Advertisement for orthosearch.org.uk
Results 1 - 100 of 721
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 73 - 73
11 Apr 2023
Nüesch A Kanelis E Alexopoulos L Williams F Geris L Gantenbein B Lacey M Le Maitre C
Full Access

A key cause of low back pain is the degeneration of the intervertebral disc (IVD). Causality between infection of the IVD and its degenerative process gained great interest over the last decade. Granville Smith et al. (2021) identified 36 articles from 34 research studies investigating bacteria in human IVDs. Bacteria was identified in 27 studies, whereas 9 attributed bacterial presence to contamination. Cutibacterium acnes was the most abundant, followed by coagulase-negative staphylococcus. However, whether bacteria identified were present in vivo or represent perioperative contamination remains unclear. This study investigated whether bacteria are present in IVDs and what potential effects they may have on native disc cells. Immunohistochemical staining for Gram positive bacteria was performed on human IVD tissue to identify presence and characterise bacterial species. Nucleus pulposus (NP) cells in monolayer and 3D alginate were stimulated with LPS and Peptidoglycan (0.1-50 µg/ml) for 48hrs. Following stimulation qPCR for factors associated with disc degeneration including matrix genes, matrix degrading enzymes, cytokines, neurotrophic factors and angiogenic factors and conditioned media collected for ELISA and luminex analysis. Gram positive bacteria was detected within human IVD tissue. Internalisation of bacteria by NP cells influenced the cell and nuclei morphology. Preliminary results of exposure of NP cells to bacterial components indicate that LPS as well as Peptidoglycan increase IL-8 and ADAMTS-4 gene expression following 48 hours of stimulation with a dose response seen for IL-8 induction by peptidoglycan compared to the control group. Underlining these results, IL-8 protein release was increased for treated groups compared to non-treated control. Further analysis is underway investigating other output measures and additional biological repeats. This study has demonstrated bacteria are present within IVD cells within IVD tissue removed from degenerate IVD and is determining the potential influence of these on disc degeneration


Bone & Joint Research
Vol. 13, Issue 9 | Pages 452 - 461
5 Sep 2024
Lee JY Lee HI Lee S Kim NH

Aims. The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Methods. Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress. Results. A total of 144 discs were categorized as ‘positive’ and 174 discs as ‘negative’ by the results of provocation discography. The presence of defined facet tropism (OR 3.451, 95% CI 1.944 to 6.126) and higher Adams classification (OR 2.172, 95% CI 1.523 to 3.097) were important predictive parameters for discography-‘positive’ discs. FEM simulations showcased uneven stress distribution and significant disc displacement in tropism-affected discs, where loading exacerbated stress on facets with greater angles. During varied positions, notably increased stress and displacement were observed in discs with tropism compared to those with normal facet structure. Conclusion. Our findings indicate that facet tropism can contribute to disc herniation and changes in intradiscal pressure, potentially exacerbating disc degeneration due to altered force distribution and increased mechanical stress. Cite this article: Bone Joint Res 2024;13(9):452–461


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 56 - 56
4 Apr 2023
Sun Y Zheng H Kong D Yin M Chen J Lin Y Ma X Tian Y Wang Y
Full Access

Using deep learning and image processing technology, a standardized automatic quantitative analysis systerm of lumbar disc degeneration based on T2MRI is proposed to help doctors evaluate the prognosis of intervertebral disc (IVD) degeneration. A semantic segmentation network BianqueNet with self-attention mechanism skip connection module and deep feature extraction module is proposed to achieve high-precision segmentation of intervertebral disc related areas. A quantitative method is proposed to calculate the signal intensity difference (SI) in IVD, average disc height (DH), disc height index (DHI), and disc height-to-diameter ratio (DHR). According to the correlation analysis results of the degeneration characteristic parameters of IVDs, 1051 MRI images from four hospitals were collected to establish the quantitative ranges for these IVD parameters in larger population around China. The average dice coefficients of the proposed segmentation network for vertebral bodies and intervertebral discs are 97.04% and 94.76%, respectively. The designed parameters of intervertebral disc degeneration have a significant negative correlation with the Modified Pfirrmann Grade. This procedure is suitable for different MRI centers and different resolution of lumbar spine T2MRI (ICC=.874~.958). Among them, the standard of intervertebral disc signal intensity degeneration has excellent reliability according to the modified Pfirrmann Grade (macroF1=90.63%~92.02%). we developed a fully automated deep learning-based lumbar spine segmentation network, which demonstrated strong versatility and high reliability to assist residents on IVD degeneration grading by means of IVD degeneration quantitation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 49 - 49
2 Jan 2024
Gantenbein B
Full Access

Stem cell therapy for the intervertebral disc (IVD) is highly debated but holds great promises. From previous studies, it is known that notochordal cells are highly regenerative and may stimulate other differentiated cells to produce more matrix. Lately, a particular tissue-specific progenitor cell population has been identified in the centre of the intervertebral disc (IVD. The current hope is that these nucleus pulposus progenitor cells (NPPC) could play a particular role in IVD regeneration. Current evidence confirms the presence of these cells in murine, canine, bovine and in the human fetal/surgical samples. Noteworthy, one of the main markers to identify these cells, i.e., Tie2, is a typical marker for endothelial cells. Thus, it is not very clear what their origin and their role might be in the context of developmental biology. In human surgical specimens, their presence is, even more, obscured depending on the donor's age and the condition of the IVD and other yet unknown factors. Here, I revisit the recent literature on regenerative cells identified for the IVD in the past decades. Current evidence how these NPPC can be isolated and detected in various species and tissues will be recapitulated. Future directions will be provided on how these progenitor cells could be used for regenerative medicine and tissue engineering


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 141 - 141
2 Jan 2024
Ruiz-Fernández C Eldjoudi D Gonzalez-Rodríguez M Barreal A Farrag Y Mobasheri A Pino J Sakai D Gualillo O
Full Access

Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or inflammatory diseases, such as intervertebral disc degeneration (IVDD). This work assesses for the first time the mCRP effects in human intervertebral disc cells, trying to verify the pathophysiological relevance and mechanism of action of mCRP in the etiology and progression of IVD degeneration. We demonstrated that mCRP induces the expression of multiple proinflammatory and catabolic factors, like nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and lipocalin 2 (LCN2), in human annulus fibrosus (AF) and nucleus pulposus (NP) cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signaling of mCRP. Our results indicate that the effect of mCRP is persistent and sustained, regardless of the proinflammatory environment, as it was similar in healthy and degenerative human primary AF cells. This is the first article that demonstrates the localization of mCRP in intravertebral disc cells of the AF and NP and that provides evidence for the functional activity of mCRP in healthy and degenerative human AF and NP disc cells


Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry. Results. We demonstrated that mCRP increases nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and Lipocalin 2 (LCN2) expression in human AF and NP cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signalling of mCRP. Finally, we demonstrated the presence of mCRP in human AF and NP tissues. Conclusion. Our results indicate, for the first time, that mCRP can be localized in IVD tissues, where it triggers a proinflammatory and catabolic state in degenerative and healthy IVD cells, and that NF-κβ signalling may be implicated in the mediation of this mCRP-induced state. Cite this article: Bone Joint Res 2023;12(3):189–198


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 25 - 25
7 Aug 2024
Nüesch A Kanelis E Alexopoulos L Williams F Geris L Gantenbein B Lacey M Breakwell L Maitre CL
Full Access

Introduction. Multiple studies have identified Cutibacterium acnes (C.acnes) and other microbes in intervertebral disc tissue using 16S DNA Sequencing and microbial cultures. However, it remains unclear whether these bacteria are native to the discs or result from perioperative contamination. Our study aimed to detect Gram-positive bacteria in non-herniated human disc samples and explore correlations with Toll-like receptors (TLR) 2, TLR4, NLRP3, and Gasdermin D. Methods. Immunohistochemical staining was conducted on 75 human IVD samples for Gram-positive bacteria, S. aureus, C.acnes, TLR2, TLR4, NLRP3, and Gasdermin D. Cell detection and classification were performed using QuPath. NP cells were treated with Lipopolysaccharide (LPS) and Peptidoglycan (PGN) in monolayer and alginate beads for up to 72 hours, followed by secretome analysis using Luminex. Statistical analysis included Kruskal-Wallis, Dunn's multiple comparison test, and Pearson correlation. Results. Immunohistochemical staining revealed Gram-positive bacteria exclusively within cells, with C. acnes positivity ranging from 5–99% and correlating with patient age (r=0.41, p= 0.007). TLR2 positivity ranged from 5–99% and TLR4 from 3–72%, showing a strong correlation (r= 0.62, p= 1.5e-006). Females with mid-degenerative grades exhibited significantly decreased TLR2 expression compared to those without degeneration signs. Treatment with LPS and PGN increased catabolic cyto- and chemokines associated with IVD degeneration. Conclusion. In conclusion, this study confirms Gram-positive bacteria presence in non-herniated human disc samples and highlights their role in triggering a catabolic response in disc cells. No conflicts of interest.  . Sources of funding. This project is part of the Disc4All Training network to advance integrated computational simulations in translational medicine, applies to intervertebral disc degeneration and funded by Horizon 2020 (H2020-MSCA-ITN-ETN-2020 GA: 955735)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 115 - 115
4 Apr 2023
Wu H Ding Y Sun Y Liu Z Li C
Full Access

Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD. Rat ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IL-4 modRNA engineered ADSCs (named as IL-4-ADSCs) on nucleus pulposus cells. ModRNA transfected mouse ADSCs with high efficiency and the IL-4 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IL-4 protein. In vitro, IL-4-ADSCs induced increased anabolic markers expression of nucleus pulposus cells in inflammation environment compared to untreated ADSCs. These findings collectively supported the therapeutic potential of the combination of thermosensitive chitosan hydrogel and IL-4-ADSCs for intervertebral disc degeneration management. Histological and in vivo validation are now being conducted


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims. This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). Methods. The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions. Results. A total of 56 EP-DEGs were identified in the differential expression analysis. EP-DEGs were enriched in the extracellular structure organization, ageing, collagen-activated signalling pathway, PI3K-Akt signalling pathway, and AGE-RAGE signalling pathway. PPI network analysis showed that the top ten hub EP-DEGs are closely related to IDD. Correlation analysis also demonstrated a significant correlation between the ten hub EP-DEGs (p<0.05), which were selected to construct TF–gene interaction and TF–miRNA coregulatory networks. In addition, ten candidate drugs were screened for the treatment of IDD. Conclusion. The findings clarify the roles of extracellular proteins in IDD and highlight their potential as promising novel therapeutic targets. Cite this article: Bone Joint Res 2023;12(9):522–535


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 100 - 100
2 Jan 2024
Jahr H
Full Access

Degeneration of the intervertebral disc (IVD), and subsequent low back pain, is an almost inevitable cause of disability. The underlying mechanisms are complex and current therapeutic strategies mainly focus on symptomatic relief rather than on the intrinsic regeneration of the IVD. This talk will provide an overview of special anatomical features and the composition of the IVD as well as its cellular microenvironment. Selected promising conceptional regenerative approaches will be discussed


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 28 - 28
1 Apr 2018
Rustenburg C Emanuel K Peeters M Lems W Vergroesen PP Smit T
Full Access

Intervertebral disc degeneration is a common cause of low-back pain, the musculoskeletal disorder with the largest impact world-wide. The complex disease is however not yet well understood, and no treatment is available. This is somewhat in contrast with osteoarthritis, a subject of more extensive research. Intervertebral disc degeneration may though be a type of osteoarthritis, as other vertebrates have a diarthrodial joint instead of an intervertebral disc. We describe the parallel in view of the anatomy, composition and degeneration of the intervertebral disc and articular joint. Not only different embryonic origin and anatomy suggest significant differences between the intervertebral disc and the synovial joint, but their biomechanical properties also partly differ, as articulation is one of the key properties of a synovial joint and does not occur in the intervertebral disc. However, both tissues provide flexibility and are able to endure compressive loads, and both cell behavior and extracellular matrix appear much the same, mainly existing of chondrocytes, proteoglycans and collagen type II, suggesting that the environment of the cell is more important to its behavior than embryonic origin. Moreover, great similarities are found in the inflammatory cytokines, which are mainly IL-1β and TNF-α, and matrix-degrading factors (i.e. MMPs and ADAMTSs) involved in the cascade of degeneration, resulting in overlapping clinical and radiological features such as loss of joint space, subchondral sclerosis, and the formation of osteophytes, causing pain and morning stiffness. Therefore, we state that disc degeneration can result in the osteoarthritic intervertebral disc. This point of view may enhance the synergy between both fields of research, and potentially provide new regenerative strategies for intervertebral disc degeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 103 - 103
2 Jan 2024
Vadalá G
Full Access

The use of mesenchymal stem cell (MSCs) for intervertebral disc (IVD) regeneration has been extensively explored in the last two decades. MSCs are potent cell types that can be easily and safely harvested due to their abundancy and availability. Moreover, they are characterized by the capacity to differentiate towards IVD cells as well as release growth factors to support resident cell metabolism and recruit local progenitor cells to induce endogenous repair of degenerated IVDs. This talk will outline the characteristics of the main MSC sources and their effect towards IVD regeneration based on available preclinical and clinical evidence. In addition, innovative aspects of MSC-derived cell-free therapies will also be discussed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 120 - 120
2 Jan 2024
Ambrosio L Vadalà G Petrucci G Russo F Papalia R Denaro V
Full Access

