header advert
Results 1 - 13 of 13
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 26 - 26
1 May 2012
Jones A Aarvold A New A Dunlop D Oreffo R
Full Access

AIM

Avascular necrosis (AVN) of the femoral head is a potentially debilitating disease of the hip in young adults. Impaction bone grafting (IBG) of morcellised fresh frozen allograft is used in a number of orthopaedic conditions. This study has examined the potential of skeletal stem cells (SSC) to augment the mechanical properties of impacted bone graft and we translate these findings into clinical practice.

STUDY DESIGN

We have examined the effect of SSC density on augmentation of bone formation. An in vitro model was developed to replicate the surgical IBG process. Plain allograft was used as the control, and the SSC's seeded at a density of 5×103, 5×104 and 2×105 cells per cc of allograft for the experimental groups. All samples were cultured for 2 weeks and mechanically tested to determine shear strength using the Mohr Coulomb failure curve. The approach was translated to 3 patients with early avascular necrosis (AVN) of the femoral head. The patient's bone marrow was concentrated in theatre using a centrifugation device and the concentrated fraction of SSC's were seeded onto milled allograft. The patient's necrotic bone was drilled, curetted and replaced with impacted allograft seeded with SSC's. Osteogenic potential of concentrated and unconcentrated marrow was simultaneously compared in vitro by colony forming unit assays.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 440 - 440
1 Nov 2011
Mootanah R Hillstrom H New A Imhauser C Walker R Cheah K Blanc E Mangeot S Daré C Mouton C Burton A Ali SA Dowell J
Full Access

14.1% of men & 22.8% of women over 45 years show symptoms of osteoarthritis OA of the knee [1]. Knee OA is usually associated with lower limb malalignment [2]; 50 of varus results in 70% −90% increase in compressive loading of the medial tibio-femoral compartment [3] and OA worsening over 18 months [4]. High Tibial Osteotomy (HTO) enables preservation of bone stock and soft tissue structures and could be an attractive option to younger patients who wish to return to high level activity. However, results of HTOs are unpredictable, which could be due to patient selection or surgical techniques. The long-term aim of this work is to develop a predictive tool to aid the surgeon in the selection of optimal HTO geometry for improved and more consistent surgical outcomes. The first step in achieving our longterm goal was to determine whether stress predictions at the tibio-femoral articulation were sensitive to simulated high tibial osteotomy, using finite element (FE) method.

CT and MRI data of a cadaveric knee were used to create geometrically accurate 3D models of the femur, tibia, fibula, menisci and cartilage and tendon of the knee joint, using the Mimics V12.11 commercially-available software (Materialise, Belgium). The Simulation module was used to register the bones and the soft tissues. The resulting STL files were exported to CATIA V5R18 pre-processor to generate surface meshes and create the corresponding 3D solid and FE models of the osseous and soft tissues from the STL cloud of points.

The Young’s moduli for cortical bone, cancellous bone, cartilages, menisci and ligaments were taken from literature as 17 GPa, 500 MPa, 12 MPa, 60 Mpa and 1.72 MPa respectively [5,6,7]. The Poisson’s ratios for osseous and soft tissues were taken as 0.3 and 0.45, respectively [8]. The nodes between the bones and the corresponding cartilages were merged and surface contact was applied between the cartilages. The distal ends of the tibia and fibula were fixed and a load of 2.1 KN, corresponding to 3 x body weight, was applied perpendicularly to the proximal end of the femur. Results of finite element analyses show a reduction of 67 % in principal stresses in the knee joint following an open wedge HTO surgery simulating 100 varus correction.

