal augments. 2 dislocations (1.6%) were observed, both in the Revision group, 1 was recurrent requiring revision to constrained liner. Primary group had 2 revisions; 1 peri-prosthetic fracture and 1 deep infection. No DM bearing specific complications were observed. A constructed life table calculated survival function with endpoint set as revision for any reason demonstrated a cumulative survival of 94% at 7.4 years. In high-risk patients, DM bearings are successful at preventing and treating dislocation in THA. Primary cohort in this study all had multiple risk factors for instability but no dislocations or bearing specific complications were observed. Dislocations observed in Revision group were associated with major soft tissue deficiency. This study adds to the promising results already reported with DM THA articulations and should be considered for patients at risk of dislocation or instability. Runner Up – Best Paper Award


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 60 - 63
1 Jan 2016
Ko LM Hozack WJ

Dual mobility cups have two points of articulation, one between the shell and the polyethylene (external bearing) and one between the polyethylene and the femoral head (internal bearing). Movement occurs at the inner bearing; the outer bearing only moves at extremes of movement. Dislocation after total hip arthroplasty (THA) is a cause of much morbidity and its treatment has significant cost implications. Dual mobility cups provide an increased range of movement and a may reduce the risk of dislocation. . This paper reviews the use of these cups in THA, particularly where stability is an issue. Dual mobility cups may be of benefit in primary THA in patients at a high risk of dislocation, such as those who are older with increased comorbidities and a higher American Association of Anesthesiology grade and those with a neuromuscular disease. They may be used at revision surgery where the risk of dislocation is high, such as in patients with many prior dislocations, or those with abductor deficiency. They may also be used in THA for displaced fractures of the femoral neck, which has a notoriously high rate of dislocation. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):60–3


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and particles reflecting an innate inflammatory reaction to corrosion debris were noted in six of the 48 cases for which periprosthetic tissues were examined, and all were associated with retrieved components that had high corrosion scores. Conclusion. Our results show that corrosion occurs at the interface between MDM liners and shells and that it can be associated with reactions in the local tissues, suggesting continued concern that this problem may become clinically important with longer-term use of these implants. Cite this article: Bone Joint J 2021;103-B(7):1238–1246


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 1 - 1
1 Oct 2019
Heckmann N Weitzman D Jaffri H Berry DJ Springer BD Lieberman JR
Full Access

Background. Dual mobility bearings are an attractive treatment option to obtain hip stability during challenging primary and revision total hip arthroplasty (THA) cases. Despite growing enthusiasm in the United States, long-term results of modern dual mobility implants are lacking. The purpose of this study is to analyze data submitted to the American Joint Replacement Registry (AJRR) to characterize utilization trends of dual mobility bearings in the United States. Methods. All primary and revision THA procedures reported to AJRR from 2012–2018 were analyzed. Patients of all ages were included and subdivided into dual mobility and traditional bearing surface cohorts. Independent variables included patient demographics, geographic region, hospital size, and teaching affiliation. Associations were determined by chi-square analysis and a logistic regression was performed to assess the association between dual mobility and independent variables. Results. A total of 406,900 primary and 34,745 revision THAs were identified of which 35,455 (8.7%) and 8,031 (23.1%) received dual mobility implants respectively. For primary THA, dual mobility utilization increased from 6.7% in 2012 to 12.0% in 2018. (Figure 1) Similarly, amongst revision THA, dual mobility utilization increased from 19.5% in 2012 to 30.6% in 2018. Patients <50 years of age had the highest rates of dual mobility utilization in every year examined. (Figure 2) For every year increase in age, there was a 0.4% decrease in the rate of dual mobility utilization (odds ratio [OR] 0.996, 95% confidence interval [CI] 0.995–0.997, p<0.001). (Table 1) Females were more likely to receive a dual mobility implant compared to males (OR 1.077, 95% CI 1.054–1.100, p<0.001). Major teaching institutions and smaller hospitals were associated with higher rates of utilization. The West was associated with the highest rate of dual mobility usage compared to the other regions of the United States. Dual mobility articulations were used most commonly for dysplasia (OR 2.448 vs osteoarthritis, 95% CI 1.143–1.285, p<0.001) during primary THA and for instability (OR 3.130 vs poly-wear, 95% CI 2.751–3.562, p<0.001) in the revision setting. (Table 2). Conclusion. Dual mobility articulations showed a marked increase in utilization during the period examined. Younger patient age, female sex, and hospital characteristics such as teaching status, smaller size, and geographic location were associated with increased utilization. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 21 - 21
7 Jun 2023
Nandra R Fishley W Whitehouse S Carluke I Kramer D Partington P Reed M Evans J Panteli M Charity J Wilson M Howell J Hubble M Petheram T Kassam A
Full Access

In metal-on-metal (MoM) hip replacements or resurfacings, mechanical induced corrosion can lead to a local inflammatory response, pseudo tumours and elevated serum metal ions, requiring revision surgery. The size and diametral clearance of Anatomic (ADM) and Modular (MDM) Dual Mobility bearings matches that of certain MOM components. Presenting the opportunity for revision with exchange of the metal head for ADM/MDM bearings without removal of the acetabular component if it is well-fixed and appropriately positioned. Between 2012 and 2020, across two centres, 94 patients underwent revision of a MoM hip replacement or resurfacing. The mean age was 65.5 (33–87) years. In 53 patients (56.4%), the acetabular component was retained, and dual mobility bearings were used (DM); in 41 (43.6%) the acetabulum was revised (AR). DM was only considered where the acetabular component was satisfactorily positioned and well-integrated into bone, with no surface damage. Patients underwent clinical and radiographic follow-up to at least one-year (mean 42.4 (12–96) months). One (1.1%) patient died before one-year, for reasons unrelated to the surgery. In the DM group, two (3.8%) patients underwent further surgery; one (1.9%) for dislocation and one (1.9%) for infection. In the AR group, four (12.2%) underwent further procedures; two (4.9%) for loosening of the acetabular component and two (4.9%) following dislocations. There were no other dislocations in either group. In the DM group, operative time (68.4 v 101.5 mins, p<0.001), postoperative drop in haemoglobin (16.6 v 27.8 g/L, p<0.001), and length of stay (1.8 v 2.4 days, p<0.001) were significantly lower. There was a significant reduction in serum metal ions postoperatively in both groups (p<0.001 both Cobalt and Chromium) although there was no difference between groups for this reduction (p=0.674 Cobalt; p=0.186 Chromium). In selected patients with MoM hip arthroplasty, where the acetabular component is well-fixed, in a satisfactory position and there is no surface damage, the metal head can be exchanged for ADM/MDM bearings with retention of the acetabular prosthesis. Presenting significant benefits through a less invasive procedure, and a low risk of complications, including dislocation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 25 - 25
1 Jun 2018
Della Valle C
Full Access

Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip arthroplasties in the United States. We have advocated identifying the primary cause of instability to plan appropriate treatment (Wera, Della Valle, et al., JOA 2012). Once implant position, leg length, and offset have been optimised and sources of impingement have been removed, the surgeon can opt for a large femoral head, a dual mobility articulation or a constrained liner. Given the limitations of constrained liners, we have looked to dual mobility articulations as an alternative, including its use in patients with abductor deficiency. We retrospectively compared a consecutive series of revision THA that were at high risk for instability and treated with either a constrained liner or a dual mobility articulation. At a minimum of two years, there were ten dislocations in the constrained group (10/43 or 23.3%) compared to three in the dual-mobility group (3/36 or 8.3%; p = 0.06). With repeat revision for instability as an endpoint, the failure rate was 23% for the constrained group and 5.5% for the dual mobility group (p = 0.03). We have also performed a systematic review of the published literature on the use of dual mobility in revision THA. Of the 3,088 hips reviewed, the dislocation rate was 2.2%, the risk of intraprosthetic dislocation was 0.3% and overall survivorship was 96.6% at 5 years. Dual mobility articulations offer anatomic sized femoral heads that greatly increase jump distance, without many of the negatives of a constrained liner. While dual mobility is associated with its own concerns and problems (including intraprosthetic dislocation and wear) our initial results suggest that they are a viable alternative to a constrained liner, even in the most challenging situations


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 2 - 2
1 Oct 2019
Padgett DE Romero J Wach A Wright TM
Full Access