Low back pain (LBP) is the main cause of disability worldwide and is primarily triggered by intervertebral disc degeneration (IDD). Although several treatment options exist, no therapeutic tool has demonstrated to halt the progressive course of IDD. Therefore, several clinical trials are being conducted to investigate different strategies to regenerate the intervertebral disc, with numerous studies not reaching completion nor being published. The aim of this study was to analyze the publication status of clinical trials on novel regenerative treatments for IDD by funding source and identify critical obstacles preventing their conclusion. Prospective clinical trials investigating regenerative treatments for IDD and registered on . ClinicalTrials.gov. were included. Primary outcomes were publication status and investigational treatment funding. Fisher's exact test was utilized to test the association for categorical variables between groups. 25 clinical trials were identified. Among these, only 6 (24%) have been published. The most common source of funding was university (52%), followed by industry (36%) and private companies (12%). Investigational treatments included autologous (56%) or allogeneic (12%) products alone or in combination with a carrier or delivery system (32%). The latter were more likely utilized in industry or privately funded studies (Fig. 1, p=0.0112). No significant difference was found in terms of funding regarding the publication status of included trials (Table 1, p=0.9104). Most clinical trials investigating regenerative approaches for the treatment of IDD were never completed nor published. This is likely due to multiple factors, including difficult enrollment, high dropout rate, and publication bias. 3. More accurate design and technical support from stakeholders and clinical research organization (CROs) may likely increase the quality of future clinical trials in the field. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 33 - 33
2 Jan 2024
Ambrosio L Schol J Vadalà G Papalia R Sakai D Denaro V
Full Access

Despite promising results in attempting intervertebral disc regeneration, intradiscal cell transplantation is affected by several drawbacks, including poor viability in the harsh disc environment, low cost-effectiveness, and immunogenic/tumorigenic concerns. Recently, the development of cell-free approaches is gaining increasing interest in the field, with a particular regard towards extracellular vesicles (EVs). Nucleus pulposus cell (NPC) progenitors characterized by Tie2 expression have shown a higher chondrogenic differentiation potential compared to MSCs. The aim of this study was to investigate the putative regenerative effects of EVs isolated from Tie2-overexpressing NPC progenitors on degenerative NPCs. NPCs were isolated from young donors and underwent an optimized culture protocol to maximize Tie2 expression (NPCs. Tie2+. ) or a standard protocol (NPCs. STD. ). Following EV characterization, NPC isolated from patients affected by intervertebral disc degeneration (IDD) were treated with either NPCs. Tie2+. -EVs or NPCs. STD. -EVs. Cell proliferation and viability were assessed with the CCK-8 assay. Cell apoptosis and necrosis were evaluated with the Annexin V/PI assay. Cell senescence was investigated with b-galactosidase staining. EV uptake was assessed with PKH26 staining of EVs under confocal microscopy. Treatment with EVs isolated from young NPC donors significantly increased degenerative NPC viability, especially in samples treated with NPCs. Tie2+. -EVs. Likewise, NPCs. Tie2+. -EVs significantly reduced cell senescence and did not show to exert necrotic nor apoptotic effects on recipient cells. Furthermore, EV uptake was successfully observed in all treated cells. NPCs. Tie2+. -EVs demonstrated to significantly enhance degenerative NPC viability, senescence and apoptosis. The use of committed progenitors naturally residing the in the nucleus pulposus may optimize EV regenerative properties and constitute the basis for a new therapy for IDD


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 49 - 49
1 Mar 2021
Dixon A Wareen J Mengoni M Wilcox R
Full Access

Abstract. Objectives. Develop a methodology to assess the long term mechanical behavior of intervertebral discs by utilizing novel sequential state testing. Methods. Bovine functional spinal units were sequentially mechanically tested in (1) native (n=8), (2) degenerated (n=4), and (3) treated states (n=4). At stage (2), artificial degeneration was created using rapid enzymatic degeneration, followed by a 24 hour hold period under static load at 42°C. At stage (3), nucleus augmentation treatments were injected with a hydrogel or a ‘sham’ (water, chondroitin sulfate) injection. The mechanical protocol employed applied a static load hold period followed by cyclic compressive loading between ∼350 and 750 N at 1 Hz. 1000 cycles were applied at each stage, and the final test on each specimen was extended up to 20000 cycles. To verify if test time can be reduced, functions were fitted using stiffness data up to 100, 1000, 2500, 5000, 10000 and 20000 cycles. Linear regression for the native specimens comparing the stiffness at various cycles to the stiffness at 20000 cycles was completed. Results. Independent of the disc state, as the number of cycles increased, the hysteresis decreased and the stiffness increased. The degenerated specimen stiffness was greater than the healthy and treated stiffness and the degenerate hysteresis loops were smaller. A mathematical model was found to successfully predict the high cycle behaviour of the disc reaching a root mean squared (RMS) error below 10% when using 5000 or more cycles. The linear regression gave a RMS error below 7.5% at 1000 cycles. Conclusions. A method was developed to consistently determine intervertebral disc mechanics through sequential testing. A shortened cyclic testing period was shown to be viable as a method to reduce preliminary test time for novel hydrogels, compared to currently literature. The methodology permits rapid preliminary assessment of intervertebral disc mechanics and treatments. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 21 - 21
2 Jan 2024
Strauss C Djojic D Grohs J Schmidt S Windhager R Stadlmann J Toegel S
Full Access

Intervertebral disc (IVD) degeneration is responsible for severe clinical symptoms including chronic back pain. Galectins are a family of carbohydrate-binding proteins, some of which can induce functional disease markers in IVD cells and other musculoskeletal diseases. Galectins −4 and −8 were shown to trigger disease-promoting activity in chondrocytes but their effects on IVD cells have not been investigated yet. This study elucidates the role of galectin-4 and −8 in IVD degeneration. Immunohistochemical evidence for the presence of galectin-4 and −8 in the IVD was comparatively provided in specimens of 36 patients with spondylochondrosis, spondylolisthesis, or spinal deformity. Confocal microscopy revealed co-localization of galectin-4 and −8 in chondrocyte clusters of degenerated cartilage. The immunohistochemical presence of galectin-4 correlated with histopathological and clinical degeneration scores of patients, whereas galectin-8 did not show significant correlations. The specimens were separated into annulus fibrosus (AF), nucleus pulposus (NP) and endplate, which was confirmed histologically. Separate cell cultures of AF and NP (n=20) were established and characterized using cell type-specific markers. Potential binding sites for galectins including sialylated N-glycans and LacdiNAc structures were determined in AF and NP cells using LC/ESI-MS-MS. To assess galectin functions, cell cultures were treated with recombinant galectin-4 or −8, in comparison to IL-1β, and analyzed using RT-qPCR and In-cell Western blot. In vitro, both galectins triggered the induction of functional disease markers (CXCL8 and MMP3) on mRNA level and activated the nuclear factor-kB pathway. NP cells were significantly more responsive to galectin-8 and Il-1β than AF cells. Phosphorylation of p-65 was time-dependently induced by both galectins in both cell types to a comparable extent. Taken together, this study provides evidence for a functional role of glycobiological processes in IVD degeneration and highlights galectin-4 and −8 as regulators of pro-inflammatory and degrative processes in AF and NP cells


