header advert
Results 1 - 29 of 29
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1686 - 1694
1 Nov 2021
Yang H Kwak W Kang SJ Song E Seon J

Aims

To determine the relationship between articular cartilage status and clinical outcomes after medial opening-wedge high tibial osteotomy (MOHTO) for medial compartmental knee osteoarthritis at intermediate follow-up.

Methods

We reviewed 155 patients (155 knees) who underwent MOHTO from January 2008 to December 2016 followed by second-look arthroscopy with a mean 5.3-year follow-up (2.0 to 11.7). Arthroscopic findings were assessed according to the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) grading system. Patients were divided into two groups based on the presence of normal or nearly normal quality cartilage in the medial femoral condyle: good (second-look arthroscopic) status (ICRS grade I or II; n = 70), and poor (second-look arthroscopic) status (ICRS grade III or IV; n = 85) groups at the time of second-look arthroscopy. Clinical outcomes were assessed using the International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and 36-Item Short Form survey.


Background

There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty.

Methods

Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 34 - 34
1 Dec 2017
Song E Seon J Lee D Yeo J
Full Access

Total knee arthroplasty using navigation system is known to be more effective than conventional methods in achieving more accurate bone resection and neutral alignment. Mobile bearing is also known to reduce wear and automatically correct rotational mal-alignment of the tibia but the long-term follow-up results of more than 10 years are extremely rare. The purpose of this study is to investigate the results of clinical and radiologic long-term follow-up and complications of total knee arthroplasty using navigation and multi-directional mobile bearing.

From 2003 to 2006, a total of 111 navigation TKAs using multi-directional mobile bearing design were carried out and reviewed retrospectively. TKAs were performed by two experienced surgeons at one institute. Of the 111 patients, 102 were women and 9 were men. The mean duration of follow-up was 11.4 ± 1.0 years (range, 10.1 to 14.08 years). Clinical outcomes were evaluated in terms of Knee Society Score, Hospital for Special Surgery score, Western Ontario and McMaster University (WOMAC) score, range of motion and complications. Long-term radiological outcomes and survival rates were evaluated at least 10 years.

Average preoperative HSS score was 66.5 ± 9.8 and KSS pain and function score were 25.0 ± 11.8 and 44.5 ± 12.3, respectively. Scores improved to 94.1 ± 8.2, 46.6 ± 11.6 and 88.2 ± 14.6 at the last follow up, respectively. Mean preoperative WOMAC scores of 75.8 ± 16.5 improved to 13.8 ± 16.0 at last follow-up. Five knees required re-operation, two for liner breakage for liner wear, one for distal femoral fracture and one for infection. The estimated 10-year prosthesis survival rates for any reason and for prosthesis-related problems were 95.5% and 97.4%, respectively. TKAs using each techniques resulted in similar good clinical outcomes and post-operative leg alignments. Robotic and navigation TKA appeared to reduce the number of postoperative leg alignment outliers and revision rate compared to conventional TKA.


Background

There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty.

Methods

Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 17 - 17
1 Feb 2016
Song E Seon J Lee S Seol Y
Full Access

Among many factors that influence the outcomes of Total Knee Arthroplasties (TKAs), the mechanical alignment has played major roles for the success of TKA, the survival rates of the implants, and patient functionality. Most, but not all, studies have shown that alignment of the mechanical axis in the coronal plane within a range of 3° varus/valgus is associated with improved long-term function and increased survival rates. Robot-assisted TKA has been developed to improve improves the accuracy and precision of component implantation and mechanical axis (MA) alignment. We hypothesised that robot-assisted TKA would lead to a more accurate leg alignment and component implantation, and thus, improve radiological and clinical outcomes.

Between January 2003 and December 2004, a total of 98 primary TKA procedures were compared: 49 using a robotic-assisted procedure and 49 using conventional manual techniques. The cohorts were followed for 121.2 and 119.5 months on average, respectively. Radiographic assessments of the patients were performed preoperatively and at final follow-up and made according to the Knee Society Roentgenographic Evaluation System (KSRES) which included measurements of the coronal mechanical axis and sagittal and coronal inclinations of femoral and tibial components. The radiographic measurements were made using a PACS (Picture Archiving and Communication System). Clinical assessments were performed preoperatively, and at a final follow-up date that was a minimum of postoperative nine years. The clinical results included ranges of motion (ROM), Hospital for Special Surgery (HSS) scores, Western Ontario and McMaster University (WOMAC) scores (for pain and function).

The radiographic results showed no statistical differences when comparing the means of the two groups. When considering outliers (defined as error ≥ ±3°) for the mechanical axis, femoral coronal and sagittal inclinations, and tibial coronal and sagittal inclinations, the ROBODOC group had zero outliers for all measurements except for one in tibial sagittal inclination. On the other hand, the conventional group had 12 outliers for mechanical axis, 2 for femoral coronal inclination, 3 for femoral sagittal inclination, 3 for tibial coronal inclination, and 4 for tibial sagittal inclination. However, there were no statistically significant differences between groups for ROM, HSS, or WOMAC scores at the final follow-up.