Introduction. Enhanced stability using dual mobility has been demonstrated but concerns about potential for corrosion in modular versions have been raised. Case reports of corrosion with malseated inserts have heightened concerns over this modularity. Some have claimed that malseating is rare, the true frequency is unknown. The purpose of our investigation was to determine the incidence of liner malseating in dual mobility implants at our institution. Methods. 567 hips had primary modular dual mobility hip replacements (Biomet or Stryker) between 2016 and 2018. Post-operative radiographs were reviewed independently by two reviewers to identify malseating. Liners were considered malseated if there was a noticeable gap between the metal liner and acetabular shell(figure 1). All liners deemed to be malseated were independently assessed by 3 separate reviewers for confirmation. Results. 32 of the 567 (5.6%) of the liners were found to be malseated. There were no malseated liners in the Biomet group (n=46). There were 32 malseated liners in 521 (6.1%) Stryker cups using 3 different Stryker shells: 19 of 229 (8.23%) in the Trident I hemispherical group; 5 of 99 (5.05%) in in the Trident I PSL group and 8 of 193 (4.15%) in the Trident II group. Conclusions. Our observation of malseating in 5.6% of patients is clearly disconcerting. The etiology of malseating is unclear ranging from soft tissue interposition to possible shell deformation leading to a geometric mismatch between cup and liner. The clinical impact of this observation is unknown but speculation regarding risk of micromotion along the interface leading to fretting and corrosion appears plausible. Further clinical followup will be necessary to determine whether these radiographic finding will ultimately impact clinical outcome. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 6 - 6
1 Oct 2019
Nessler JM Malkani AJ Sachdeva S Nessler JP Westrich GH Harwin SF Mayman DJ Jerabek SA
Full Access

Introduction. Patients undergoing primary total hip arthroplasty (THA) with prior lumbar spine fusion (LSF) are at high risk for instability with reported incidence of dislocation as high as 8.3%. The use of dual mobility cups in patients undergoing revision THA, another high risk group, has demonstrated decreased incidence of instability. Purpose of this study was to evaluate the risk of instability in patients undergoing primary THA with a history of prior LSF using dual mobility cups. Methods. This was a multi-center retrospective study with 93 patients undergoing primary THA using a dual mobility cup with prior history of instrumented LSF. The primary outcome investigated was instability. Secondary variables investigated included number of levels fused, approach, length of stay, and other complications. The minimum follow-up time was 1 year since the majority of dislocations occur during first year following the primary THA. Results. There were 56 females and 47 males with average age of 66 years (46–87) and average BMI of 30. Mean follow up was 31 months (range 12 – 124.2). Surgical approach included: posterior (63), direct lateral (15), anterior (11), direct superior (4). 44% had one level fusion, 29% with 2 levels, and 15% with 3 or more levels fused. There were no dislocations or infections in this study group. There was one intraoperative fracture and one DVT. Conclusions. Patients undergoing primary THA with prior LSF are a high risk group with an increased risk for instability due to the loss of normal spino-pelvic relationship. The use of dual mobility cups in a high risk group of patients in this study demonstrated excellent results with no incidence of dislocation. Despite the limitations in this study with varying approaches and multiple sites, the use of dual mobility cups to decrease the incidence of instability in patients with prior LSF appears promising. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 4 - 4
1 Feb 2015
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal head is snap-fit into the large polyethylene. New components have been released for use in North America over the past four years. In some European centers, these components are routinely used for primary total hip arthroplasty. Some surgeons in USA suggest routine use in primary hip arthroplasty. However, their greatest utility is to manage recurrent dislocation in the setting of revision total hip arthroplasty. Recent biomechanical data suggests that, in a 3D CT scan-cadaver hip model, there is no difference in range of motion between a 36mm head and an ADM dual mobility component sizes 50–56mm. There is little wear data on dual mobility components, except from one implant manufacturer. It is feared that there is a “3rd articulation” in dual mobility components—the routine impingement of the femoral neck against the polyethylene femoral head. Several retrospective series have shown satisfactory results for these dual mobility components at short- to medium-term follow-up times. There are important concerns with polyethylene wear, late intra-prosthetic dislocation, and the lack of long-term follow-up data. Big femoral heads (36mm and 40mm) articulating with highly cross-linked, e-beam, remelted, polyethylene are a better choice in primary total hip arthroplasty, to decrease the frequency of dislocation in “high risk” patients. Although the risk of early dislocation was 4% in “high risk” patients, there was no recurrence, no revision, and no late first dislocation. Until further long-term results are available, caution is advised in the routine use of dual mobility components in primary total hip arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 45 - 45
1 Dec 2016
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal head is snap-fit into the large polyethylene. The first such device was introduced for primary total hip arthroplasty by Bousquet in the 1970s, thus, the “French connection”. Dual mobility components have been released for use in North America over the past five years. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series and the Swedish hip registry have shown satisfactory results for this indication at short- to medium-term follow-up times. However, there are important concerns with polyethylene wear, late intraprosthetic dislocation, and the lack of long-term follow-up data. These components are an important option in the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, and salvage of failed constrained liners. There are more recent concerns of possible iliopsoas tendinitis, elevated metal levels with one design, and acute early intraprosthetic dislocation following attempted closed reduction. However, a dual mobility component may now be the preferred solution in revision surgery for recurrent hip dislocation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 45 - 45
1 Apr 2017
Haddad F
Full Access

Treatment of recurrent dislocation: approximately: 1/3 of failures (probably higher in the absence of a clear curable cause). In the US: most popular treatment option: constrained liners with high redislocation and loosening rates in most reports. Several interfaces leading to various modes of failures. In Europe: dual mobility cups (or tripolar unconstrained): first design Gilles Bousquet 1976 (Saint Etienne, France), consisting of a metal shell with a highly polished inner surface articulating with a mobile polyethylene insert (large articulation). The femoral head is captured into the polyethylene (small articulation) using a snap fit type mechanism leading to a large effective unconstrained head inside the metal cup. With dual mobility, most of the movements occur in the small articulation therefore limiting wear from the large polyethylene on metal articulation. Contemporary designs include: CoCr metal cup for improved friction, outer shell coated with titanium and hydroxyapatite, possible use of screws to enhance primary stability (revision), cemented version in case of major bone defect requiring bone reconstruction. Increased stability obtained through an ultra-large diameter effective femoral head increasing the jumping distance. Dual mobility in revision for recurrent dislocation provided hip stability in more than 94% of the cases with less than 3% presenting redislocation up to 13-year follow-up. A series from the UK concerning 115 revisions including 29 revisions for recurrent dislocation reported 2% dislocation in the global series and 7% re-dislocation in patients revised for instability. A recent report of the Swedish hip arthroplasty register including 228 patients revised for recurrent dislocation showed 99% survival with revision for dislocation as the endpoint and 93% with revision for any reason as the endpoint. One specific complication of dual mobility sockets: intra-prosthetic dislocation (ie: dislocation at the small articulation): often asymptomatic or slight discomfort, eccentration of the neck on AP radiograph, related to wear and fatigue of the polyethylene rim at the capturing are through aggressive stem neck to mobile polyethylene insert contact (3rd articulation). Risk factors include: large and aggressive femoral neck design implants, small head/neck ratio, skirted heads, major fibrosis and periprosthetic ossifications. Current (over ?) use in France: 30% of primary THA, 60% in revision THA. Proposed (reasonable) indications: primary THA at high risk for dislocation, revision THA for instability and/or in case of abductors deficiency, Undisputed indication: recurrent dislocation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 81 - 81
1 Aug 2017
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility will be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. At least one center reports that dual mobility outperforms 40mm femoral heads in revision arthroplasty. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation, revision of failed metal-metal resurfacing, total hips, unipolar arthroplasties, and salvage of failed constrained liners. There are concerns of elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. Total hip surgeons no longer cement Charnley acetabular components, use conventional polyethylene, autologous blood donation, or a drain; now constrained components join these obsolete techniques! In 2017, a dual mobility component, rather than a constrained liner, is the preferred solution in revision surgery to prevent and manage recurrent dislocation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 86 - 86
1 May 2019
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility will be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. At least one center reports that dual mobility outperforms 40mm femoral heads in revision arthroplasty. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation, revision of failed metal-on-metal resurfacing or total hips, unipolar arthroplasties, and salvage of failed constrained liners. There are concerns of elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. Total hip surgeons no longer use conventional polyethylene, autologous blood donation, or a hemovac drain; now constrained components join these obsolete techniques! In 2018, a dual mobility component, rather than a constrained liner, is the preferred solution in revision surgery to prevent and manage recurrent dislocation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 3 - 3
1 Jun 2016
Laura AD Whittaker R Hothi H Kwon Y Skinner J Hart A
Full Access