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 114 - 114
2 Jan 2024
Fiordalisi M Sousa I Barbosa M Gonçalves R Caldeira J
Full Access

Intervertebral disc (IVD) degeneration is the most frequent cause of Low Back Pain (LBP) affecting nearly 80% of the population [1]. Current treatments fail to restore a functional IVD or to provide a long-term solution, so, there is an urgent need for novel therapeutic strategies. We have defined the IVD extracellular matrix (ECM) profile, showing that the pro-regenerative molecules Collagen type XII and XIV, are uniquely expressed during fetal stages [2]. Now we propose the first fetal injectable biomaterial to regenerate the IVD. Fetal decellularized IVD scaffolds were recellularized with adult IVD cells and further implanted in vivo to evaluate their anti-angiogenic potential. Young decellularized IVD scaffolds were used as controls. Finally, a large scale protocol to produce a stable, biocompatible and easily injectable fetal IVD-based hydrogel was developed. Fetal scaffolds were more effective at promoting Aggrecan and Collagen type II expression by IVD cells. In a Chorioallantoid membrane assay, only fetal matrices showed an anti-angiogenic potential. The same was observed in vivo when the angiogenesis was induced by human NP cells. In this context, human NP cells were more effective in GAG synthesis within a fetal microenvironment. Vaccum-assisted perfusion decellularized IVDs were obtained, with high DNA removal and sGAG retention. Hydrogel pre-solution passed through 21-30G needles. IVD cells seeded on the hydrogels initially decreased metabolic activity, but increased up to 70% at day 7, while LDH assay revealed cytotoxicity always below 30%. This study will open new avenues for the establishment of a disruptive treatment for IVD degeneration with a positive impact on the angiogenesis associated with LBP, and on the improvement of patients’ quality of life. Acknowledgements: Financial support was obtained from EUROSPINE, ON Foundation and FCT (Fundação para a Ciência e a Tecnologia)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 30 - 30
1 Dec 2022
Tilotta V Di Giacomo G Cicione C Ambrosio L Russo F Vadalà G Papalia R Denaro V
Full Access

Intervertebral disc degeneration (IDD) affects more than 80% of the population all over the world. Current strategies for the treatment of IDD are based on conservative or surgical procedures with the aim of relieving pain. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy in recent decades, but studies showed that the particularly hostile microenvironment in the intervertebral disc (IVD) can compromise cells survival rate. The use of exosomes, extracellular vesicles released by various cell types, possess considerable economic advantages including low immunogenicity and toxicity. Exosomes allow intercellular communication by conveying functional proteins, RNA, miRNA and lipids between cells. The purpose of this study is to assess the therapeutic effects of exosomes derived from Wharton Jelly mesenchymal stromal cells (WJ-MSC) on human nucleuspulposus cells (hNPC) in an in vitro 3D culture model. Exosomes (exos) were isolated by tangential flow filtration of WJ-MSC conditioned media and characterized by: quantification with BCA test; morphological observation with TEM, surface marker expression by WB and size evaluation by NTA. Confocal microscopy has been used to identify exosomes marked with PKH26 and monitor fusion and/or incorporation in hNPC. hNPC were isolated from waste surgical material from patients undergoing discectomy (n = 5), expanded, encapsulated in alginate beads and treated with: culture medium (control group); WJ-MSC exos (WJ-exos) at different concentrations (10 μg/ml, 50 μg/ml and 100 μg/ml). They were then analysed for: cell proliferation (Trypan Blu); viability (Live/Dead Assay); quantification of nitrites (Griess) and glycosaminoglycans, GAG (DMBB). The hNPC in alginate beads treated for 7 days were included in paraffin and histologically analysed to determine the presence of extracellular matrix (ECM) components. Finally, the expression levels of catabolic and anabolic genes were evaluated through real-time polymerase chain reaction (qPCR). All concentrations of WJ-exos under exam were capable to induce a significant increase in cell proliferation after 10 and 14 days of treatment (p < 0.01 and p < 0.001, respectively). Live/Dead assay showed a decrease in cell death at 50 μg/ml of WJ-exos (p < 0.05). While cellular oxidative stress indicator, nitrite production, was reduced in a dose-dependent way and statistically significant only with 100 μg/ml of WJ-exos (p < 0.05). WJ-exos at 10 and 100 μg/ml induced a significant increase in GAG content (p < 0.05; p < 0.01, respectively) confirmed by Alcian Blu staining. Exos derived from WJ-MSC modulated gene expression levels by increasing expression of ACAN and SOX-9 genes and reducing significantly of IL-6, MMP-1, MMP-13 and ADAMTS-5 levels (p < 0.05; p < 0.01) compared to the control group. Our results supported the potential use of exosomes from WJ-MSC for the treatment of IDD. Exosomes improved hNPC growth, attenuated ECM degradation and reduced oxidative stress and inflammation. This study offers a new scenario in IVD regeneration, promoting the potential use of extracellular vesicles as an alternative strategy to cell therapy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 93 - 93
2 Jan 2024
Bermudez-Lekerika P Tseranidou S Kanelis E Crump K Le Maitre C Wuertz-Kozak K Alexopoulos L Noailly J Gantenbein B
Full Access

Intervertebral disc (IVD) degeneration is a pathological process often associated with chronic back pain and considered a leading cause of disability worldwide. 1. During degeneration, progressive structural and biochemical changes occur, leading to blood vessel and nerve ingrowth and promoting discogenic pain. 2. In the last decades, several cytokines have been applied to IVD cells in vitro to investigate the degenerative cascade. Particularly, IL-10 and IL-4 have been predicted as important anabolic factors in the IVD according to a regulatory network model based in silico approach. 3. Thus, we aim to investigate the potential presence and anabolic effect of IL-10 and IL-4 in human NP cells (in vitro) and explants (ex vivo) under hypoxia (5% O2) after a catabolic induction. Primary human NP cells were expanded, encapsulated in 1.2% alginate beads (4 × 106 cells/ml) and cultured for two weeks in 3D for phenotype recovery while human NP explants were cultured for five days. Afterwards, both alginate and explant cultures were i) cultured for two days and subsequently treated with 10 ng/ml IL-10 or IL-4 (single treatments) or ii) stimulated with 0.1 ng/ml IL-1β for two days and subsequently treated with 10 ng/ml IL-10 or IL-4 (combined treatments). The presence of IL-4 receptor, IL-4 and IL-10 was confirmed in human intact NP tissue (Fig 1). Additionally, IL-4 single and combined treatments induced a significant increase of proinflammatory protein secretion in vitro (Fig. 2A-C) and ex vivo (Fig. 2D and E). In contrast, no significant differences were observed in the secretome between IL-10 single and combined treatments compared to control group. Overall, IL-4 containing treatments promote human NP cell and explant catabolism in contrast to previously reported IL-4 anti-inflammatory performance. 4. Thus, a possible pleiotropic effect of IL-4 could occur depending on the IVD culture and environmental condition. Acknowledgements: This project was supported by the Marie Skłodowska Curie International Training Network “disc4all” under the grant agreement #955735. For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 51 - 51
2 Jan 2024
Grad S
Full Access