The results of this study support previous work and demonstrate that the ROBODOC-assisted implantation of TKA results in better radiographic outcomes and better ligament balance with equivalent safety when compared to conventional TKA at a minimum follow-up of nine years.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 153 - 153
1 Jan 2016
Kim H Seon J Song E Seol J
Full Access

Background

Navigation systems that increase alignment accuracies of the lower limbs have been applied widely in total knee arthroplasty and are currently being adopted for minimally invasive UKA (MIS UKA) with good alignment results. There is little debate that when compared with total knee arthroplasty (TKA), UKA is less invasive, causes less morbidity, better reproduces kinematics, and therefore offers quicker recovery, better range of movement and more physiologic function.

However, despite improved alignment accuracies, advantages of use of navigation system in UKA in clinical outcomes and survivals are still debatable. To the best of our knowledge, no reports are available on the long-term results after UKA performing using a navigation system. The purpose of this prospective study was to compare the radiological, clinical, and survival outcomes of UKA that performed using the navigation system and using the conventional technique at average 8 years follows up.

Methods

Between January 2003 and December 2005, Total of 98 UKAs were enrolled for this study, 56 UKAs in the navigation group and 42 UKAs in conventional group were included in this study after a average 8 years follow-up. At the final follow up, the radiological measurements with regard to the mechanical axis, the inclination of the femoral and tibial components, and radiolucent line or loosening were evaluated and compared between two groups. The clinical evaluations were performed using range of motion, Western Ontario and McMaster Arthritis index (WOMAC) scores and Knee Society (KS) score.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 23 - 23
1 Jan 2016
Song E Seon J Kim H
Full Access

Background

The most important factors affecting the outcome of a TKA are restoring the normal mechanical axis and achieving optimum soft tissue balance. In the measured resection technique may have accompanying problems in imbalanced patients. Secondly individual variability of the reference points may affect the alignment of the bony cuts and thereby the alignment of the implant. The gap balance technique blends the soft tissue balance with the bony cuts and tries to overcome this problem. However proponents of the measured resection technique argue that no consideration is given to the coronal and rotational alignment of the femoral component in the gap balance technique. The ligament specific navigation assisted gap balance technique, tries to overcome these fallacies. The lateral ligaments and soft tissues act as a reference against which the medial soft tissues are balanced. Thus the reference becomes individualized and any variability is taken care of. Navigation assistance ensures control of the coronal and rotational alignment of the femoral component. The aim of the present study was two fold: - To describe our methodology of ligament specific navigation assisted gap balance technique and analyze the clinico-radiological outcome of our technique over an eight year follow up.

Methods

79 patients (98 knees) with primary osteoarthritis with varus deformity and flexion deformity of were followed up for eight year duration. After obtaining an optimum gap balance and neutral axis in extension, tibial osteotomy perpendicular to the mechanical axis in both the coronal and sagittal planes was done. At this stage joint gaps were distracted in extension and 90â�° flexion. Based on the gap values patients were classified into three groups. Group 1 was the balanced group with flexion extension gap difference ≤2mm, group 2 was the flexion tight group with flexion gap smaller than the extension gap by ≥3mm and group 3 was the extension tight group with the extension gap smaller than the flexion gap by ≥3mm. Thereafter flexion gap balance was achieved only by adjusting the cutting levels of the distal and posterior condyles and adjusting the axial rotation of the femoral component without any further soft tissue release. Intraoperative navigation readings were recorded. All patients were followed clinico-radiologically at 1, 4, and 8 years post operatively.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 22 - 22
1 Jan 2016
Song E Seon J Seol J
Full Access

Background

Stability of total knee arthroplasty (TKA) is dependent on correct and precise rotation of the femoral component. Multiple differing surgical techniques are currently utilized to perform total knee arthroplasty. Accurate implant position have been cited as the most important factors of successful TKA. There are two techniques of achieving soft gap balancing in TKA; a measured resection technique and a balanced gap technique. Debate still exists on the choice of surgical technique to achieve the optimal soft tissue balance with opinions divided between the measured resection technique and the gap balance technique. In the measured resection technique, the bone resection depends on size of the prosthesis and is referenced to fixed anatomical landmarks. This technique however may have accompanying problems in imbalanced patients. Prediction of gap balancing technique, tries to overcome these fallacies. Our aim in this study was twofold: 1) To describe our methodology of ROBOTIC TKA using prediction of gap balancing technique. 2) To analyze the clinico-radiological outcome our technique comparison of meseaured resection ROBOTIC TKA after 1year.

Methods

Patients that underwent primary TKA using a robotic system were included for this study. Only patients with a diagnosis of primary degenerative osteoarthritis with varus deformity and flexion deformity of were included in this study. Patients with valgus deformity, secondary arthritis, inflammatory arthritis, and severe varus/flexion deformity were excluded. Three hundred ten patients (319 knees) who underwent ROBOTIC TKA using measured resection technique from 2004 – 2009. Two hundred twenty (212 knees) who underwent ROBOTIC TKA using prediction of gap balancing technique from 2010 – 2012. Clinical outcomes including KS and WOMAC scores, and ranges of motion and radiological outcomes including mechanical axis, prosthesis alignments, flexion varus/valgus stabilities were compared after 1year.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 76 - 76
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

This prospective study was undertaken to compare the clinical and radiological results and the in vivo stabilities of anteromedial (AM) and posterolateral (PL) bundle augmentation during anterior cruciate ligament (ACL) reconstruction.