Introduction. Dual-mobility bearings increase the stable range of motion of total hip arthroplasty (THA) but are limited by the mechanical effects of a large diameter metal on polyethylene bearing which may cause high rates of wear from the surfaces of the polyethylene bearing and the head-stem taper. Improved polyethylene (PE) has reduced concern over bearing wear but the effects on the taper junction are unknown. We aimed to better understand the effect of dual mobility bearings on fretting-corrosion damage to the taper junction by comparison to standard bearings. Materials and Methods. We collected and analysed retrieved hips of one design with either dual mobility (n= 39) or standard bearings (n=30). The bearing size in the dual mobility group was 42mm whereas in the standard bearing group it had a median of 36mm. Stem trunnions had V40 tapers. Time of implantation and body mass index were comparable between the two groups. Fretting and corrosion at the stem trunnions was quantified by: 1) visual scoring and 2) surface profilometry. Results. Corrosion and fretting of the head-stem taper junction was lower in the dual mobility group when compared to the standard group as measured by both visual scoring (p=0.0002) and surface profilometry to measure material loss (p<0.0001). We did not see black debris, characteristic of severe corrosion processes, at the male surfaces in the dual mobility group. Discussion. In this study, visual damage at the male taper surfaces of dual mobility systems was less that that occurring at the male taper surfaces of standard articulating systems, measurements of wear rates were in agreements with the macroscopic evaluation. Conclusions. The frictional torque on the head-stem taper junction may be reduced with the use of a dual-mobility system when compared to a standard bearing system


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 81 - 81
1 Nov 2016
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. New components have been released for use in North America over the past eight years and additional modular designs will be forthcoming. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. However, at least one center reported failure of dual mobility if the abductor mechanism is absent. There are important concerns with dual mobility, including late polyethylene wear causing intra-prosthetic dislocation, and the lack of long-term follow-up data with most designs. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, total hips, large head unipolar arthroplasties, and salvage of failed constrained liners. There are more recent concerns of iliopsoas tendonitis, elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. However, in 2016, a dual mobility component, rather than a constrained liner, may be the preferred solution in revision surgery to prevent and manage recurrent dislocation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 45 - 45
23 Jun 2023
Lieberman JR
Full Access

Modular dual mobility (DM) articulations are increasingly utilized during total hip arthroplasty (THA). However, concerns remain regarding the metal liner modularity. This study aims to correlate metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) abnormalities with serum metal ion levels in patients with DM articulations. All patients with an asymptomatic, primary THA and DM articulation with >2-year follow-up underwent MARS-MRI of the operative hip. Each patient had serum cobalt, chromium, and titanium levels drawn. Patient satisfaction, Oxford Hip Score, and Forgotten Joint Score-12 (FJS-12) were collected. Each MARS-MRI was independently reviewed by fellowship-trained musculoskeletal radiologists blinded to serum ion levels. Forty-five patients (50 hips) with a modular DM articulation were included with average follow-up of 3.7±1.2 years. Two patients (4.4%) had abnormal periprosthetic fluid collections on MARS-MRI with cobalt levels >3.0 μg/L. Four patients (8.9%) had MARS-MRI findings consistent with greater trochanteric bursitis, all with cobalt levels < 1.0 μg/L. A seventh patient had a periprosthetic fluid collection with normal ion levels. Of the 38 patients without MARS-MRI abnormalities, 37 (97.4%) had cobalt levels <1.0 μg/L, while one (2.6%) had a cobalt level of 1.4 μg/L. One patient (2.2%) had a chromium level >3.0 μg/L and a periprosthetic fluid collection. Of the 41 patients with titanium levels, five (12.2%) had titanium levels >5.0 μg/L without associated MARS-MRI abnormalities. Periprosthetic fluid collections associated with elevated serum cobalt levels in patients with asymptomatic dual mobility articulations occur infrequently (4.4%), but further assessment of these patients is necessary. Level of Evidence: Level IV


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 82 - 82
1 Nov 2016
Callaghan J
Full Access

In primary total hip replacements there are numerous options available for providing hip stability in difficult situations (i.e. Down's syndrome, Parkinson's disease). However, in the revision situation in general and in revision for recurrent dislocation specifically, it is important to have all options available including dual mobility constrained liners in order to optimise the potential for hip stability as well as function of the arthroplasty. Even with the newer options, available dislocation rates of higher than 5% have been reported in the first two years following revision surgery at institutions where high volumes of revision surgery are performed. Because of the deficient abductors, other soft tissue laxity and the requirement for large diameter cups, revision cases will always have more potential for dislocation. In these situations in the lower demand patient and where, a complex acetabular reconstruction that requires time for ingrowth before optimal implant bone stability to occur isn't present, dual mobility with constraint has provided excellent success in terms of preventing dislocation and maintaining implant construct fixation to bone at intermediate term follow-up. Hence in these situations dual mobility with constraint remains the option we utilise. We are also confident in using this device in cases with instability or laxity where there is a secure well-positioned acetabular shell. We cement a dual mobility constrained liner in these situations using the technique described below. Present indication for dual mobility constrained liners: low demand patient, large outer diameter cups, instability with well-fixed shells that are adequately positioned, abductor muscle deficiency or soft tissue laxity, multiple operations for instability. Technique of cementing liner into shell: score acetabular shell if no holes, score liner in spider web configuration, all one or two millimeters of cement mantle. Results: Constrained Dual Mobility Liner – For Dislocation: 56 Hips, 10 year average follow-up, 7% failure of device, 5% femoral loosening, 4% acetabular loosening. For Difficult Revisions: 101 hips, 10 year average follow-up, 6% failure of device, 4% femoral loosening, 4% acetabular loosening. Cementing Liner into Shell: 31 hips, 3.6 year average follow-up (2–10 years), 2 of 31 failures


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 83 - 83
1 Nov 2015
Della Valle C
Full Access

Constrained liners are a tantalizing solution to both prevent and treat instability, as they markedly increase the force needed for a dislocation to occur. They have, however, several important negatives that the surgeon must consider before entertaining their use including: Increased stresses at the implant bone interface which can increase the risk of loosening or cause catastrophic failure in the early post-operative period; Decreased range of motion with a greater risk of impingement; and Usually require an open reduction if they dislocate or otherwise fail. Given the limitations of constrained liners, we have looked to dual mobility articulations as an alternative to constrained liners in the past five years in our practice, including patients with abductor deficiency. We retrospectively compared a consecutive series of revision THA that were at high risk for instability and treated with either a constrained liner or a dual mobility articulation. Indications for both groups included abductor insufficiency, revision for instability, or inadequate intra-operative stability when trialing. Forty-three hips were reviewed in the constrained group (mean follow-up 3.4 years) and thirty-six in the dual-mobility group (mean follow-up 2.4 years). The rate of failure was compared using a Fisher's exact test with a p-value of < 0.05 considered significant. At a minimum of two years, there were 10 dislocations in the constrained group (10/43 or 23.3%) compared to 3 in the dual-mobility group (3/36 or 8.3%; p = 0.06). There were 15 repeat revisions in the constrained group (10 for instability, 4 for infection, and 1 broken locking mechanism) compared to 4 in the dual mobility group (2 mechanical failures of cemented dual mobility liners with dislocation and 2 for infection); 34.9% vs. 11.1% (p = 0.01). With repeat revision for instability as an endpoint, the failure rate was 23% for the constrained group and 5.5% for the dual mobility group (p = 0.03). Mean Harris Hip Score (HHS) improved from 45 to 76 points in the constrained liner group, and from 46 to 89 points in the dual-mobility group. Dual mobility articulations offer anatomic sized femoral heads that greatly increase jump distance, without many of the negatives of a constrained liner. While dual mobility is associated with its own concerns and problems (including intra-prosthetic dislocation and wear) our initial results suggest that they are a viable alternative to a constrained liner, even in the most challenging situations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 69 - 69
4 Apr 2023
Smeeton M Wilcox R Isaac G Anderson J Board T Van Citters D Williams S
Full Access