FE analysis results of this study show that HTO reduces stresses in specific regions of the knee, which are associated with OA progression [4]. Our future works include corroborating our results with controlled cadaveric experiments and implementing optimization techniques to predict optimum HTO geometries for patient-specific FE models.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 427 - 427
1 Nov 2011
Puthumanapully P Browne M New A
Full Access

Uncemented porous-coated total hip prostheses rely on osseointegration or bone ingrowth into the pores for a stable interface and long term fixation. One of the criteria for achieving this is good initial stability, with failure often being associated with migration and excessive micromotion. This has particularly been noted for long stem prostheses. To minimize micromotion and increase primary stability, a short stemmed implant ‘PROXIMA’(DePuy; Leeds, UK) with a prominent lateral flare was developed with the aim of providing a closer anatomical fit, more physiological loading and limiting bone resorption due to stress shielding. This study aims to simulate bone ingrowth and tissue differentiation around a well fixed porouscoated short stemmed implant using a mechanoregulatory algorithm and finite element analysis (FEA). Specific emphasis is made on the design of the implant and its effect on osseointegration.

An FE model of the proximal femur was generated using computer tomography (CT) scans. The PROXIMA was then implanted into the bone maintaining a high neck cut and adequate cancellous bone on the lateral side to accommodate the lateral flare and for osseointegration. A granulation tissue layer of 0.75mm was created around the implant corresponding to the thickness of the porous coating used. The mechanoregulatory hypothesis of Carter et al (J. Orthop, 1988) originally developed to explain fracture healing was used with selected modifications, most notably the addition of a quantitative module to the otherwise qualitative algorithm. The tendency of ossification in the original hypothesis was modified to simulate tissue differentiation to bone, cartilage or fibrous tissue. Normal walking and stair climbing loads were used for a specified number of cycles reflecting typical patient activity post surgery.

The majority of the tissue type predicted to be formed, simulating a month in vivo, is fibrous and indicates a weak interface proximally after this period. The stronger tissues, bone and cartilage occupy the mid-lower regions, indicating a strong interface distally. This can be explained by the unique lateral flare that provides extra stability to the distal regions of the implant, especially on the lateral side. The percentage of bone ingrown around the implant at different stages is also important and there was a significant rise from 15% after 10 cycles to about 30% after 30 cycles, simulating a month in vivo. It was also noted that initial bone formation was very high, even after a few cycles, which leads to a stronger interface early on. Fibrous tissue occupied around 45% at almost all stages and did not vary considerably.

Cartilage however, was replaced by bone as tissue differentiation occurred, reducing from about 30% after 10 cycles to 20% after 30 cycles. This further indicates the trend of tissue ossification through the regions of stronger tissues, gradually proceeding in the direction of the weaker tissues.

The unique lateral flare design and the seating of the implant entirely in the cancellous bed without any diaphyseal fixation provides contrasting results in terms of bone ingrowth around the implant. The lateral flare minimises micromotion and provides better stress distribution at the interface under the region. This accounts for a large percentage of the mid to distal regions under the flare being covered with either bone or cartilage. From the predictions of the algorithm, the significant lateral flare of the PROXIMA helps in stabilizing the implant and provides better osseointegration in the distal regions around the implant.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 400 - 400
1 Nov 2011
Manders C New A Taylor M
Full Access

During hip replacement surgery the hip centre may become offset from its natural position and it is important to investigate the effect of this on the musculoskeletal system. Johnston et al [1] found that medialisation of the hip centre reduced the hip joint moment, hip contact and abductor force using a musculoskeletal model with hip centre displacements in 10mm increments. More recently an in vivo study found that the range of displacement of the hip centre of rotation was from 4.4mm laterally to 19.1mm medially [2]. To investigate the hypothesis that medialisation of the hip centre reduces the hip contact force, a musculoskeletal model of a single gait cycle was analysed using three scenarios with the hip in the neutral position and with it displaced by 10mm medially and laterally.

The lower limb musculoskeletal model included 162 Hill type muscle units in each leg and uses a muscle recruitment criterion based on minimising the squared muscle activities, where the muscle activity is the muscle force divided by the muscle’s maximum potential force. The maximum potential force is affected by the length of the muscle unit and the muscle’s tendons each are calibrated to give the correct length in its neutral position. The same gait analysis data from one normal walking cycle was applied to each modelled scenario and the resultant hip joint moment, hip contact force and muscle forces were calculated. The abductor muscles forces were summed and the peak force at heel strike reported. The peak resultant hip moments and the peak hip contact forces at heel strike are also reported and compared between the different scenarios. The scenarios were each run twice, once with the muscle tendon lengths calibrated for the hip in the altered position and subsequently with the muscle tendon lengths maintained from the neutral hip position.