Forty-two ACL partial tears that underwent isolated bundle augmentation (22 AM and 20 PL bundles) were evaluated with a minimum follow-up of 1 year. For in vivo intraoperative stability testing, anteroposterior and external/internal rotation stabilities were measured at 0, 30, 60, and 90° of flexion using a navigation system. Ranges of motion, Lachman and pivot shift test results, Tegner activity scores, and Lysholm knee scores of the AM and PL bundle groups were compared. In addition, Telos arthrometer determined stabilities were compared.

In-vivo intraoperative stability testing showed that mean preoperative anterior translation at 30° of flexion was greater in the AM group (8.7 vs. 6.5, p = 0.04), whereas mean rotational amount was larger in the PL group (by 2.9 at 0° and 3.6 at 30° of flexion). After ACL reconstruction, no significant differences were found between the two groups in terms of anterior and rotational stabilities at any flexion angle. Furthermore, clinical outcomes in the two groups were not significantly different. Lachman and pivot shift test results and instrumented laxity findings were similar for the two groups at final follow up.

In this study, the authors carefully preserved the remnant injured ACL, and achieved excellent anterior stability recoveries and good rotatory stabilities. No significant intergroup difference was found in terms of intraoperative stability or clinical parameters after ACL reconstruction.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 77 - 77
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

The purpose of this study were to evaluate early intra-operative experiences of a custom-fit total knee arthroplasty (TKA) system and to determine the precision of long leg alignment and component placement achieved using this system.

Seventeen patients underwent sagittal MRI of an arthritic knee to determine component placement for TKA from October 2010 and March 2011. Cutting guides were machined to control all intra-operative cuts, and cutting guide placements were recorded by navigation system. Radiographic parameters regarding mechanical axis changes, and inclinations of the femoral and tibial components were measured. Outcome was defined as “excellent” when values of each parameters were within ± 2°, as “acceptable” when within ± 3°, and as “outliers” when >± 3° of optimum.

The cutting guide placement was within ±2° of the target angle for inclinations of femoral and tibial components. The cutting heights were within 2mm for distal femoral and proximal tibia. Mechanical axis changed from a mean of 8.57° varus to 0.49° valgus, and mean coronal inclinations of femoral and tibial components were 89.52° and 90.12°, respectively, at last follow up visits. There were no outliers and all of them were classified as excellent. Mean sagittal inclinations of the femoral and tibial components were 1.06° and 84.56°, respectively. There were no intra-operative or acute post-operative complications.

The custom-fit TKA system system provides an effective, safe means of achieving an accurate mechanical axis and of reducing prosthetic alignment outliers. However, further long term follow-up is needed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 44 - 44
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

This study was performed to measure intra-operative varus-valgus laxities from 0° to 90° of flexion during cruciate retaining total knee arthroplasty (TKA) using the modified balanced gap technique. Forty nine patients awaiting unilateral TKA for osteoarthritis were enrolled into this prospective study. Flexion and extension gaps were measured at full extension and at 90° of flexion using a tensioning device before femoral bone cutting. After implantation and closing the medial parapatellar arthrotomy, varus-valgus laxities at 0, 30, 60 and 90° of flexion were also measured using a navigation system.

Mean total varus-valgus laxities were significantly less at 0° of flexion (3.8±1.7°) than at the other selected flexion angles. Mean varus laxity was peaked at 3.1±2.2° at 60° of flexion and reached a nadir of 2.0±1.0° at 0° of flexion, which represented a significant difference. On increasing flexion from 0° to 60°, mean valgus laxity increased from 1.8±1.3° to 2.9±1.6°, which was significant, but no significant difference was found for other angles.

The use of the balanced gap technique for cruciate retaining TKA using a navigation system, which allows accurate soft tissue balancing via real time gap size feedback, could be helpful for achieving good in vivo laxities throughout range of motion without significant mid flexion laxity.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 41 - 41
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

The elevation of the joint line is considered a possible cause of mid-flexion instability in total knee arthroplasty (TKA). The authors evaluated the effects of joint line change on mid-flexion stability in cruciate retaining TKA.

Seventy-nine knees treated by cruciate retaining TKA using a modified balanced gap technique were included in this prospective study. After prosthesis insertion, valgus and varus stabilities were measured under valgus and varus stress using a navigation system at 0, 30, 60 and 90° of knee flexion. Changes of joint lines were measured preoperatively and postoperatively and compared. The knees were allocated to a “No change group (≤4mm, 62 patients)” or to an “Elevation group (>4mm, 17 patients)”. Medio-lateral stabilities (defined as the sums of valgus and varus stabilities measured intra-operatively) were compared in the two groups.

The mean joint line elevation was 4.6mm in the no change group and 1.7mm in the elevation group. Mean medio-lateral stability at 30° of knee flexion was 4.8±2.3 mm in the no change group and 6.3±2.7 mm in the elevation group, and these values were significantly different (p = 0.02). However, no significant differences in medio-lateral stability were observed at other flexion angles (p>0.05).

Knees with a < 5mm joint line elevation provide better mid-flexion stability after TKA. The results of this study suggest that a < 5mm elevation in joint line laxity is acceptable for cruciate retaining TKA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 49 - 49
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

Recently, axial radiography has received attention for the assessment of distal femur rotational alignment, and satisfactory results have been as compared with the CT method. The purpose of this study was to assess rotational alignment of the femoral component in knee flexion by axial radiography and to compare flexion stabilities achieved by navigational and robotic total knee arthroplasty (TKA). In addition, the authors also evaluated the effects of flexion stability on functional outcomes in these two groups.