Dual mobility (DM) total hip replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. Although DM THRs have shown good overall survivorship and low dislocation rates, the mechanisms which describe how these bearings function in-vivo are not fully understood. Therefore, the study aim was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment methods. Retrieved DM liners (n=18) were visually inspected for the presence of surface damage, whereby the internal and external surfaces were independently assigned a score of one (present) or zero (not present) for seven damage modes. The severity of damage was not assessed. The material composition of embedded debris was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation [1]. Scratching and pitting were the most common damage modes on either surface. Additionally, burnishing was observed on 50% of the internal surfaces and embedded debris was identified on 67% of the external surfaces. EDX analysis of the debris identified several materials including titanium, cobalt-chrome, iron, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners. The incidence of burnishing was three times greater for the internal surfaces, suggesting that this acts as the primary articulation site. The external surfaces sustained more observable damage as evidenced by a higher incidence of embedded debris, abrasion, delamination, and deformation. In conjunction with the highly variable damage patterns observed, these results suggest that DM kinematics are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 84 - 84
1 Nov 2015
Callaghan J
Full Access

In primary total hip replacements there are numerous options available for providing hip stability in difficult situations i.e. Down's syndrome, Parkinson's disease. However, in the revision situation, in general, and in revision for recurrent dislocation situations specifically, it is important to have all options available including dual mobility constrained liners in order to optimise the potential for hip stability as well as function of the arthroplasty. Even with the newer options available dislocation rates of higher than 5% have been reported in the first two years following revision surgery at institutions where high volumes of revision surgery are performed [Della Valle, Sporer, Paprosky unpublished data]. Because of the deficient abductors, other soft tissue laxity and the requirement for large diameter cups, revision cases will always have more potential for dislocation. In these situations in the lower demand patient and where, a complex acetabular reconstruction that requires time for ingrowth before optimal implant bone stability to occur isn't present, dual mobility with constraint has provided excellent success in terms of preventing dislocation and maintaining implant construct fixation to bone at intermediate term follow-up. Hence in these situations dual mobility with constraint remains the option we utilise. We are also confident in using this device in cases with instability or laxity where there is a secure well-positioned acetabular shell. We cement a dual mobility constrained liner in these situations using the technique described below. Present indication for dual mobility constrained liners: low demand patient, abductor muscle deficiency or soft tissue laxity, large outer diameter cups, multiple operations for instability, and instability with well-fixed shells that are adequately positioned. Technique of cementing liner into shell: score acetabular shell if no holes; score liner in spider web configuration; all one or two millimeters of cement mantle. Results. Constrained Dual Mobility Liner. For Dislocation: 56 Hips 10 yr average f/u, 7% failure of device, 5% femoral loosening, 4% acetabular loosening. For Difficult Revisions: 101 hips 10 yr average f/u, 6% failure of device, 4% femoral loosening, 4% acetabular loosening. Cementing Liner into Shell: 31 hips 3.6 yr average f/u (2–10 years), 2 of 31 failures


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 412 - 412
1 Dec 2013
Garofolo G Snir N Park B Wolfson T Hamula M Levin N Marwin S
Full Access

Background:. Dual mobility components in total hip arthroplasty have been successfully in use in Europe for greater than 25 years. However, these implants have only recently obtained FDA approval and acceptance among North American arthroplasty surgeons. Both decreased dislocation rate and decreased wear rates have been proposed benefits of dual mobility components. These components have been used for primary total hip arthroplasty in patients at high risk for dislocation, total hip arthroplasty in the setting of femoral neck fracture, revision for hip instability, and revision for large metal-on-metal (MoM) hip articulation. The literature for the North American experience is lacking. Purpose:. We report indications, short term outcomes, and complications of a series of subjects who received dual mobility outcomes at one institution. Study Design:. Consecutive subjects who received dual mobility total hip arthroplasty components from February 2010 and April 2013 were identified. Charts were retrospectively reviewed for surgical indications, comorbidities, component sizes, and perioperative complications including infection, dislocation, mechanical failure, and reoperation. Results:. 86 hips in 83 subjects underwent total hip arthroplasty or revision total hip arthroplasty using dual mobility components. There were 56 primary total hips and 30 revision total hips. Indications included small acetabular components in the setting of AVN (13 hips), DDH (12 hips) or severe inflammatory arthritis (5 hips), femoral neck fracture (5 hips), intraoperative instability (6 hips), recurrent postoperative instability (5 hips), and revision of large MoM articulations in the setting of failed hip resurfacing (10 hips) or failed MoM total hip arthroplasty (6 hips). Mean follow up was 1 year (3 months to 3.3 years). There were no complications in the primary total hip group. In the revision total hip group, only one hip dislocated and this was in a patient with familial dysautonomia and insensitivity to pain. One subject underwent reoperation for acute prosthetic joint infection. No other complications were encountered. Overall dislocation rate was 1.1% and overall complication rate was 2.2%. Conclusions:. These results closely mirror that of the European literature. Dual mobility articulations in total hip arthroplasty have a low short term complication rate in this cohort and provide a simple solution to difficult cases. Indications for these implants include primary and revision total hip arthroplasty in patients at high risk for instability and revision of large MoM implants including hip resurfacing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 46 - 46
23 Jun 2023
Mallett K Guarin S Sierra RJ
Full Access

Dual mobility (DM) components are increasingly used to prevent and treat dislocation after total hip arthroplasty (THA). Intraprosthetic dissociation (IPD) is a known rare complication of these implants and has reportedly decreased with modern implants. The purpose of this paper is to report the diagnosis and treatment of modern DM IPD. 1453 DM components were implanted between 2010 and 2021. 695 in primary and 758 in revision THA. 49 hips sustained a dislocation of the large head and 5 sustained an IPD at presentation. 6 additional IPD occurred at the time of reduction of large head. The average age was 64, 54% were female and the mean follow-up was three years. Of the 11 IPD, 8 had a history of instability, 5 had abductor insufficiency, 4 had prior lumbar fusion, and 3 were conversions from fracture. The overall IPD incidence was 0.76%. Ten of the 11 DM IPD were missed at initial presentation or at the time of reduction, and all were discharged with presumed reduction. The mean time from IPD to surgical treatment was 3 weeks. One patient died with an IPD at 5 months. A DM head was reimplanted in six, two underwent revision of the acetabular component with exchange of DM head, and four were revised to a constrained liner. The re-revision rate was 55% at a mean 1.8 years. None of the patients who underwent cup revision required subsequent re-revision while half of the constrained liners and exchange of DM heads required re-revision. The overall rate of DM dislocation or IPD is low. It is critical to identify an IPD on radiographs as it was almost universally missed at presentation or when it occurred iatrogenically. For patients presenting with IPD, the surgeon should consider acetabular revision and conversion to a constrained liner or a larger DM, with special attention to removing impinging structures that could increase the risk of re-dislocation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 78 - 78
1 Jun 2012
Guyen O Chevillotte C Wegrzyn J Pibarot V Bejui-Hugues J Carret J
Full Access

Introduction. Reoperations to manage unstable total hip arthroplasty are reported with a high failure rate. The dual mobility cup (figure 1) (mobile polyethylene component between the prosthetic head and the outer metal shell) is a useful option in such cases. The purpose of this retrospective study was to assess the clinical and radiologic features associated with the dual mobility cup. Materials and Methods. Fifty one unstable total hip arthroplasties (32 females, 19 males) were revised using a dual mobility socket at our institution between March 2000 and February 2005. Mean age at reoperation was 67 year old (range, 35 to 98). The outcome of the revision procedure was assessed using the Harris Hip Score, and complications were determined by detailed review of the patient's records. Anteroposterior and lateral radiographs of the involved joint were reviewed to assess the position of the prosthesis and to look for osteolysis and signs of loosening of the implant. Results. Mean follow-up was 4 years (range, 2 to 6.7). At last review 4 patients had died and one was lost to follow up. Postoperatively there was a significant improvement of the Harris Hip Score. Fifty patients (98%) had no further episodes of dislocation. There were 3 revisions for deep infection, and 2 for dissociation of the bipolar component. No cup required a revision for aseptic loosening. No radiolucent lines around the components and no osteolysis were observed at latest follow up. Conclusion. The dual mobility cup is a highly effective option to manage unstable total hip arthroplasty. Unlike constrained devices, such components provide encouraging radiologic results regarding the potential for loosening and osteolysis. Longer follow up is needed to confirm these results