For the medialising of the femoral head, the hip contact force and the peak abductor force were reduced by 4% and 2% respectively compared the neutral position. However if the tendon lengths of the muscles were maintained from the neutral position, the medial displacement model had a 3% higher hip contact force and a 6% larger abductor force than calculated for the neutral position. Although the peak resultant hip joint moment increases with a lateral displacement by 3%, the peak abductor force and peak hip contact force have a reduced force of 3% compared to the neutral hip. Using the muscle tendon lengths calibrated for the hip in the original position produces a 3% increase in the hip contact and abductor force for the lateralised femoral head.

This study has shown that the hip contact force and abductor force depend on the calibration of the muscle’s tendon lengths. Using the model with muscles calibrated for the altered hip centre produced the hypothesed reduction in hip contact force. However, maintaining the tendon lengths from the neutral position had a significant effect the calculated forces. The hip contact and abductor forces increased in the models with the original tendon lengths and the effect was also found to be greater when the hip was displaced medially.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 307 - 307
1 Jul 2011
Jones A Foong T New A Bolland B Dunlop D Oreffo R
Full Access

Introduction: One of the main factors in the success of impaction bone grafting (IBG) in revision hip surgery is its ability to resist shear and to form a stable construct. Bone marrow contains multipotent skeletal stem cells and we propose that in combination with allograft will produce a living composite with biological and mechanical potential. In this study we looked at whether coating of the allograft with type 1 collagen followed by seeding with human bone marrow stromal cells (hBMSC) would enhance the grafts mechanical and biological properties.

Methods: A control group of plain allograft and three experimental groups where used to determine the effects that collagen and hBMSC have on IBG. The samples where impacted in standardised fashion previously validated to replicate femoral IBG, and cultured in vitro for 2 weeks. The samples then underwent mechanical shear testing and biochemical analysis for DNA content and Osteogenic activity.

Results: Collagen coating of the allograft prior to seeding with hBMSC significantly enhanced the mechanical properties of the construct compared to the ‘gold standard’ of plain allograft with a 22% increase in shear strength (p=0.002). The collagen coated group also showed increased osteogenic differentiation of the stromal cells (Alkaline Phospatase specific activity: 124 +/− 18.6 vs 54.6 +/− 9.6 nM pNPP/Hr/ngDNA p= < 0.01).

Discussion: This study has shown a role in the improvement of the biomechanical properties of IBG by coating with collagen and seeding with hBMSC. Collagen coating of IBG is a simple process and translation of the technique into the theatre setting feasible. The improvement in shear strength and cohesion could lead to earlier weight bearing for the patients and allow quicker recovery. The therapeutic implications of such composites auger well for orthopaedic applications. We are currently strengthening the above findings with an in vivo study.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 68 - 69
1 Jan 2011
Jones A Bolland B New A Oreffo R Dunlop D
Full Access

Introduction: Revision hip surgery is predicted to rise significantly over the coming decades. There is therefore likely to be an increasing need to overcome the large bone loss and cavitatory defects encountered in failed primary hip replacements. Impaction bone grafting (IBG) is a recognised technique for replacing lost bone stock. Achieving optimal graft impaction is a difficult surgical skill with a significant learning curve, balancing the need to achieve sufficient compaction to provide primary stability versus the need to keep impaction forces to a minimum to prevent iatrogenic fracture. In this study we have developed a revision acetabular model to test the hypothesis that the use of vibration and drainage with a new custom made perforated tamp could reduce the peak stresses imparted to the acetabulum during the impaction process and also improve the reliability and reproducibility of the impaction technique

Methods: Composite Sawbone hemi Pelvis models were used, with identical contained cavitatory defects created (Paprosky Type 2a). A strain gauge was attached to the medial wall of each hemi pelvis. A custom set of IBG tamps were made, and coupled a pneumatic hammer used to generate the vibrations. A standard impaction technique was used for the control group and the new vibration impaction for the experimental group. The cavity was progressively filled with morsellised allograft in 6 set steps for both groups with strain gauge readings taken during all impaction to monitor peak stresses. A standard Exeter Contemporary cup was then cemented into the graft bed for both groups. The models were mechanically loaded according to the protocol developed by Westphal et al at the angle of the joint reaction force during heel strike for a total of 50 000 cycles. 3D assessment of any micro motion post mechanical testing and degree of graft compaction was done with high resolution micro CT.