Sixty-four patients that underwent TKA for knee osteoarthritis with a minimum of follow-up of 1 year constituted the study cohort. Patients in the navigational group (N = 32) underwent TKA using the gap balancing technique and patients in the robotic group (N = 32) underwent TKA using the measured resection technique. To assess flexion stability using axial radiography a novel technique designed by the authors was used. Rotations of femoral components and mediolateral gaps in the neutral position on flexion radiographs was measured and compared. Valgus and varus stabilities under valgus-varus stress loading, and total flexion stabilities (defined as the sum of valgus and varus stability) were also compared, as were clinical outcomes at final follow up visits.

A significant difference was found between the navigation and robotic groups for mean external rotation of the femoral component (2.1° and 0.4°, respectively; p = 0.003). Mean mediolateral gap in neutral at 90° flexion position was 0.17° in the navigation group and 0.07° in the robotic group (p = 0.126), and mean total stability was 7.82° in the robotic group and 8.10° in the navigation group (p = 0.35). Clinically, no significant intergroup difference was found in terms of ranges of motion, HSS scores, KS scores, or WOMAC scores.

Both navigational and robotic techniques provide excellent clinical and flexion stability results. Furthermore, axial radiography was found to provide a useful, straightforward means of detecting rotational alignment, flexion gaps, and flexion stability.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 50 - 50
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

The purpose of this study was to compare posterior tibial slope preoperatively and postoperatively in patients undergoing navigational opening-wedge High tibial osteotomy (HTO) and to compare posterior slope changes for 2 and 3-dimentional (D) navigation versions.

Between May 2009 and September 2010, 35 patients with unicompartmental osteoarthritis and varus deformity were treated by navigation-assisted open-wedge HTO. Patients were randomly divided into two groups according to the version of the Orthopilot (Aesculap) navigation system used; 2D group (18 patients, 2-D version) and 3D group (17 patients, 3-D version). Radiologic evaluations were conducted using pre- and postoperative leg axes. Posterior slope of proximal tibiae were measured using the proximal tibial anatomic axis method.

Postoperatively the mechanical axis was corrected adequately to a mean valgus of 2.81° in 2D group and of 3.15° in 3D group. Mean posterior slopes were well maintained, and measured 7.9° and 10.3° preoperatively and 8.99° and 9.14° postoperatively in 2D and 3D groups, respectively. No significant difference was found between the two navigation versions with respect to posterior tibial slope; mean tibial slope changes were 1.09° and −0.2° in 2D and 3D groups (p = 0.04).

Navigation-assisted opening-wedge HTO greatly improves the accuracy of the desired postoperative mechanical femorotibial axis and posterior tibial slope, and the use of 3D navigation results in significantly less change in posterior tibial slope. The authors recommend the use of the 3D navigation because they provide real time intraoperative information about coronal, sagittal, and transverse axis, which are important for the maintenance of a normal posterior tibial slope.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 86 - 86
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

The preoperative prediction of gap balance after robotic total knee arthroplasty (TKA) is difficult. The purpose of this study was to evaluate the effectiveness of a new method of achieving balanced flexion-extension gaps during robotic TKA.

Fifty one osteoarthritic patients undergoing cruciate retaining TKA using robotic system were included in this prospective study. Preoperative planning was based on the amount of lateral laxity in extension and flexion using varus stress radiograph. After complete milling by the robot and soft tissue balancing, intra-operative extension and flexion gaps were measured using a tensioning device. Knees were subdivided into three groups based on lateral laxities in 0° and 90° of flexion, as follows; the tight extension group (≥ 2mm smaller in extension than flexion laxity), the tight flexion group (≥ 2mm smaller in flexion than extension laxity), and the balanced group (< 2mm difference between laxities). In addition, intra-operative gap balance results were classified as acceptable (0–3mm larger in flexion than in extension), tight (larger in extension than in flexion) or loose (> 3mm larger in flexion than in extension) based on differences between extension and flexion gaps.

During preoperative planning, 34 cases were allocated to the balanced group, 16 to the tight extension group and 1 case was allocated to the tight flexion group. Intra-operative gap balance was acceptable in 46 cases, 4 cases had a tight result, and one case had a loose flexion gap.

We concluded that preoperative planning based on the amount of lateral laxity determined using varus stress radiographs may be useful for predicting intraoperative gap balance and help to achieve precise gap balance during robotic TKA.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 125 - 126
1 Mar 2010
Park S Song E Seon J Kim Y Hur C Park Y
Full Access

We hypothesized that navigation can help provide a well-balanced knee, through real-time feedback of alignment accuracies and gap sizes in flexion and extension. The purpose of this study was to evaluate in vivo stabilities of mediolateral laxity in full extension and anteroposterior laxities in 90° of flexion after navigation-assisted total knee arthroplasty, and to determine the nature of the correlations between these and range of motion (ROM).

Forty-two total knee arthroplasties performed using a navigation system with a minimum two-year follow-up were included. The following were measured at final follow-ups; mediolateral laxities at extension and anteroposterior laxities at 90 degrees of flexion (using stress radiographs and a Telos arthrometer), modified HSS scores (excluding laxity and range of motion), and range of motion (ROM).