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 811 - 821
1 Jul 2020
You D Sepehri A Kooner S Krzyzaniak H Johal H Duffy P Schneider P Powell J

Aims. Dislocation is the most common indication for further surgery following total hip arthroplasty (THA) when undertaken in patients with a femoral neck fracture. This study aimed to assess the complication rates of THA with dual mobility components (THA-DMC) following a femoral neck fracture and to compare outcomes between THA-DMC, conventional THA, and hemiarthroplasty (HA). Methods. We performed a systematic review of all English language articles on THA-DMC published between 2010 and 2019 in the MEDLINE, EMBASE, and Cochrane databases. After the application of rigorous inclusion and exclusion criteria, 23 studies dealing with patients who underwent treatment for a femoral neck fracture using THA-DMC were analyzed for the rate of dislocation. Secondary outcomes included reoperation, periprosthetic fracture, infection, mortality, and functional outcome. The review included 7,189 patients with a mean age of 77.8 years (66.4 to 87.6) and a mean follow-up of 30.9 months (9.0 to 68.0). Results. THA-DMC was associated with a significantly lower dislocation rate compared with both THA (OR 0.26; 95% CI 0.08 to 0.79) and HA (odds ratio (OR) 0.27; 95% confidence interval (CI) 0.15 to 0.50). The rate of large articulations and of intraprosthetic dislocation was 1.5% (n = 105) and 0.04% (n = 3) respectively. Conclusion. THA-DMC when used in patients with a femoral neck fracture is associated with a lower dislocation rate compared with conventional arthroplasty options. There was no increase in the rates of other complication when THA-DMC was used. Future cost analysis and prospective, comparative studies are required to assess the potential benefit of using THA-DMC in these patients. Cite this article: Bone Joint J 2020;102-B(7):811–821


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 45 - 45
1 Jun 2016
Abbas G Mullins M Dodd M Woodnutt D
Full Access

National Institute of Clinical Excellence (NICE) recommended total hip replacement (THR) surgery for fit patients with fracture neck of femur (NOF) in 2011. Our hospital implemented hip fracture program to follow these recommendations the same year. However, the increased incidence of further procedures compared with those undergoing the THR for osteoarthritis alone has led to concern regarding dislocation and other complications when using THR treatment for fracture NOF particularly with the posterior approach. We introduced dual mobility implant for THR for hip fracture program patients to minimize risk of hip instability but allowing the use of the posterior approach which is recognised as giving a faster recovery than the Hardinge type approaches in this patient group. The Arthroplasty database for hip fracture program was reviewed from September 2011 to September 2015 for appropriateness of this treatment. During this period, 120 Dual Mobility THRs were carried out in 119 patients (36 males, 84 females) with mean age at 78 years (42–94) and average follow-up of 24 months (2–56 months). All patients were either operated by a fellowship trained arthoplasty surgeons or the senior surgeons using posterior approach. All patients undergoing THR for NOF were found to meet the NICE guidelines criteria for THR. No post-operative dislocation, infection, hetotropic ossification or lysis was recorded. Mean Harris Hip Score (HHS) at 19 months was 82 (54–98). In this cohort 112 patients (94.3%) were able to ambulate in non-trendlenburg gait pattern. One patient developed deep vein thrombosis in early post-operative period. This study emphasises beneficial use the dual mobility implant combined with the posterior approach in THR for fracture NOF patients and highlights the areas of improvements in hip fracture management


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 14 - 14
7 Jun 2023
Smeeton M Wilcox R Isaac G Anderson J Board T Van Citters DW Williams S
Full Access

Dual Mobility (DM) Total Hip Replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. The in-vivo mechanics of these implants is not well understood, despite their increased use in both elective and trauma settings. Therefore, the aim of this study was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment techniques. Retrieved DM liners (n=20) were visually inspected for the presence of seven established modes of polyethylene damage. If embedded debris was identified on the external surface, its material composition was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation using a validated methodology. Visual inspection of the liners revealed that scratching and pitting were the most common damage modes on either surface. Burnishing was observed on 50% and 15% of the internal and external surfaces, respectively. In addition, embedded debris was identified on 25% of the internal and 65% of the external surfaces. EDX analysis of the debris identified several materials including iron, titanium, cobalt-chrome, and tantalum. Geometric analysis demonstrated highly variable damage patterns across the liners. The results of this study provide insight into the in-vivo mechanics of DM bearings. For example, the results suggest that the internal bearing (i.e., between the head and liner) acts as the primary articulation site for DM-THRs as evidenced by a higher incidence of burnishing and larger, more concentrated regions of penetration across the liners’ internal surfaces. Furthermore, circumferential, and crescent-shaped damage patterns were identified on the articulating surfaces of the liners thus providing evidence that these components can rotate within the acetabular shell with varying degrees of mobility. The mechanics of DM bearings are complex and may be influenced by several factors (e.g., soft tissue fibrosis, patient activities) and thus further investigation is warranted. Finally, the results of this study suggest that DM liners may be susceptible to ex-vivo surface damage and thus caution is advised when handling and/or assessing these types of components


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 26 - 26
1 Jun 2018
Sculco T
Full Access

Although the incidence of total hip dislocation has decreased, it still remains a major problem particularly if recurrent. The actual incidence is around 1–2% but it has been documented as the leading cause for hip revision in the United States. In patients with recurrent hip dislocation, technical issues of leg length inequality, incorrect offset, and poor implant position should be addressed surgically and the abnormality corrected. In patients with recurrent hip dislocation, the articulation is preferably converted to a more stable articulation, with constrained sockets and dual mobility being the choices. In my experience, dual mobility articulations remain an excellent option for recurrent hip dislocation and its use is increasing significantly. It provides improved hip stability and data have demonstrated good success with recurrent hip dislocation. However, with use of the modular variety of dual mobility which is needed for acetabular cup fixation with screw augmentation, dissimilar metals are placed in contact (titanium socket and cobalt chrome liner insert) which potentially can pose a fretting or corrosion problem in longer term outcomes. Constrained sockets of the tripolar configuration provide another option which is useful in those patients with severe abductor dysfunction or insufficiency. Constrained sockets can also be cemented into the existing shell in cases where there is a well-fixed cup and cup removal may lead to significant bone loss and need for complex acetabular reconstruction. It is important to remember that there are two types of constrained sockets, tripolar and focal constraint. Results with the tripolar constrained socket have been significantly better than the focal constraint variety which adds a polyethylene rim piece to the liner. In a mid-term follow up (2–9 years) of 116 constrained tripolar sockets, recurrent dislocation was only 3.3%. In papers reporting on focal constrained sockets, recurrent dislocation was in the 9–29% range. There continues to be a role for constrained sockets and selection of implant type has made a difference in ultimate outcome


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 6 - 6
1 Dec 2016
Sculco T
Full Access

Dislocation is a particular problem after total hip replacement in femoral neck fractures and elderly, especially female, patients. The increased rate of dislocation in this population is probably due to significant ligamentous laxity in these patients and poor coordination and proprioception. Another population of patients with increased propensity for dislocation is the revision hip replacement patient. Current dislocation rates in these patients can approach 10% with conventional implant systems. The Dual Mobility total hip system is composed of a cobalt chrome acetabular shell that has a grit blasted, beaded and/or hydroxyapatite coating to improve bone ingrowth. The polyethylene liner is highly crosslinked polyethylene and fits congruently into the cobalt chrome shell and acts like a large femoral head (usually > 40 mm). The femoral head attached to the trunnion is usually 28 mm. The femoral head snaps into the polyethylene liner to acts as a second protection against dislocation. Indications for the Dual Mobility socket are in the high risk for dislocation patient and particularly in elderly, female patients. It is also indicated in patients with neuromuscular disease who are at more risk to dislocate. To date 237 dual mobility cups have been performed with an average age of 79 and 207 of the procedures in women. The follow up extends to 5.6 years with an average of 3.5. There has been 1 dislocation which occurred after a traumatic event. There have been no mechanical failures, no infections and no other revisions in this series. Interprosthetic dislocation has been reported in long term follow up and there was, in this series, when reduction was performed on the only liner dislocation. Pain relief has been no different than conventional hip replacement and range of motion is unchanged as well