Mechanical loading is important to maintain the homeostasis of the intervertebral disc (IVD) under physiological conditions but can also accelerate cell death and tissue breakdown in a degenerative state. Bioreactor loaded whole organ cultures are instrumental for investigating the effects of the mechanical environment on the IVD integrity and for preclinical testing of new therapies under simulated physiological conditions. Thereby the loading parameters that determine the beneficial or detrimental reactions largely depend on the IVD model and its preparation. Within this symposium we are discussing the use of bovine caudal IVD culture models to reproduce tissue inflammation or matrix degradation with or without bioreactor controlled mechanical loading. Furthermore, the outcome parameters that define the degenerative state of the whole IVD model will be outlined. Besides the disc height, matrix integrity, cell viability and phenotype expression, the tissue secretome can provide indications about potential interactions of the IVD with other cell types such as neurons. Finally, a novel multiaxial bioreactor setup capable of mimicking the six degrees-of-freedom loading environment of IVDs will be introduced that further advances the relevance of preclinical ex-vivo testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 1 - 1
2 Jan 2024
Fiordalisi M Ferreira J Pinto M Ribeiro-Machado C Pinto M Oliveira M Barbosa M Gonçalves R Caldeira J
Full Access

Intervertebral disc (IVD) degeneration occurs with aging, leading to low back pain (LBP), which is one of the leading conditions of disability worldwide. With the lack of effective treatment, decellularized extracellular matrix (dECM) – based biomaterials have been proposed for IVD regeneration. However, the impact of donor ages on tissue repair had never been explored before in the disc field. Therefore, we aimed to address this question. For that, a decellularization protocol for bovine nucleus pulposus (NP) of different aged donors (fetus, young and old) was optimized by testing several detergents (SDS and Triton). The process efficiency was evaluated in terms of DNA and cell removal, as well as ECM preservation. Afterwards, dECMs were repopulated with bovine NP cells and cultured ex vivo. At day 7, cell behavior, ECM de novo synthesis and remodeling were evaluated [1]. Moreover, dECMs’ inflammatory response was assessed after in vivo CAM assay. Finally, inflammatory and angiogenic cytokines were analyzed in the conditioned media-derived from dECMs by using a cytokine array. As results, an optimal decellularization protocol (SDS 0.1%, 1h), efficient at removing cells and DNA from bovine NPs, while preserving ECM cues of native tissues, was developed. After repopulation, aggrecan increased in younger NPs, while collagen 2 decreased which may be indicative of matrix remodeling [1]. After in vivo CAM assay, fetal dECMs showed the highest inflammatory response. Finally, no statistically significant changes of cytokines were detected in the matrices, despite for a trend of higher IFN-α, IFN-γ and LIF in fetal dECMs, IL-1β in young dECMs and Decorin in old dECMs. Overall, this work uncovered the importance of tissue donor ages for tissue regenerative purpose, opening new avenues for the development of appropriate therapeutic strategies for IVD degeneration. Acknowledgments: FCT, EUROSPINE, ON Foundation


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results. The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions. BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye, B. Ju, H. Wang, K-B. Lee. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration. Bone Joint Res 2016;5:412–418. DOI: 10.1302/2046-3758.59.BJR-2016-0032.R1


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims. Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Methods. Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining. Results. Suramin inhibited IL-1β-induced apoptosis, downregulated matrix metalloproteinase (MMP)-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5, and upregulated collagen 2A (Col2a1) and aggrecan in IL-1β-treated NP cells. IL-1β-induced inflammation, assessed by IL-1β, IL-8, and tumour necrosis factor α (TNF-α) upregulation, was alleviated by suramin treatment. Suramin suppressed IL-1β-mediated proteoglycan depletion and the induction of MMP-3, ADAMTS-4, and pro-inflammatory gene expression in ex vivo experiments. Conclusion. Suramin administration represents a novel and effectively therapeutic approach, which could potentially alleviate IDD by reducing extracellular matrix (ECM) deposition and inhibiting apoptosis and inflammatory responses in the NP cells. Cite this article: Bone Joint Res 2021;10(8):498–513


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 91 - 91
17 Apr 2023
Snuggs J Senter R Whitt J Le Maitre C
Full Access

Low back pain affects 80% of the population with half of cases attributed to intervertebral disc (IVD) degeneration. However, the majority of treatments focus on pain management, with none targeting the underlying pathophysiological causes. PCRX-201 presents a novel gene therapy approach that addresses this issue. PCRX-201 codes for interleukin-1 receptor antagonist (IL-1Ra), the natural inhibitor of the pro-inflammatory cytokine IL-1, which orchestrates the catabolic degeneration of the IVD. Our objective here is to determine the ability of PCRX-201 to infect human nucleus pulposus (NP) cells and tissue to increase the production of IL-1Ra and assess downstream effects on catabolic protein production. Degenerate human NP cells and tissue explants were infected with PCRX-201 at 0 or 3000 multiplicities of infection (MOI) and subsequently cultured for 5 days in monolayer (n=7), 21 days in alginate beads (n=6) and 14 days in tissue explants (n=5). Cell culture supernatant was collected throughout culture duration and downstream targets associated with pain and degeneration were assessed using ELISA. IL-1Ra production was increased in NP cells and tissue infected with PCRX-201. The production of downstream catabolic proteins such as IL-1β, IL-6, MMP3, ADAMTS4 and VEGF was decreased in both 3D-cultured NP cells and tissue explants. Here, we have demonstrated that a novel gene therapy, PCRX-201, is able to infect and increase the production of IL-1Ra in degenerate NP cells and tissue in vitro. The increase of IL-1Ra also resulted in a decrease in the production of a number of pro-inflammatory and catabolic proteins, suggesting PCRX-201 enables the inhibition of IL-1-driven IVD degeneration. At present, no treatments for IVD degeneration target the underlying pathology. The ability of FX201 to elicit anti-catabolic responses is promising and warrants further investigation in vitro and in vivo, to determine the efficacy of this exciting, novel gene therapy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 122 - 122
2 Jan 2024
Tseranidou S Bermudez-Lekerika P Segarra-Queralt M Gantenbein B Maitre C Piñero J Noailly J
Full Access