Results: Vibration impaction lead to a significant reduction in the peak stresses during the impaction process throughout the 6 steps (e.g. Step 1: 34.6 vs 110.8 MPa p=0.03). There was also far less variability in the peak stresses in the vibration group compared to standard impaction both in sequential impactions by the same surgeon and between different surgeons. One medial wall fracture occurred in the control group only. There was no difference in the degree of graft compaction or in the subsidence of the implant post cyclical loading.

Conclusion: Impaction bone grafting can be a difficult surgical skill with a significant learning curve. We believe that this new technique of applying vibration coupled with drainage to the IBG process in the acetabulum can reduce the risk of intraoperative fracture whilst achieving good graft compaction and implant stability. This technique therefore has the potential to widen the ‘safety margins’ of IBG and reduce the learning curve allowing more widespread adoption of the technique for replacing lost bone stock.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 69 - 69
1 Jan 2011
Jones A Foong T Bolland B New A Dunlop D Oreffo R
Full Access

Introduction: Impaction bone grafting (IBG) using fresh frozen morsellised allograft is considered by many as the method of choice for replacing lost bone stock encountered during revision hip surgery. Bone marrow contains multipotent skeletal stem cells which have the potential to differentiate down a number of different cell lineages including osteoblasts, chondrocytes and adipocytes. In IBG it is desirable for as many as possible to go on to form bone rather than fibrous tissue to form a solid osseous construct. Whilst it is possible to push cells down the osteogenic lineage in vitro, some of these methods (e.g. the addition of Dexamethasone) are not translatable to clinical practice due to undesirable side effects. In this study we test the hypothesis that by coating the allograft with type 1 Collagen prior to seeding with human bone marrow stromal cells (hBMSC), the cellular adhesion and proliferation down an osteogenic lineage can be increased, leading to improved mechanical and biological properties of the IBG composite.

Methods: A control group of plain allograft and three experimental groups where used to determine the effects that collagen and hBMSC have on IBG (both individually and in combination). The samples where impacted in standardised fashion previously validated to replicate Femoral IBG, and cultured in vitro for 2 weeks. The samples then underwent mechanical shear testing giving a family of stress strain curves for each group, from which a Mohr coulomb failure curve can be plotted. Using the Mohr Coulomb failure equation τ = σ tanΦ + c, the shear strength (τ), Internal friction angle (tanΦ) and inter particulate cohesion (c) can then be calculated. Biochemical analysis was also performed for DNA content and Osteogenic activity.

Results: Mechanical shear testing demonstrated a significant improvement (p=0.002) in the grafts ability to resist shear with the coating of Collagen and seeding with hBMSC (245 vs 299 kPa) as well as improved cohesion between the bone graft particles (46 vs 144 kPa). Regression analysis of the shear strength showed a linear increase with compressive stress (R2 > 0.98) for all groups, indicating that the grafts satisfied the Mohr Coulomb failure law. In the two groups seeded with cells, the collagen coated group also showed increased osteogenic cell activity compared to the plain allograft.

Conclusion: This study has shown a role in the improvement of the mechanical and biological properties of IBG coated with type 1 Collagen and seeded with hBMSC. Collagen coating of IBG is a facile process and translation of the technique into the theatre setting feasible. The improvement in shear strength and cohesion could lead to earlier weight bearing for the patients and allow quicker recovery. The therapeutic implications of such composites auger well for orthopaedic applications. We are currently strengthening the above findings with an in vivo study.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 398 - 399
1 Jul 2010
Jones A New A Bolland B Oreffo R Dunlop D
Full Access

Introduction: Impaction bone grafting (IBG) for revision hip surgery can be a difficult surgical skill with a fine line between construct failure from insufficient compaction and intraoperative fracture from high impaction forces. Following on from our experience in the femur, in this study we used an acetabular model to test the hypothesis that the use of vibration for IBG could reduce the peak stresses thus reducing the intraoperative fracture risk and also improve the reliability and reproducibility of the impaction technique.