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 44 - 44
1 Jan 2018
Sculco T De Martino I Sculco P D'Apolito R Nocon A
Full Access

Instability continues to be a troublesome complication after THA and has been reported to be the main indication for revision in the United States, accounting for 22.5% of revisions. Risk factors associated with dislocation include: age of 75 years or older, body mass index (BMI) of 30 kg/m2 or greater, alcohol abuse, and neuro-degenerative diseases such as multiple sclerosis or Parkinson's disease. Dual-mobility articulations have become an increasingly popular option for these “at risk” primary THAs. Few studies have assessed their use in this complex patient population. The purpose of this study was to assess dislocation rate, radiographic outcomes and complications of the dual-mobility articulation in the setting of primary THA for patients at high risk for dislocation at a minimum follow up of 2 years. We retrospectively reviewed 151 dual mobility acetabular components, that had been performed using a single design (ADM Stryker, Mahwah, NJ) between 2010 and 2014 at a single institution by a single surgeon. The mean age at time of index surgery was 82 years (range, 73–95), 114 patients were female, and mean BMI was 26.2 kg/m2 (range, 16.1–60.9). Dislocation rate and complications associated with dual mobility cups were reviewed, along with the radiographic outcomes after an average follow-up period of 3.6 years (range, 1.9–6.1 years). The indication for hip replacement was osteoarthritis in all cases. We had one traumatic dislocation which required component revision after intraprosthetic dislocation following an attempt of closed reduction. There were no further dislocations in this cohort. No progressive radiolucencies or component positional changes were seen on radiographic assessment. At short-term follow-up dual mobility provides a stable reconstruction in patients at high risk of dislocation with excellent radiographic results. Longer follow-up is needed to confirm the durability of these reconstructions


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 66 - 72
1 Jul 2021
Hernandez NM Hinton ZW Wu CJ Lachiewicz PF Ryan SP Wellman SS

Aims. Modular dual mobility (MDM) acetabular components are often used with the aim of reducing the risk of dislocation in revision total hip arthroplasty (THA). There is, however, little information in the literature about its use in this context. The aim of this study, therefore, was to evaluate the outcomes in a cohort of patients in whom MDM components were used at revision THA, with a mean follow-up of more than five years. Methods. Using the database of a single academic centre, 126 revision THAs in 117 patients using a single design of an MDM acetabular component were retrospectively reviewed. A total of 94 revision THAs in 88 patients with a mean follow-up of 5.5 years were included in the study. Survivorship was analyzed with the endpoints of dislocation, reoperation for dislocation, acetabular revision for aseptic loosening, and acetabular revision for any reason. The secondary endpoints were surgical complications and the radiological outcome. Results. The overall rate of dislocation was 11%, with a six-year survival of 91%. Reoperation for dislocation was performed in seven patients (7%), with a six-year survival of 94%. The dislocations were early (at a mean of 33 days) in six patients, and late (at a mean of 4.3 years) in four patients. There were three intraprosthetic dissociations. An outer head diameter of ≥ 48 mm was associated with a lower risk of dislocation (p = 0.013). Lumbrosacral fusion was associated with increased dislocation (p = 0.004). Four revision THAs (4%) were further revised for aseptic acetabular loosening, and severe bone loss (Paprosky III) at the time of the initial revision was significantly associated with further revision for aseptic acetabular loosening (p = 0.008). Fourteen acetabular components (15%) were re-revised for infection, and a pre-revision diagnosis of reimplantation after periprosthetic joint infection (PJI) was associated with subsequent PJI (p < 0.001). Two THAs had visible metallic changes on the backside of the cobalt chromium liner. Conclusion. When using this MDM component in revision THA, at a mean follow-up of 5.5 years, there was a higher rate of dislocation (11%) than previously reported. The size of the outer bearing was related to the risk of dislocation. There was a low rate of aseptic acetabular loosening. Longer follow-up of this MDM component and evaluation of other designs are warranted. Cite this article: Bone Joint J 2021;103-B(7 Supple B):66–72


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 87 - 87
1 May 2019
Sculco T
Full Access

Although the incidence of total hip dislocation has decreased, it still remains a major problem particularly if recurrent. The actual incidence is around 1–2% but it has been documented as the leading cause for hip revision in the United States. In patients with recurrent hip dislocation, technical issues of leg length inequality, incorrect offset, and poor implant position should be addressed surgically and the abnormality corrected. In patients with recurrent hip dislocation, the articulation is preferably converted to a more stable articulation, with constrained sockets and dual mobility being the choices. In my experience, dual mobility articulations remain an excellent option for recurrent hip dislocation and its use is increasing significantly. It provides improved hip stability and data have demonstrated good success with recurrent hip dislocation. However, with use of the modular variety of dual mobility which is needed for acetabular cup fixation with screw augmentation, dissimilar metals are placed in contact (titanium socket and cobalt chrome liner insert) which potentially can pose a fretting or corrosion problem in longer term outcomes. Constrained sockets of the tripolar configuration provide another option which is useful in those patients with severe abductor dysfunction or insufficiency. Constrained sockets can also be cemented into the existing shell in cases where there is a well-fixed cup and cup removal may lead to significant bone loss and a need for complex acetabular reconstruction. It is important to remember that there are two types of constrained sockets, tripolar and focal constraint. Results with the tripolar constrained socket have been significantly better than the focal constraint variety which adds a polyethylene rim piece to the liner. In a mid-term follow up (2–9 years) of 116 constrained tripolar sockets, recurrent dislocation was only 3.3%. In papers reporting on focal constrained sockets, recurrent dislocation was in the 9–29% range. There continues to be a role for constrained sockets and selection of implant type has made a difference in ultimate outcome


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 85 - 85
1 Feb 2017
Cruz A Perona P Cohen R Campbell D
Full Access

Background. Instability and dislocation are some of the most important postoperative complications and potential causes of failure that dual mobility total hip arthroplasty (THA) systems continue to address. Studies have shown that increasing the relative head size provides patients implanted with smaller and larger cups increased stability, greater ROM and a lesser incidence of impingement, without compromising clinical results. The purpose of the current study was to review clinical outcomes in three groups of primary THA patients receiving a dual mobility acetabular shell. Methods. In two US based, post-market, multicenter studies, 450 patients received a primary cementless dual mobility THA. Patients were split into three groups based on cup size: ≤ 50mm, 52mm–56mm, and ≥ 58mm. Harris Hip Scores (HHS), Short Form 12 Physical Components (SF12 PCS), Lower Extremity Activity Scores (LEAS), and Euroqol 5D Score (EQ-5Ds) were collected preoperatively and through 2 years postoperative. Results. The current study displays gender differences among the three groups, with 90% female patients in the ≤ 50mm group, 66% male patients in the 52mm–56mm group and 100% males in the largest cup size group. A posterior/posterolateral approach was used in 94% of cases. The mean age range among the 3 groups was 60.5–61.7 and the two most common concurrent medical conditions were cardiovascular and musculoskeletal. There were no differences observed in clinical outcomes among any of the groups, all of which displayed significant increasing trends through 2 years postoperative (Figure 1). The HHS increased significantly from an average preoperative score of 54.5 to 92.9 and 93.7 at 1 and 2 years. Clinically significant improvements were seen at 2 years in SF12 PCS (+16.5) and the LEAS (+2.4) (Figures 1 and 3). The EQ-5D TTO increased from 0.62 preoperative to 0.91 at 2 years postoperative (Figure 2). There have been no failures due to dislocation reported in the current study population. Conclusion. Positive clinical outcomes for primary THA patients receiving a dual mobility system were seen in the current study, supporting their effectiveness. Regardless of the relative head size, all patients showed significant improvements postoperative with continued stability. As the primary risk factors for instability can include gender, age and increased comorbidities, the contemporary dual mobility system used in this study can address each patient's anatomic differences, improving quality of life and reducing the risk for dislocation, as well as the significant cost implications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 10 - 10
1 Jan 2016
Magra M Bhamra M
Full Access