Intervertebral disc (IVD) degeneration (IDD) involves imbalance between the anabolic and the catabolic processes that regulate the extracellular matrix of its tissues. These processes are complex, and improved integration of knowledge is needed. Accordingly, we present a nucleus pulposus cell (NPC) regulatory network model (RNM) that integrates critical biochemical interactions in IVD regulation and can replicate experimental results. The RNM was built from a curated corpus of 130 specialized journal articles. Proteins were represented as nodes that interact through activation and inhibition edges. Semi-quantitative steady states (SS) of node activations were calculated. Then, a full factorial sensitivity analysis (SA) identified which out of the RNM 15 cytokines, and 4 growth factors affected most the structural proteins and degrading enzymes. The RNM was further evaluated against metabolic events measured in non-healthy human NP explant cultures, after 2 days of 1ng/ml IL-1B catabolic induction. The RNM represented successfully an anabolic basal SS, as expected in normal IVD. IL-1B was able to increase catabolic markers and angiogenic factors and decrease matrix proteins. Such activity was confirmed by the explant culture measurements. The SA identified TGF-β and IL1RA as the two most powerful rescue mediators. Accordingly, TGFβ signaling-based IDD treatments have been proposed and IL-1RA gene therapy diminished the expression of proteases. It resulted challenging to simulate rescue strategies by IL-10, but interestingly, IL-1B could not induce IL-10 expression in the explant cultures. Our RNM was confronted to independent in vitro measurements and stands for a unique model, to integrate soluble protein signaling and explore IDD. Acknowledgements: European Commission (Disc4All-ITN-ETN-955735)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 138 - 138
2 Jan 2024
Muñoz-Moya E Ruiz C Piella G Noailly J
Full Access

This study investigates the relationships between Intervertebral Disc (IVD) morphology and biomechanics using patient-specific (PS) finite element (FE) models and poromechanical simulations. 169 3D lumbar IVD shapes from the European project MySpine (FP7-269909), spanning healthy to Pfirrmann grade 4 degeneration, were obtained from MRIs. A Bayesian Coherent Point Drift algorithm aligned meshes to a previously validated structural FE mesh of the IVD. After mesh quality analyses and Hausdorff distance measurements, mechanical simulations were performed: 8 and 16 hours of sleep and daytime, respectively, applying 0.11 and 0.54 MPa of pressure on the upper cartilage endplate (CEP). Simulation results were extracted from the anterior (ATZ) and posterior regions (PTZ) and the center of the nucleus pulposus (CNP). Data mining was performed using Linear Regression, Support Vector Machine, and eXtreme Gradient Boosting techniques. Mechanical variables of interest in DD, such as pore fluid velocity (FLVEL), water content, and swelling pressure, were examined. The morphological variables of the simulated discs were used as input features. Local morphological variables significantly impacted the local mechanical response. The local disc heights, respectively in the mid (mh), anterior (ah), and posterior (ph) regions, were key factors in general. Additionally, fluid transport, reflected by FLVEL, was greatly influenced (r2 0.69) by the shape of the upper and lower cartilage endplates (CEPs). This study suggests that disc morphology affects Mechanical variables of interest in DD. Attention should be paid to the antero-posterior distribution and local effects of disc heights. Surprisingly, the CEP morphology remotely affected the fluid transport in NP volumes around mid-height, and mechanobiological implications shall be explored. In conclusion, patient-specific IVD modeling has strong potential to unravel important correlations between IVD phenotypes and local tissue regulation. Acknowledgments: European Commission: Disc4All-MSCA-2020-ITN-ETN GA: 955735; O-Health-ERC-CoG-2021-101044828


Aims. In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD. Results. A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion. DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD. Cite this article: Bone Joint Res 2024;13(5):247–260


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 3 - 3
1 Oct 2019
Rustenburg C Emanuel K Holewijn R van Royen B Smit T
Full Access

Purpose of study and background. Clinical researchers use Pfirrmann classification for grading intervertebral disc degeneration radiologically. Basic researchers have access to morphology and instead use the Thompson score. The aim of this study was to assess the inter-observer reliability of both classifications, along with their correlation. Methods and Results. We obtained T2-weighted MR images of 80 human lumbar intervertebral discs with various stages of degeneration to assess the Pfirrmann-score. Then the discs were dissected midsagittally to obtain the Thompson-score. The observers were typical users of both grading systems: a spine surgeon, radiology resident, orthopaedic resident, and a basic scientist, all experts on intervertebral disc degeneration. Cohen's kappa (CK) was used to determine inter-observer reliability, and intra-class correlation (ICC) as a measure for the variation between the outcomes. For the Thompson score, the average CK was 0.366 and ICC score 0.873. The average inter-observer reliability for the Pfirrmann score was 0.214 (CK) and 0.790 (ICC). Comparing the grading systems, the intra-observer agreement was 0.240 (CK) and 0.685 (ICC). Conclusion. With substantial variation between observers, the inter-observer agreements for the Pfirrmann and Thompson grading systems were moderate. This may explain the poor relationship between radiological and clinical observations in patients and raises questions about the validity of the Pfirrmann score. The mediocre intra-observer agreement between the Pfirrmann and Thompson score shows that there is no clear definition of intervertebral disc degeneration. The field is in need for a new, objective and quantitative classification system to better define and evaluate disc degeneration. There are no conflicts of interest. Funded in part by Annafonds Netherlands and Dutch Spine Society


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1253 - 1258
1 Sep 2011
Alpantaki K Katonis P Hadjipavlou AG Spandidos DA Sourvinos G

It has been proposed that intervertebral disc degeneration might be caused by low-grade infection. The purpose of the present study was to assess the incidence of herpes viruses in intervertebral disc specimens from patients with lumbar disc herniation. A polymerase chain reaction based assay was applied to screen for the DNA of eight different herpes viruses in 16 patients and two controls. DNA of at least one herpes virus was detected in 13 specimens (81.25%). Herpes Simplex Virus type-1 (HSV-1) was the most frequently detected virus (56.25%), followed by Cytomegalovirus (CMV) (37.5%). In two patients, co-infection by both HSV-1 and CMV was detected. All samples, including the control specimens, were negative for Herpes Simplex Virus type-2, Varicella Zoster Virus, Epstein Barr Virus, Human Herpes Viruses 6, 7 and 8. The absence of an acute infection was confirmed both at the serological and mRNA level. To our knowledge this is the first unequivocal evidence of the presence of herpes virus DNA in intervertebral disc specimens of patients with lumbar disc herniation suggesting the potential role of herpes viruses as a contributing factor to the pathogenesis of degenerative disc disease