Methods: Revision hemi pelvis models were made (Pra-prosky Type 2a). A standard impaction technique was used for the control group, and the impactor tamps were coupled with a pneumatic hammer for the vibration group. The cavity was filled in 6 set steps with strain gauge readings taken throughout. The pelvis construct was then mechanically loaded. Graft compaction and micro motion post mechanical testing was assessed with micro CT.

Results: Vibration impaction led to a significant reduction (p=0.03) in the peak stresses during the impaction process. There was also significantly less variability in peak stresses for the vibration group compared to standard, both in sequential impactions by the same surgeon and between different surgeons. One medial wall fracture occurred in the control group only, similar to fractures encountered in the clinical situation. There was no significant difference in the degree of graft compaction or in the subsidence of the cup.

Discussion: We believe that this new technique of applying vibration to the IBG process can reduce the risk of intraoperative fracture whilst achieving good graft compaction and implant stability. This technique therefore has the potential to widen the ‘safety margins’ of IBG and reduce the learning curve allowing more widespread adoption of the technique for replacing lost bone stock.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 399 - 399
1 Jul 2010
Jones A Foong T New A Bolland B Dunlop D Oreffo R
Full Access

Introduction: One of the main factors in the success of impaction bone grafting (IBG) in revision hip surgery is its ability to resist shear and to form a stable construct. Bone marrow contains multipotent skeletal stem cells and we propose that in combination with allograft will produce a living composite with biological and mechanical potential. In this study we looked at whether coating of the allograft with type 1 collagen followed by seeding with human bone marrow stromal cells (hBMSC) would enhance the grafts mechanical and biological properties.

Methods: A control group of plain allograft and three experimental groups where used to determine the effects that collagen and hBMSC have on IBG. The samples where impacted in standardised fashion previously validated to replicate femoral IBG, and cultured in vitro for 2 weeks. The samples then underwent mechanical shear testing and biochemical analysis for DNA content and Osteogenic activity.

Results: In isolation, both Collagen coating and seeding with hBMSC significantly enhanced the mechanical properties of the construct compared to the ‘gold standard’ of plain allograft. This was further enhanced (p=0.002) when the two processes are combined both with shear strength (245 vs. 299 kPa) and cohesion between the graft particles (46 vs. 144 kPa). The collagen coated group also showed increased osteogenic cell proliferation.

Discussion: This study has shown a role in the improvement of the mechanical properties of IBG coated with collagen and seeded with hBMSC. Collagen coating of IBG is a simple process and translation of the technique into the theatre setting feasible. The improvement in shear strength and cohesion could lead to earlier weight bearing for the patients and allow quicker recovery. The therapeutic implications of such composites auger well for orthopaedic applications. We are currently strengthening the above findings with an in vivo study.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 170 - 170
1 Mar 2009
Bolland B Partridge K Tilley S New A Dunlop D Oreffo R
Full Access

Background: The use of fresh morsellised allograft in impaction bone grafting for revision hip surgery remains the gold standard. Bone marrow contains osteogenic progenitor cells that arise from multipotent mesenchymal stem cells and we propose that in combination with allograft will produce a living composite with biological and mechanical potential. This study aimed to determine if human bone marrow stromal cells (HBMSC) seeded onto highly washed morsellised allograft could survive the impaction process, differentiate and proliferate along the osteogenic lineage and confer biomechanical advantage in comparison to impacted allograft alone

Methods: HBMSC were isolated and culture expanded in vitro under osteogenic conditions. Cells were seeded onto prepared morsellised allograft and impacted with a force equivalent to a standard femoral impaction (474J/m2). Samples were incubated for either two or four week periods under osteogenic conditions and analysed for cell viability, histology, immunohistochemistry, and biochemical analysis of cell number and osteogenic enzyme activity. Mechanical shear testing, using a Cam shear tester was performed, under three physiological compressive stresses (50N, 150N, 250N) from which the shear strength, internal friction angle and particle interlocking values were derived.