At final follow-up the mean modified HSS score was 82% of total points and mean postoperative ROM was 128.1 ± 10.4°. Mean medial laxity was 3.5 ± 1.4°, mean lateral laxity 4.4 ± 2.2°, and mean anteroposterior laxity 7.1 ± 4.1 mm. We found no significant correlation between mediolateral laxity and postoperative ROM. However, a significant correlation was found between postoperative ROM and anteroposterior laxity.

In the present study, the use of a navigation system in total knee arthroplasty was found to improve in vivo stability and produce promising short-term clinical results.

Summary: Using a navigation system in total knee arthroplasty, we obtained good in vivo stability and found the positive correlation between the range of motion and anteroposterior laxity


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 396 - 396
1 Sep 2009
Park S Song E Seon J Cho S Cho S Yoon T
Full Access

Only limited data exists concerning outcomes after total knee arthroplasty (TKA) using a surgical robot. We conducted this study to evaluate the clinical and radiographical results in robotic-assisted implantation of TKAs with a minimum follow-up of two years.

A total of 50 primary TKAs using ROBODOC were included in this study. The mean duration of follow-up was 28.3 months. The radiographic measurement with regard to the change of mechanical axis, and the inclination of the femoral and tibial components were assessed. The value within ± 3° of optimum was classified to be “acceptable”, and the value exceeding more than ± 3° to be “outlier” results. Also we evaluated clinical results with the range of motion (ROM), Hospital for Special Surgery (HSS) scores, and Western Ontario and McMaster University (WOMAC) scores.

The mechanical axis was changed from 6.57 varus to 0.81 valgus. Mean coronal inclination of the femoral and tibial component were 88.61 and 89.76 at the last follow up. Also, mean sagittal inclination of the femoral and tibial component were 0.82 and 85.49. On the other hand, all prostheses had no radiolucent lines. On the clinical assessment, the range of motion improved from 124.9 to 128.4, and the improvement of HSS score and Womac score were 70.06 to 95.72 and 65.64 to 28.92 in each. No major adverse events related to the use of the robotic system have been observed. However, one case of the formation of seroma around the pin track and two cases of the partial abrasion of patellar tendon occurred in relation to procedures.

A surgical robot system in TKAs provides good clinical and radiographical results at least 2 years follow-up, however further study for the long term follow-up may be needed. A clear advantage of robot-assisted TKA seems to be ability to execute a highly precise preoperative planning and intraoperaive procedures. But current disadvantages such as increased operating times and inability of adjusting the preoperative planning during the procedure have to be resolved in the future.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 395 - 395
1 Sep 2009
Cho S Song E Seon J Park S Cho S Yoon T
Full Access

Navigation was used to achieve a balanced flexion-extension gap for total knee arthroplasty and it’s 3 years clinical results were reported.

From 112 osteoarthritic knees with varus deformity the flexion and extension gap were measured with distraction of 50 lb/inch using special torque wrench following completion of controlled medial release with guidance of navigation system & tibial bone cut. Distal & AP femoral bony cut were finished according to the data of measurement of flexion-extension gap. After confirmation of the balanced flexion-extension gap by navigation total knee arthroplasty was completed.

The differences between flexion and extension gap varied from case to case, and could be classified into 3 kinds; balanced, tight flexion gap and tight extension gap.

HSS score was 96.7, ROM was 128.5 degree. 39 patients (35%) can have comfortable kneeling 75 patients(67%) can sit with cross leg. Gap technique with navigation could provide excellent clinical results of total knee arthroplasty and 3 classifications of flexion and extension gap should be taken into considerations for balanced total knee arthroplasty


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 396 - 396
1 Sep 2009
Park S Song E Seon J Cho S Cho S Yoon T
Full Access

Long term successful results of high tibial osteotomy (HTO) strongly depend on the degree of correction, and inadequate intraoperative measurements of the leg axis can lead to under or over correction, and surgeons have to solve these problems based on personal experience.

This study was undertaken to investigate and compare the clinical and radiological results of navigation assisted open wedge high tibial osteotomy (HTO) versus conventional HTO at 12 months after surgery, for unicompartmental gonarthrosis.

Forty navigated open HTOs with an anterior opening gap of approximately 70% of the posterior gap were included and compared with forty open HTOs performed using the conventional cable technique in terms of intraoperative leg axis assess.

Navigated HTOs corrected mechanical axes to 2.9° valgus (range 0.5–6.2) with few outliers (12.5%), and maintained posterior slopes (7.9±2.3° preoperatively and 8.3±2.8° postoperatively) (P> 0.05). However, in the conventional group, only 63% of cases were within the satisfactory range (valgus 2–5°), and tendencies toward undercorrection and an increase in posterior slope were observed. Clinically both groups showed satisfactory results.

Navigated HTO significantly improved the accuracy of postoperative mechanical axis and decreased correction variabilities with fewer outliers.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 395 - 395
1 Sep 2009
Cho S Song E Seon J Park S Cho S Yoon T
Full Access

Unexpected findings were sometimes observed such as hyper extension, oversize of femoral component, or anterior notching of anterior femoral cortex in total knee arthroplasty (TKA) using computer system. We conducted this study to evaluate these findings by a virtual simulation using ORTHODOC and then confirmed them on real patients with TKA.