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 26 - 26
1 Oct 2019
Poillot P Snuggs J Maitre CL Huyghe J
Full Access

Purpose and Background. The intervertebral disc is constantly subjected to forces generated by movement. But degeneration can disrupt normal biomechanics, generating uneven and complex loading patterns. Evidence suggests that these forces are converted into voltages through different mechanisms, such as streaming potentials. This implicates voltage-gated ion channels in the biological remodelling response of the disc to loading. These signalling pathways have not been studied, and this incomplete understanding of disc mechanotransduction may hinder regenerative therapies. The purpose of this study is to identify and determine the role of voltage-gated ion channels in the intervertebral disc and to investigate any changes in degeneration. Methods and Results. Primary bovine and human disc cells were cultured in monolayer or alginate beads for experiments. Cells were treated with altered osmolarity alone or in combination with IL-1β. Ion flux was measured through calcium influx and will be further investigated using the xCelligence RTCA CardioECR. Immunohistochemistry was performed on human and bovine discs to evaluate expression levels of ion channels. RNA was extracted from bovine NP cells and will be analysed through PCR/Microarray for gene expression. Conclusions. Preliminary results show that the Ca. v. 2.2 channel is expressed across the human disc, and is altered by degree of degeneration. Treatment with IL-1β may partly hinder the increase in calcium signalling of disc cells in response to lower osmolarity conditions. The presence of voltage-gated ion channels in the disc has been demonstrated for the first time. The role of these channels will be investigated through measuring ion flux with channel inhibitors across different culture treatments. No conflicts of interest exist. This research was supported by funding from the Society for Back Pain Research through the Travel Award 2019 and from the Irish Research Council under the Government of Ireland Postgraduate Scholarship Programme (GOIPG/2018/2416)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 31 - 31
1 Apr 2018
Vergroesen PP Emanuel K Peeters M Kingma I Smit T
Full Access

The intervertebral disc faces high compressive forces during daily activities. Axial compression induces creeping fluid loss and reduction in disc height. With degeneration, disc fluids and height are progressively lost, altering biomechanics. It is assumed that this loss of fluids is caused by a drop in osmolality in the disc due to proteoglycan depletion. Here we investigate the isolated effect of a reduction in osmosis on the biomechanical properties of the intervertebral disc. Continuous diurnal loading was applied to healthy caprine intervertebral discs in a loaded disc culture system for a total of 6 days. We increased testing bath osmolality with two doses of polyethylene-glycol (PEG), thereby reducing the osmotic gradient between the disc and the surrounding fluid. This way we could study the isolated effect of reduced osmosis on axial creep, without damaging the disc. We evaluated: daily creep and recovery, recovery time-constants and compressive stiffness. Additionally, we investigated water content. There was a strong dose-dependent effect of PEG concentration on water content and axial creep behaviour: disc height, amplitude and rate of creep and recovery were all significantly reduced. Axial compressive stiffness of the disc was not affected. Reduction of water content and amplitude of creep and recovery showed similarity to degenerative disc biomechanics. However, the time-constants increased, indicating that the hydraulic permeability was reduced, in contrast to what happens with degeneration. This suggests that besides the osmotic gradient, the permeability of the tissues determines healthy intervertebral disc biomechanics


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 50 - 50
2 Jan 2024
Teixeira G
Full Access

Back pain is a leading cause of disability worldwide and it is primarily considered to be triggered by intervertebral disc (IVD) degeneration (IVDD). Current treatments may improve pain and mobility, but carry high costs and fail to address IVD repair or regeneration. As no effective therapeutic approach has been proposed to restore inflamed and degenerated IVDs, there is the urgent need to clarify the key pathomechanism of IVDD, the involvement of inflammation, particularly complement activation in matrix catabolism, and how to target them towards tissue repair/regeneration. Mesenchymal stem cell (MSC)-based therapies have become the focus of several regenerative IVD studies. Although patients in clinical trials reported less pain after cell therapy, the long-term success of cell engraftment is unclear due to the hostile IVD environment. The mechanism-of-action of MSCs is mostly dependent on the secreted soluble factors. Moreover, priming of MSC with interleukin (IL)-1β modulates the secretome content, improving its anti-inflammatory and regenerative effect on IVDD organ culture models. MSC-derived extracellular vesicles (EVs) have also been shown to modulate human IVD cells towards a healthy IVD phenotype in vitro. However, the mechanisms involved in the effect of secretome and EVs, particularly with regard to immunomodulation and matrix metabolism, are not fully understood. Our work investigates the effects of secretome and EVs secreted by IL-1β-primed MSCs to impair IVD matrix degradation and/or improve matrix formation in IVDD


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 5 - 5
1 Oct 2022
Williams R Snuggs J Schmitz TC Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Objectives. Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Methodology. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition. Results. Histological analysis revealed that NCs survive in the biomaterials after four weeks and maintained cell clustering in NPgel, Albugel and dNCM/NPgel. NPgel and Albugel maintained NC cell markers and extracellular matrix. NC containing constructs excreted more GAGs over the four weeks than the acellular controls. Conclusion. NC cells maintain their phenotype and characteristic features in vitro when encapsulated into biomaterials. NC cells and biomaterial construct could potentially become a therapy to treat and regenerate the IVD. Conflicts of interest: No conflicts of interest. Sources of funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825925


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 20 - 20
7 Aug 2024
Snuggs J Ciccione C Vernengo A Tryfonidou M Grad S Vadala G Maitre CL
Full Access

Background. Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue. Methods. Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival, phenotype, and matrix production. Within an in vivo sheep pilot study, NPgel (+/- NC) was injected into degenerated IVDs, blood was taken, and immune cell activation was monitored via flow cytometry over three months post-injection. Results. Within the ex vivo model, IVDs injected with NPgel (+/- NC) exhibited increased matrix expression and deposition. Viable NCs were detected post-culture, indicating survival and matrix production. In the in vivo model, NPgel injection into sheep IVDs did not significantly increase activation of immune cells compared to controls, suggesting no systemic inflammatory effects. Conclusion. NPgel, combined with NCs, shows promise for IVD regeneration. Ex vivo findings indicate NPgel supports NC survival and matrix production. Moreover, in vivo results demonstrate the absence of systemic immunogenic responses post-NPgel injection. This suggests NPgel's potential as a carrier for NCs in IVD regeneration therapy. These findings underscore NPgel's candidacy for further investigation in addressing chronic low back pain associated with IVD degeneration. Subsequent research, including long-term efficacy and safety evaluations, is imperative for clinical translation. Conflicts of interest. There are no conflicts of interest. Sources of funding. iPSpine, grant # 825925, Horizon 2020