Results: Cell viability of HBMSC post impaction, was confirmed with cell tracker green staining, a marker of viable cells, and observed throughout all samples. There was a significant increase in DNA content and specific alkaline phosphatase activity compared to impacted seeded allograft samples. Immunohistochemical staining for type I collagen confirmed cell differentiation along the osteogenic lineage. Mechanical shear testing demonstrated a statistical significant increase in shear strength and interparticulate cohesion in the allograft/hBMSC group over allograft alone at 2 and 4 week intervals (p< 0.001).

Conclusion: HBMSC seeded onto allograft resulted in the formation of a living composite capable of withstanding the forces equivalent to a standard femoral impaction. HBMSC under osteogenic conditions were observed to differentiate and proliferate along the osteogenic lineage. In addition, an allograft/HBMSC living composite confers a biomechanical advantage over allograft alone These changes resulting in enhancement of biological and mechanical properties of bone graft within impaction bone grafting have implications for translation and future change in orthopaedic practice in an increasing ageing population.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 368 - 368
1 Jul 2008
Bolland B Partridge K New A Dunlop D Oreffo R
Full Access

The use of fresh morsellised allograft in impaction bone grafting for revision hip surgery remains the gold standard. Bone marrow contains osteogenic progenitor cells that arise from multipotent mesenchymal stem cells and we propose that in combination with allograft will produce a living composite with biological and mechanical potential. This study aimed to determine if human bone marrow stromal cells (HBMSC) seeded onto highly washed morsellised allograft could survive the impaction process, differentiate and proliferate along the osteogenic lineage and confer biomechanical advantage in comparison to impacted allograft alone. Future work into the development of a bioreactor is planned for the potential safe translation of such a technique into clinical practice.

Methods: HBMSC were isolated and culture expanded in vitro under osteogenic conditions. Cells were seeded onto prepared morsellised allograft and impacted with a force equivalent to a standard femoral impaction (474J/m2). Samples were incubated for either two or four week periods under osteogenic conditions and analysed for cell viability, histology, immunocytochemistry, and biochemical analysis of cell number and osteogenic enzyme activity. Mechanical shear testing, using a Cam shear tester was performed, under three physiological compressive stresses (50N, 150N, 250N) from which the shear strength, internal friction angle and particle interlocking values were derived.

Results: HBMSC survival post impaction, as evidenced by cell tracker green staining, was seen throughout the samples. There was a significant increase in DNA content (P< 0.05) and specific alkaline phosphatase activity (P< 0.05) compared to impacted seeded allograft samples. Immunocytochemistry staining for type I collagen confirmed cell differentiation along the osteogenic lineage. There was no statistical difference in the shear strength, internal friction angle and particulate cohesion between the two groups at 2 and 4 weeks.

Conclusion: HBMSC seeded onto allograft resulted in the formation of a living composite capable of withstanding the forces equivalent to a standard femoral impaction and, under osteogenic conditions, differentiate and proliferate along the osteogenic lineage. In addition, there was no reduction in aggregate shear strength and longer term studies are warranted to examine the biomechanical advantage of a living composite. The therapeutic implications of such composites auger well for orthopaedic applications.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 374 - 374
1 Jul 2008
Bolland B New A Oreffo R Dunlop D
Full Access

Background: Impaction bone-grafting in revision hip surgery generates high forces that may be transmitted through the graft to the femoral cortex, generating high surface strains and a concomitant risk of femoral fracture. Concern of inducing fracture may lead to under-compaction of the graft, with subsequent risk of implant migration. Vibration is commonly used in civil engineering applications to increase aggregate compressive and shear strengths. We have therefore examined the hypotheses that vibration-assisted graft compaction would (a) increase graft compaction compared with the standard femoral impaction grafting technique and subsequently reduce prosthesis migration and (b) reduce femoral hoop strains in the production of graft of a given density and mechanical properties.