Introduction. The rapidly expanding aging population in the UK are living longer than ever before, which is reflected by the rising number of relatively fit and healthy people that sustain fracture NOF (neck of femur). According to current NICE (National institute for health clinical excellence) guidelines a large proportion of fracture NOF patients meet the requirements to have a total hip arthroplasty (THA) for this injury. Dislocation rate of THA can be as high as 20% for patients with fracture NOF, which is a disastrous complication in these vulnerable patients. Numerous techniques have been adopted to minimise the risk of dislocation. The use of dual mobility (tripolar) acetabular components is one such strategy with a proven track record in the literature that is employed by surgeons at our institute. Objectives. To assess the dislocation rate in patients with fracture NOF treated with dual mobility (tripolar) THAs in our unit. Method. Retrospective study analyzing clinical notes and radiographs for dislocation rate, cup inclination, and limb length discrepancy. Results. A total of 17 patients with fracture NOF were treated with biarticular THAs during a 3½ year study period, with an average follow up of 22 months. Mean cup inclination was 42°, with mean limb length discrepancy of 3.4 mm. All patients mobilized comfortably without the use of walking aids. There have been no dislocations in our study group to date. Conclusions. This small series has excellent results, with a 0% dislocation rate, in treating fracture NOF patients with dual mobility (tripolar) acetabular cups. This is comparable to larger studies in the literature. Dual mobility cups provide a valuable option to decrease dislocation risk without increasing polyethylene wear rate. This is a safe, effective technique with a proven advantage to reduce dislocation risk in patients undergoing THA for fracture NOF


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
Masson B Lazennec J Fisher J Jenning L
Full Access

Dislocation remains one of the most common complications after total hip arthroplasty. Precise cup position appears to be a main factor as significant variations occur for frontal and sagittal acetabular tilt and anteversion according to sitting or standing positions. An innovative dual mobility ceramic-on-ceramic joint has been developed to solve these problems. The dual mobility ceramic-on-ceramic joint allows to move the rotation center much deeper inside the insert in order to increase the joint stability without negative impact on the ROM. This device revealed higher torques against subluxation in comparison to the classical Al-Al systems, even with 36mm head diameters, or 41 mm metal on metal bearings. The additional outer-bearing surface motion creates a second “adjustable acetabulum” due to the eccentration between the rotation center of the ball head and the rotation center of the bipolar head. This offset creates a resultant force that rotates the bipolar component. Using two bearing ceramic surfaces, the intermediate component acts as a “self adjusting cup”, dealing with the variations of pelvic orientation and acetabulum anteversion. The use of the dual mobility ceramic-on-ceramic joint seems an interesting alternative when facing difficult or unexpected situations for cup adjustment and cases with hip instability In a hip simulator in micro separation condition, the wear of the dual mobility ceramic-on-ceramic was less than 0.01 mm3/million cycles, the detection limit for wear measurement. There was no change in the surface roughness of the inserts. The design of the joint with the mobile ceramic head prevented edge loading of the head on the edge of the cup. No stripe wear was observed. Since 2006 more than 2000 dual mobility ceramic-on-ceramic systems have been implanted in Europe and clinical studies are conducted. The aim is to demonstrate the resistance to dislocation in primary total hip arthroplasty. Previous results over 125 patients in a prospective multicentric study show a Harris and Womac score equivalent to a standard hip prosthesis. No dislocations have been reported. No ceramic breakage or “squeaking” phenomenon appears. Dislocation and microseparation are major causes of failure for ceramic-ceramic hip prosthesis. When no ideal solution has been found for acetabular implantation, the dual mobility ceramic-on-ceramic device is a real alternative. The exclusive design of the bipolar head give the high resistance to wear and stripe wear to the dual mobility ceramic-on-ceramic joint. Reducing the risk of dislocation and reducing wear drastically are two advantages that can place the dual mobility ceramic-on-ceramic joint as the best choice in primary Total Hip Arthroplasty. Obviously this choice applies to recurrent dislocation also


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 15 - 15
1 Feb 2020
Coden G Moore T Hushmendy S Hepinstall M
Full Access

Introduction. Cementless acetabular fixation in total hip replacement (THA) is reliable and has been the fixation method of choice in the United States for decades. While revision for failure of osseointegration or early loosening is relatively rare, recurrent dislocation remains a leading cause of early revision. Novel acetabular implants and those offered by smaller companies often lack constrained or dual mobility liners, which may result in revision of well-fixed, well-positioned cups in cases of recurrent dislocation. The purpose of this study was to compare outcomes of THA with three different acetabular cups with differing fixation surfaces. One hydroxyapatite (HA)-coated cup (Trident, Stryker, Kalamazoo, MI, USA) offered dual mobility or constrained liner options. The other cups were a novel highly porous cup (Restoris PST, Stryker, Kalamazoo, MI, USA), and a Calcium Phosphate (CaP)-coated cup (Trinity, Corin, Cirincester, UK), neither of which offered dual mobility or constrained options at the time of investigation. Endpoints of interest were: clinical and radiographic outcomes including evidence of osseointegration, overall reoperations, reoperations for acetabular fixation failure, and reoperations to address dislocation in which a well-positioned shell was revised due to the lack of dual mobility or constrained options. Methods. A retrospective review of 370 acetabular cups implanted in 328 patients for THA by a single surgeon between February 2013 and June 2016 was performed. There were 100 Trident cups (Stryker, Kalamazoo, MI, USA), 105 Restoris PST Acetabular Cups (Stryker, Kalamazoo, MI, USA), and 165 Trinity Acetabular Cups (Corin, Cirincester, UK). Patient records were reviewed for post-operative complications, clinical outcomes scores and radiographic signs of acetabular osseointegration at minimum 1-year follow-up. Results. Despite differences in fixation surface, there was no difference in Harris Hip Scores at minimum 1-year follow-up and all three cohorts had 100% 1-year survivorship free of revision for failure of acetabular fixation. No cup showed signs of acetabular migration or loosening. Overall reoperation rates were low, ranging from 2.4%-3.8% (p=0.81). Femoral fractures and fixation problems were the most common cause of reoperation, occurring in nearly 2% of cases (n=7), but did not differ between groups. Reoperation for infection occurred in less than 1% of cases (n=3) and did not differ between groups. Revision for recurrent dislocation occurred in 1% of cases (n=4). All occurred with cups lacking dual mobility or constrained options. In all 4 cases the acetabular component was within the Lewinnek “safe zone” and deemed well positioned. In one revision, a lipped liner and longer head were used given concerns about the risk of acetabular component revision due to poor bone stock. In the remaining revisions, the well-positioned cup was revised to allow for the use of constrained or dual mobility implants. Conclusion. All acetabular revisions in our cohort were related to instability or infection, while none were related to acetabular fixation. Subsequent to this experience and analysis, we are wary to select any “new and improved” acetabular cup that does not have an option for a constrained or dual mobility liner, even when enabling technology makes us confident of safe-zone placement. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 51 - 51
1 Sep 2012
Dong N Nevelos J Thakore M Wang A Manley M Morris H
Full Access

Studies have indicated that the shallow Ultra High Molecular Weight Polyethylene (UHMWPE) acetabular socket or the socket with no head center inset can significantly increase the risk of hip joint dislocation. A previous study suggested the rim loading model in UHMWPE socket and metal femoral head can generate an intrinsic dislocating force component pushing head out of socket. Recently there has been renewed interest in dual mobility articulations due to the excellent stability. The outer bearing couple of the dual mobility articulations are comprised of the UHMWPE femoral head and metal acetabular socket while inner bearing is the locked conventional metal-poly construct. The acetabular socket is also featured by an anatomically shaped head inset wall. The purpose of this study was to theoretically compare the intrinsic dislocating force between conventional metal head on UHMWPE socket articulations and the poly head on metal socket articulations used in the dual mobility cup under direct loading. The 3-D finite element analysis (FEA) models were same as previous study but with different material combinations. Sixty FEA model assemblies were consisted of CoCr or UHMWPE femoral heads and their corresponding 10mm thick generic UHMWPE or CoCr acetabular sockets. There were five different head center insets of 0, 0.5, 1, 1.5 and 2mm for each of six bearing diameters of 22, 28, 32, 36, 40 and 44mm for either sockets. The joint load of 2,446N was applied through the femoral head center as the same fashion as previous study. The dislocating force generated by the joint loading force intrinsically pushed femoral head out of socket. FEA results were verified with two data points of physical testing of actual UHMWPE 28mm ID liners with 0 and 1.5mm head center insets. The highest dislocating force was 1,269N per 2,446N of rim loading force for the 0mm head center inset in poly cup with 22mm CoCr femoral head or the case of easiest to dislocate. The lowest dislocating force was 17.7N per 2,446N force for the 2mm inset in CoCr socket with 44mm poly head which therefore was the least likely to dislocate. The average dislocating force decreased by 78% from metal head- poly cup couple to poly head - metal cup couple. The dislocating force decreased as the head center inset and head size increased in all material cases. The study suggests that not only the head center inset and head size but also the bearing material combinations can affect the intrinsic dislocating force component. The dual mobility poly head and metal socket couple generates less intrinsic dislocating force in all comparable conditions for conventional metal head and poly socket couple. During the hip separation and vertical placement of the cup, all variables found in this study may play the important rules to maintain joint stability. The stiffened cup rim reduces the deformation and thus reduces the potential cup wedge effect to generate dislocating force. The result of this study should provide the guidance to improve acetabular cup design for better joint stability