Virtual simulations of distal femoral cut in 50 patients using ORTHODOC system were made by way of being perpendicular to mechanical axis (CAOS way) and to intramedullary guide (manual way) in the same knee and measured the difference of sagittal cutting planes. We compared the maximum AP dimensions of femoral condyle parallel to distal cut plane. We also compared sagittal alignment and size of the femoral component in 30 bilateral TKAs, one side using ROBODOC (CAOS way) and the other side using IM guide (manual way).

On virtual simulation, distal femoral cut was more extended (3.1±1.6°) in CAOS than in manual way and anteroposterior size of the femoral condyle in CAOS way was also larger than in manual way (p=0.001). Radiographic sagittal alignment of femoral component performed using CAOS way was slightly more extended than those using manual way, showing a significant difference (p=0.024). The larger femoral components were required in six patients on CAOS and in two patients on manual way, whereas twenty-two patients showed same size on both side.

CAOS can provide more accurate sagittal cut perpendicular to mechanical axis than manual system, which may lead to slightly extended position or larger femoral component.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 395 - 395
1 Sep 2009
Cho S Song E Seon J Park S Cho S Yoon T
Full Access

In total knee arthroplasty, navigation systems that help achieve accurate alignment of the lower limbs have been applied widely, and these techniques are currently being used in minimally invasive unicondylar knee arthroplasty (MIS UKA) with good alignment results. To the best of our knowledge, there are no studies showing whether or not MIS UKA using a navigation system has a significant influence on the clinical results. This prospective study investigated the hypothesis that minimally invasive uni-compartmental knee arthroplasty using navigation system (NA-MIS UKA) will produce better short-term clinical results than MIS UKA without navigation system.

After a minimum two-year follow-up, the short-term functional results included the ranges of motion, Hospital for Special Surgery (HSS) scores, and WOMAC scores and the alignment accuracy of the components of 31 NA-MIS UKAs (NA-MIS group) compared with those of 33 MIS UKAs without a navigation system (MIS group). The surgery time was also recorded and compared.

The HSS and WOMAC scores showed significant improvement at the final follow-up in both groups, showing no significant inter-group difference (p=0.071, p=0.096, respectively). The ranges of motion also showed significant improvements in both groups, but there was no significant difference between two groups (p=.687). However, the surgery time was longer in MIS group than in NA-MIS group. NA-MIS UKA produces significant improvement in the desired mechanical axis with prosthetic alignment outliers compared with that without the navigation system.

However, at the final follow-up, there were no significant differences in any of the functional parameters between the two groups.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 394 - 395
1 Sep 2009
Seon J Song E Park S Cho S Cho S Yoon T
Full Access

The navigation system recently introduced in an ACL reconstruction is reported that it would be helpful for determining the accurate tunnel position and better clinical results in. It also provides intra-operative information such as knee kinematics and anteroposterior translation and internal-external rotation of the tibia during the reconstruction. Our hypothesis was that a double bundle reconstruction would provide better anteroposterior and rotational stabilities than a single bundle reconstruction.

The aim of this study was to assess the changes of anteroposterior and rotational stabilities using a navigation system achieved by double bundle reconstruction (20 knees) and compare them with those by single bundle reconstruction (20 knees).

After registering the reference points, anteroposterior ad rotational stability test with 30° knee flexion using a navigation system was carried out and measured before and after reconstruction on both groups.

The anteroposterior stability showed significant improvement from 17.5 mm before the reconstruction to 5.1 mm after the reconstruction in the double bundle group and from 16.6 mm to 6.1 mm in the single bundle group, showing a significant inter-group differences (p< .05). The mean rotation stability of the double bundle group showed more significant improvement after reconstruction than those of the single bundle group (9.8° in single and 6.1° in double bundle group, p< .05).

The double bundle ACL reconstruction tends to be more stable in rotational stability than the single bundle reconstruction, but not so much in anteroposterior stability. Clinically the double bundle ACL reconstruction may provide better rotational stability reducing residual pivot shift phenomenon after reconstruction.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 395 - 396
1 Sep 2009
Cho S Song E Seon J Park S Cho S Yoon T
Full Access

This prospective study was undertaken to compare the clinical and radiological results achieved using navigation assisted minimally invasive (NA-MIS) and conventional (CON) techniques in bilateral total knee arthroplasty (TKA).

Forty-two bilateral patients with a minimum 2-year follow-up who were available for study after NA-MIS TKA were included in this study. Clinical evaluations (ROM, HSS and WOMAC scores) were performed at 3 and 6 months and at 1 & 2 year postoperatively. Patient subjective preferences and radiological accuracies were compared at 1 year postoperatively.

Preoperative HSS scores were 68.5 in the NA-MIS group and 66.5 in the CON group, and these scores improved to 93.6 and 92.5 at 1 year postoperatively, respectively. Knees had a higher average HSS score in NA-MIS group than in the CON group till six months, but not after nine months postoperatively. In terms of WOMAC scores, pain scores in the NA-MIS group were better up to nine months postoperatively, but not at one & 2 year postoperatively, and total WOMAC scores were better up to six months, but not after nine months postoperatively. ROM was comparable in both groups at all times. However, more patients preferred NA-MIS sides than CON sides. Radiological results demonstrated no difference between the mean values of the two groups, although the NA-MIS group contained fewer outliers than the CON group.