Method: Physiological composite femurs were adapted to represent femurs encountered in revision hip surgery by widening of the internal diameter and thinning of the outer shell. In the control group, revision with the standard Exeter technique was simulated using highly washed morcellised bone graft from fresh-frozen human femoral heads. In the study group, vibration-assisted graft compaction was used. The femurs were mounted on a 5kN capacity load cell to measure the total force imparted during graft impaction. Strain gauges placed at the medial calcar and midshaft, measured hoop strains generated during the impaction process. On completion of graft impaction, an Exeter stem was cemented in place. Implant subsidence under physiological cyclic loading (5x 105 cycles) and graft density using micro CT were measured after compaction.

Results: There were no significant differences between the two groups in the peak forces (3.8-4.1kN) imparted during the impaction process. Similar peak hoop strains were observed in the both groups (1.2-1.4%). However a greater graft density was seen in the vibration group with minimal implant subsidence under cyclic loading.

Conclusion: The use of vibration during the impaction process allowed improved graft compaction to be achieved without increasing hoop strains in the femoral cortex. This has implications in preventing failure from under impaction without increasing the risk of fracture. Furthermore, this analysis is applicable to the study of novel synthetic grafts / mixtures in the impaction process for orthopaedic application.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 383 - 383
1 Oct 2006
Kuiper J Prathapkumar K New A Richardson J
Full Access

Introduction: Many designs exist for the femoral component of cemented total hip arthoplasty, but cemented acetabular cups are largely similar. All are essentially hemispheres, made of polyethylene. An important factor determining survival time of cemented implants is cement penetration into the surrounding bone. To ensure sufficient penetration, many surgeons remove the smooth subchondral bone in the acetabulum and drill anchoring holes. This may however weaken the bone. Larger cement pressure during setting will improve penetration. For an acetabular cup, fixation at the rim is most important to prevent loosening, and therefore cement pressure should be high at the rim. A spherical geometry is not ideal to ensure high rim cement pressures. Based on a computer model of cement pressure generation during cup insertion, we designed an improved geometry to ensure higher rim pressures. The aim of this study is to compare the fixation strength of this new design to a conventional design. The effect of the design change will be compared with that of drilling anchoring holes and removing subchondral bone.

Methods: From a larger stock of young bovine acetabula, 14 similarly sized specimens were chosen. Twelve were prepared for a factorial experiment with three factors, based on three cup designs (Ogee either with or without flange, DePuy, Leeds, and the alternative design), preservation or removal of subchondral bone, and presence or absence of anchoring holes. Depth, diameter and position of the anchoring holes were chosen to optimise fixation strength. Two were prepared for replicates of two experiments with the new design, both with sub-chondral bone removed. The order of the experiments was randomised. CMW-3 cement (CMW-DePuy, UK) was hand-mixed for one minute. After four minutes, it was packed in the acetabulum and pressurised for one minute. Then a cup was inserted and manual force applied until setting of the cement. Next, acetabulum and cup were mounted in a materials testing machine and torque applied to the cup until gross failure. Applied force and displacement were sampled into a computer, and used to determine maximum torque.

Results and Discussion: Analysis was done in two steps. First, two-way ANOVA of main effects plus first order interactions was performed. Anchoring holes significantly increased strength (41±8 vs. 114±9 Nm; p=0.004, mean±SEM). No significant effect of reaming or cup design was found. For all experiments, the conventional cups with or without flange behaved almost identical. In step two, these two variations were combined into one “conventional” group, and three-way ANOVA with interactions was performed. Significant interaction between all three factors was found (p=0.02). This indicates that one unique combination (new cup design in acetabula with subchondral bone removed and without anchoring holes) achieved a high average strength. Under these circumstances, the fixation strength of the new design (114±9 Nm) was equal to the overall average achieved with anchoring holes. On average, the new design also had significantly larger fixation strength than a conventional spherical design (95±5 vs. 69±4 Nm; p=0.009). These results justify further studies.