Abstract
Bilateral sequential total knee replacement with a Zimmer NexGen prosthesis (Zimmer, Warsaw, Indiana) was carried out in 30 patients. One knee was replaced using a robotic-assisted implantation (ROBOT side) and the other conventionally manual implantation (CON side). There were 30 women with a mean age of 67.8 years (50 to 80).
Pre-operative and post-operative scores were obtained for all patients using the Knee Society (KSS) and The Hospital for Special Surgery (HSS) systems. Full-length standing anteroposterior radiographs, including the femoral head and ankle, and lateral and skyline patellar views were taken pre- and post-operatively and were assessed for the mechanical axis and the position of the components. The mean follow-up was 2.3 years (2 to 3).
The operating and tourniquet times were longer in the ROBOT side (p < 0.001). There were no significant pre- or post-operative differences between the knee scores of the two groups (p = 0.288 and p = 0.429, respectively). Mean mechanical axes were not significantly different in the two groups (p = 0.815). However, there were more outliers in the CON side (8) than in the ROBOT side (1) (p = 0.013). In the coronal alignment of the femoral component, the CON side (8) had more outliers than the ROBOT side (1) (p = 0.013) and the CON side (3) also had more outliers than the ROBOT side (0) in the sagittal alignment of the femoral component (p = 0.043). In terms of outliers for coronal and sagittal tibial alignment, the CON side (1 and 4) had more outliers than the ROBOT side (0 and 2).
In this series robotic-assisted total knee replacement resulted in more accurate orientation and alignment of the components than that achieved by conventional total knee replacement.
Correspondence should be addressed to Mr K Deep, General Secretary CAOS UK, Dept of Orthopaedics, Golden Jubilee National Hospital, Glasgow G81 4HX, Scotland. Email: caosuk@gmail.com