NA-MIS TKA results in better functional scores than CON-TKA over the first or nine months postoperatively. However, no differences in any functional parameters were evident at one & two year postoperatively.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 396 - 396
1 Sep 2009
Yoon T Song E Seon J Park S Cho S Cho S
Full Access

Computer based navigation system improved the accuracy of limb and component alignment and decreased the incidence of outliers. The majority of previous studies were based on the infrared navigation system. We evaluate the availability and accuracy of the electromagnectic(EM) navigation system in total knee arthroplasty

From July 2006 to January 2007, 40 patients (50 TKAs) with osteoarthritis were participated in this study. AxiEM(Medtronics) was used and Nexgen CR(26 cases), and Nexgen CR flex(24 cases) were used. We analyzed the failure mode of navigation (7 cases), operation time and radiologic results (limb and component alignment)

Total registration time was 4 minutes 45 seconds in average (Range : 3 minutes 45 seconds ~ 6 minutes 55 seconds). Failures in clinical applications resulted from non-recognition of EM tracker or paddle by metallic interference in 4 cases and from informational changes during surgery by fixation loss or loosening of the tracker in 3 cases. Radiologically, the mechanical axis changed from −11.2±7.21 (Range : −25.8~3.1) to 1.0±1.25(Range : −2.1~4.0) and 1 case of outlier occurred (valgus 4°). Component alignment is measured as followed: 89.3±1.6° of Theta angle, 89.9±1.5° of Beta angle, 1.8±2.5° of Gamma angle, 86.1±2.9 of Delta angle°. There were no complications related to the EM navigation.

The EM navigation system helped to achieve accurate alignment of component and lower leg axis without any complications. It had several advantages such as relatively less invasiveness in fitting small instruments, not disturbing operation field, no interrupted line of sight, portable use, and applicability to any implant. However, metallic interference may be still problematic.

The EM navigation had advantages; less invasiveness, no disturbing operation field, no interrupted line of sight, portable use and applicability to any implants. But metallic interference may be still problematic.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 394 - 394
1 Sep 2009
Seon J Song E Park S Cho S Cho S Yoon T
Full Access

Correct alignment of the leg and positioning of the implant has shown to be an important factor in the successful long term outcome of total knee arthroplasty and navigation systems enable an accuracy of corrections and alignment within intervals of 1 mm or 1 degree. This study is to test if there is any discrepancy in accuracy which was sometimes observed in clinical trials between Orthopilot (Aesculap, Tuttlingen, German) and AxiEM (Medtronic Navigation, CoalCreek, Colo., USA).

A synthetic bone model (Sawbones, Pacific Laboratories, Vashon, Washington) including pelvis and leg with mobile joint made up of titanium which does not affect the electromagnetic field was constructed. Mechanical axis was checked by ORTHODOC system (Integrated Surgical System, CA, USA) that is a preplanning system for ROBODOC (ISS, CA, USA) assisted total knee arthroplasty (TKA) and total hip arthroplasty (THA). The CT images were scanned with 1.25 mm or less slice interval. The CT images were converted to 3-dimensional (3D) volume-rendered model in ORTHODOC. Two orthopaedic surgeons measured it ten times independently.

For the measurement of mechanical axis using navigation, 4 orthopaedic surgeons (two experts having more than 100 navigation experiences and two residents) registered anatomical landmarks and kinematic center of bone model ten times using Orthopilot as well as AxiEM. After that, one surgeon intentionally registered the wrong anatomical landmarks (10 mm medial and lateral to the center of distal femur, proximal tibial and ankle, and both malleoli) in both navigation system and observed the change of mechanical axis.

True mechanical axis was varus 1.25° using Orthodoc, Orthopilot displayed varus 1.10±0.64° and AxiEM did varus 1.78±0.79°. The difference of mechanical axis between two navigations was not observed (P=0.12) and there were no intra and inter-observer variation in statistical analysis (Correlation=0.934, P=0.00). In the case of erroneous identification of the anatomical landmarks, Orthipilot showed much less variation compared to AxiEM. AxiEM altered the mechanical axis more in palpating center of the distal femur and ankle center and Orthopilot did in palpating the center of ankle.

Both navigation systems provide high accuracy and reproducibility of mechanical axis of lower limb in experimental condition. But both were affected by the wrong identification of the anatomical landmarks. AxiEM had more variations. So surgeon should pay attention to register the precise anatomical landmarks.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 395 - 395
1 Sep 2009
Seon J Song E Park S Cho S Cho S Yoon T
Full Access

The aim of study was to provide normal value of anteroposterior and rotational stability of knee joints using navigation system.

From March 2007 to November 2007, 35 patients (23 men, 12 women) with a mean age of 36.1(16–57) years, who were treated with arthroscopy, without ligament injury of knee were included in our study. We measured amount of anteroposterior displacement and rotation of the knee in 0, 30, 60 and 90 degrees of flexion position using Orthopilot navigation system. All tests were performed by same single surgeon under manual maximal force.

The mean anterior displacement was 3.7±2.0, 6.6±2.2, 5.8±2.0 and 4.7±1.8 mm in 0, 30, 60 and 90 degrees of flexion respectively. The amount of anterior displacement at 30 degree of flexion was significantly larger than those of other degrees. The mean posterior displacement was 2.0±0.5, 2.2±0.4, 2.1±0.4 and 2.0±0.6 at each degree. There was no statistical difference in posterior displacement. The mean internal rotation was 10.3±2.7, 14.6±3.3, 16.2±2.9 and 15.0±4.3 degree at each degree. The amount of internal rotation at 0 degree of flexion was significantly smaller than those of other degrees. The mean external rotation was 8.4±3.4, 16.5±3.3, 13.3±3.8 and 15.0±4.3 degree at each degree. The amount of external rotation at 0 degree of flexion was significantly smallest and that of 30 degree was largest.