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 86 - 86
1 Dec 2016
Philippot R Boyer B Neri T Farizon F
Full Access

The main causes of total hip arthroplasty (THA) revisions are loosening and instability. Use of a dual mobility cup cemented in a acetabular reconstruction cage device limits the risk of instability and does not hinder the acetabular fixation during THA revisions. The objective of this study was to analyse a retrospective series of 123 THA revisions with antiprotusio cage and dual mobility socket. Patients and methods: At a mean follow-up of 10 years, we analysed a continuous series of 123 revisions using a reconstruction device (87 Kerboull cross-plates, 12 Burch-Schneider antiprotrusio cages, 24 custom-fit Novae ARM cages associated in all cases with a Novae Stick dual mobility cup cemented into the cage). There were 80 women and 43 males. The mean age at the surgery was 69.2 years old. PMA score increased from 9.6 +/− 3.06 preoperatively to 14.2 +/− 2. at the follow-up. 9 early dislocations occurred and one late dislocation. At the last follow-up, the X-rays showed nine hardware failures, including one cross-plate fracture, one hook fracture, and one flange fracture. Analysis of the radiological position of the cup showed a mean lowering of 13 mm and a 7 mm lateralisation compared to the preoperative position. 2 revisions for aseptic loosening and 3 for septic loosening were performed. This study confirms the advantage of dual mobility cups during acetabular reconstruction cemented in antiprotrusio cages as a way to limit, without eliminating, the risk of dislocation. Therefore cemented fixation of dual mobility cups in cages appears to be a reliable short-term option


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 48 - 48
1 May 2014
Lachiewicz P
Full Access

Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal head is snap-fit into the large polyethylene. New components have been released for use in North America over the past three years. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to manage recurrent dislocation in the setting of revision total hip arthroplasty. Several small retrospective series have shown satisfactory results for this indication at short- to medium-term follow-up times. However, there are important concerns with polyethylene wear, late intra-prosthetic dislocation, and the lack of long-term follow-up data. These components are an important option in the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, and salvage of failed constrained liners. Until further long-term results are available, caution is advised in the routine use of dual mobility components in primary or revision total hip arthroplasty


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 147 - 147
1 Sep 2012
Wetzel R Puri L Stulberg SD
Full Access

Introduction. The published results of the use of a dual mobility cup to prevent instability in primary and revision total hip arthroplasty (THA) have established its efficacy. However, the monoblock, porous cobalt chromium cup design makes secure fixation difficult to achieve, limiting its use in patients with significant acetabular deformity or bone loss. Recently, a modular version of the dual mobility cup was introduced, consisting of a conventional porous shell with holes to allow augmented screw fixation, a highly polished modular metal liner, and a standard bipolar femoral head. The purpose of this report is to present its various indications, the surgical technique, and report our initial results. Methods. With IRB approval and FDA clearance, we implanted the modular dual mobility (MDM) cup in 15 patients undergoing primary and 5 patients undergoing revision THA deemed high risk for instability. Indications included septic and aseptic revision surgery, developmental hip dysplasia, avascular necrosis, recurrent dislocations, hemiarthroplasty conversion to THA, periprosthetic fracture, abductor insufficiency requiring augmented repair, and hypermobility from auto-immune inflammatory disease. Surgical Technique. The acetabulum is prepared in the standard fashion for implantation of a press-fit component. After implantation and possible screw augmentation, osteophytes are removed. A modular metal liner is manually inserted into the shell by lining up tines and then impacted into place. Concentric positioning must be confirmed. After standard femoral stem preparation, a dual-mobility head with multiple neck length options is easily assembled and placed on the trunion. The hip is then located and assessed for limb length, stability, and offset. Results. In the 15 primary THAs, successful implantation of the MDM construct was accomplished without issues related to the aforementioned technique. Adjunct screw fixation was utilized in 8 patients based on initial rim fit and bone quality. In all cases, the hip had to be manually dislocated because of increased stability. There were no peri-operative complications related to the MDM. In the 5 revision cases, insertion was possible in 4 of 5 patients. In 2 cases, the MDM liner was used in previously implanted, well-fixed and positioned metal acetabular shells compatible with the MDM insert. In 2 cases, the original metal cup was replaced with a shell compatible with the MDM insert. In the remaining patient, a failed hemi-resurfacing, the use of the MDM was abandoned because of impingement and excessive lengthening causing the inner trial head to disassociate from outer trial head. Discussion. The MDM cup offers a number of important features not available on the original dual mobility designs. These include the use of: 1) a conventional shell, inserted with familiar instrumentation; 2) a shell that can be used with either a highly cross-linked polyethylene liner or the modular polished metal liner; 3) conventional cancellous screws that makes possible augmented fixation in cases of significant bone loss or acetabular deformity. These features make possible the use of the dual mobility concept without the need to add to a hospital's cup inventory. The initial results in a variety of primary and revision conditions have been encouraging


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 413 - 413
1 Dec 2013
Garofolo G Snir N Park B Wolfson T Hamula M Marwin S
Full Access

Background. Revision surgery for failed metal-on-metal (MOM) total hip arthroplasty (THA) or hip resurfacing (HR) has been a challenge. Previous studies have reported high failure and complication rates, including dislocation, infection, aseptic loosening and lower patient satisfaction. Options for revision depend on the integrity and stability of the femoral and acetabular components. When both components fail, full revision is required; however, when the acetabular component remains well fixed and oriented, only the isolated femoral component revision can be performed. Dual mobility components can be utilized to match the size to the inner diameter of the metal cup. With the dual mobility implant, the morbidity and complications associated with cup revision are avoided while maintaining a natural femoral head size and potentially increasing range of motion and stability postoperatively compared to standard THA. Purpose. The aim of this study was to evaluate short- to mid-term results of revision THA after failed metal-on-metal THA or HR using the dual mobility device. Study Design. Retrospective case series with prospective follow-up. Methods. A cohort of consecutive patients who underwent revision THA for failed MOM THA or HR utilizing a dual mobility device with a minimum follow-up of a year was identified. Charts were retrospectively reviewed for surgical indications, comorbidities, concomitant procedures, cup size, inner head size, outer head size, and perioperative complications, including infection, dislocation, mechanical failure and reoperation. Visual analogue pain scale (VAS), modified Harris Hip Score (mHHS) and SF-12 questionnaires were collected prospectively to assess functional outcomes after THA revision with a dual mobility component. Results. Fifteen consecutive patients (16 hips) underwent revision surgery utilizing a dual mobility component. Six hips were indicated for failed metal-on-metal THA and 10 for failed HR. The mean follow-up was 20 months (range, 12–29 months) and the mean VAS scores decreased from 8.9 preoperatively to 3.8 postoperatively (p < 0.01). The mean mHHS score increased from 26.9 preoperatively to 57.8 postoperatively (p < 0.05). A statistically significant improvement in the mean SF-12 scores was also noted (p < 0.05). Complications consisted of two patients with residual chronic pain. No dislocations, fractures, or infections were observed. Conclusion. Single component revision THA for failed MOM THA or HR utilizing a dual mobility device is an effective and relatively simple procedure for a complex problem