In the measurement of laxity using navigation, we could acquire previously mentioned results. The measurement of stability of knee will be useful in diagnosing ligament injury and evaluating degree of postoperative symptomatic improvement.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 395 - 395
1 Sep 2009
Seon J Song E Park S Cho S Cho S Yoon T
Full Access

Bilateral sequential total knee replacement with a Zimmer NexGen prosthesis (Zimmer, Warsaw, Indiana) was carried out in 30 patients. One knee was replaced using a robotic-assisted implantation (ROBOT side) and the other conventionally manual implantation (CON side). There were 30 women with a mean age of 67.8 years (50 to 80).

Pre-operative and post-operative scores were obtained for all patients using the Knee Society (KSS) and The Hospital for Special Surgery (HSS) systems. Full-length standing anteroposterior radiographs, including the femoral head and ankle, and lateral and skyline patellar views were taken pre- and post-operatively and were assessed for the mechanical axis and the position of the components. The mean follow-up was 2.3 years (2 to 3).

The operating and tourniquet times were longer in the ROBOT side (p < 0.001). There were no significant pre- or post-operative differences between the knee scores of the two groups (p = 0.288 and p = 0.429, respectively). Mean mechanical axes were not significantly different in the two groups (p = 0.815). However, there were more outliers in the CON side (8) than in the ROBOT side (1) (p = 0.013). In the coronal alignment of the femoral component, the CON side (8) had more outliers than the ROBOT side (1) (p = 0.013) and the CON side (3) also had more outliers than the ROBOT side (0) in the sagittal alignment of the femoral component (p = 0.043). In terms of outliers for coronal and sagittal tibial alignment, the CON side (1 and 4) had more outliers than the ROBOT side (0 and 2).

In this series robotic-assisted total knee replacement resulted in more accurate orientation and alignment of the components than that achieved by conventional total knee replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1457 - 1461
1 Nov 2008
Lee K Chung J Song E Seon J Bai L

We describe the surgical technique and results of arthroscopic subtalar release in 17 patients (17 feet) with painful subtalar stiffness following an intra-articular calcaneal fracture of Sanders’ type II or III. The mean duration from injury to arthroscopic release was 11.3 months (6.4 to 36) and the mean follow-up after release was 16.8 months (12 to 25). The patient was positioned laterally and three arthroscopic portals were placed anterolaterally, centrally and posterolaterally. The sinus tarsi and lateral gutter were debrided of fibrous tissue and the posterior talocalcaneal facet was released. In all, six patients were very satisfied, eight were satisfied and three were dissatisfied with their results. The mean American Orthopaedic Foot and Ankle Society ankle-hindfoot score improved from a mean of 49.4 points (35 to 66) pre-operatively to a mean of 79.6 points (51 to 95). All patients reported improvement in movement of the subtalar joint. No complications occurred following operation, but two patients subsequently required subtalar arthrodesis for continuing pain.

In the majority of patients a functional improvement in hindfoot function was obtained following arthroscopic release of the subtalar joint for stiffness and pain secondary to Sanders type II and III fractures of the calcaneum.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 150 - 150
1 Feb 2004
Yoon T Rowe S Moon E Song E Lee K Seo H
Full Access

Introduction: Osteonecrosis of the femoral head remains a challenging problem especially in young patients. The purpose of this study was to evaluate the clinical results of a viable iliac bone graft for treating osteonecrosis of the femoral head.

Materials and Methods: Seventy-one hips in 52 patients underwent a viable iliac bone graft (9 hips-vessel pedicle iliac bone graft and 62 hips-muscle pedicle iliac bone graft). The clinical and radiographic results were evaluated after an average of 3 years and 4 months (range, 2 to 5 years). Patient age ranged from 20 to 40 years with an average of 31 years. Twenty-three hips were classified as Ficat stage 2 disease and 48 as stage 3 disease. The causes of osteonecrosis were excessive alcohol consumption in 30, steroid use in 13, posttraumatic in 4, decompression sickness in 1, and unknown in 23 hips. The clinical results were evaluated based on the patients’ satisfaction and pain score. The radiographical results were evaluated by serial follow-up roentgenography and pinhole bone scintigraphy.

Results: The clinical and radiological results were satisfactory. Overall, the survival rate was 96 percent. Excellent results were obtained in 15 hips, good in 39, fair in 6 and poor in 8. Three hips underwent total hip replacement, including one infected case. Excellent or good results were obtained in 82 percent of stage 2 cases and in 65 percent of stage 3 cases. The serial roentgenographic examination revealed a gradual incorporation of the grafted bone, and the scintigraphic examination revealed a gradual increase in the uptake which suggested an increased blood supply to the femoral head.

Discussion: The overall results of viable iliac crest bone grafting were very satisfactory. This technique is recommended particularly for young patients with stage 2 or 3 osteonecrosis of the femoral head. Pinhole bone scintigraphy was quite useful for evaluating the healing process after the revascularization procedure.