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 32 - 32
7 Aug 2024
Raftery K Tavana S Newell N
Full Access

Introduction. Vertebral compression fractures are the most common type of osteoporotic fracture. Though 89% of clinical fractures occur anteriorly, it is challenging to replicate these ex vivo with the underlying intervertebral discs (IVDs) present. Furthermore, the role of disc degeneration in this mechanism is poorly understood. Understanding how disc morphology alters vertebral strain distributions may lead to the utilisation of IVD metrics in fracture prediction, or inform surgical decision-making regarding instrumentation type and placement. Aim. To determine the effect of disc degeneration on the vertebral trabecular bone strain distributions in axial compression and flexion loading. Methods. Eight cadaveric thoracolumbar segments (T11-L3) were prepared (N=4 axial compression, N=4 flexion). µCT-based digital volume correlation was used to quantify trabecular strains. A bespoke loading device fixed specimens at the resultant displacement when loaded to 50N and 800N. Flexion was achieved by adding 6° wedges. Disc degeneration was quantified with Pfirrmann grading and T2 relaxation times. Results. Anterior axial strains were 80.9±39% higher than the posterior region in flexion (p<0.01), the ratio of which was correlated with T2 relaxation time (R. 2. =0.80, p<0.05). In flexion, the central-to-peripheral axial strain ratio in the endplate region was significantly higher when the underlying IVDs were non-degenerated relative to degenerated (+38.1±12%, p<0.05). No significant differences were observed in axial compression. Conclusion. Disc degeneration is a stronger determinant of the trabecular strain distribution when flexion is applied. Load transfer through non-degenerate IVDs under flexion appears to be more centralised, suggesting that disc degeneration predisposes flexion-type compression fractures by shifting high strains anteriorly. Conflicts of interest. The authors declare none. Sources of funding. This work was funded by the Engineering & Physical Sciences Research Council (EP/V029452/1), and Back-to-Back


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 90 - 90
11 Apr 2023
Williams R Snuggs J Schmitz T Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition. Histological analysis revealed that NCs survive in the biomaterials after four weeks and maintained cell clustering in NPgel, Albugel and dNCM/NPgel with maintenance of morphology and low caspase 3 staining. NPgel and Albugel maintained NC cell markers (brachyury and cytokeratin 8/18/19) and extracellular matrix (collagen type II and aggrecan). Whilst Brachyury and Cytokeratin were decreased in dNCM/NPgel biomaterials, Aggrecan and Collagen type II was seen in acellular and NC containing dNCM/NPgel materials. NC containing constructs excreted more GAGs over the four weeks than the acellular controls. NC cells maintain their phenotype and characteristic features in vitro when encapsulated into biomaterials. NC cells and biomaterial construct could potentially become a therapy to treat and regenerate the IVD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 116 - 116
2 Jan 2024
Šećerović A Ristaniemi A Crivelli F Heub S Weder G Ferguson S Ledroit D Grad S
Full Access

Intervertebral disc (IVD) degeneration is inadequately understood due to the lack of in vitro systems that fully mimic the mechanical and biological complexity of this organ. We have recently made an advancement by developing a bioreactor able to simulate physiological, multiaxial IVD loading and maintain the biological environment in ex vivo IVD models [1]. To validate this new bioreactor system, we simulated natural spine movement by loading 12 bovine IVDs under a combination of static compression (0.1 MPa), cyclic flexion/extension (±3˚, ±6˚ or 0-6˚) and cyclic torsion (±2˚, ±4˚ or 0-4˚) for more than 10’000 (0.2 Hz) or 100’000 (1 Hz) cycles over 14 days. A higher number of cycles increased the release of glycosaminoglycans and nitric oxide, as an inflammation marker, whereas fewer cycles maintained these two factors at physiological levels. All applied protocols upregulated the expression of MMP13 in the outermost annulus fibrosus (AF), indicating a collagen degradation response. This was supported by fissures observed in the AF after a longer loading duration. Increasing loading cycles induced high cell death in the nucleus pulposus and inner AF, while with fewer cycles, high cell viability was maintained in all IVD regions, irrespective of the magnitude of rotation. Less frequent multiaxial loading maintains IVD homeostasis while more frequent loading initiates an IVD degenerative profile. Specifically, the morphological and molecular changes were localized in the AF, which can be associated with combined flexion/extension and torsion. More loading cycles induced region-specific cell death and a higher release of extracellular matrix molecules from the innermost IVD regions, likely associated with longer exposure to static compression. Altogether, we demonstrated the advantages of the multiaxial bioreactor to study region-specific response in the IVD, which will allow a more profound investigation of IVD degeneration under different combinations of motions


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 86 - 86
1 Dec 2022
Grant M Bokhari R Alsaran Y Epure LM Antoniou J Mwale F
Full Access

Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of proteoglycan and Col II in NP and AF cells, similar to treatment with IL-1b. (n = 4). Contrarily to IL-1b, Ca. 2+. and cincalcet did not significantly increase the expression of catabolic enzymes save ADAMTS5. Similar effects were observed in whole organ cultures, as Ca. 2+. and cinacalcet decreased proteoglycan and collagen content. Although both Ca. 2+. and cinacalcet increased the expression of alkaline phosphatase (ALP), only in Ca. 2+. -treated IVDs was there evidence of calcium deposits in NP and AF tissues as determined by von Kossa staining. Biomechanical studies on Ca. 2+. and cinacalcet-treated IVDs demonstrated decreases in complex modulus (p<0.01 and p<0.001, respectively; n=5), however, only Ca. 2+. -treated IVDs was there significant increases stiffness in NP and AF tissues (p<0.001 and p<0.05, respectively; n=3). Our results suggest that changes in the local concentrations of calcium and activation of CaSR affects matrix protein synthesis, calcification and IVD biomechanics. Ca. 2+. may be a contributing factor in IVD degeneration and calcification


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 20 - 20
2 Jan 2024
Novais E Brown E Ottone O Tran V Lepore A Risbud M
Full Access

Despite the clinical relevance of back pain and intervertebral disc herniation, the lack of reliable models has strained their molecular understanding. We characterized the lumbar spinal phenotype of C57BL/6 and SM/J mice during aging. Interestingly, old SM/J lumbar discs evidenced accelerated degeneration, associated with high rates of disc herniation. SM/J AF's and degenerative human's AF transcriptomic profiles showed altered immune cell, inflammation, and p53 pathways. Old SM/J mice presented increased neuronal markers in herniated discs, thicker subchondral bone, and higher sensitization to pain. Dorsal root ganglia transcriptomic studies and spinal cord analysis exhibited increased pain and neuroinflammatory markers associated with altered extracellular matrix regulation. Immune system single-cell and tissue level analysis showed distinctive T-cell and B-cell modulation and negative correlation between mechanical allodynia and INF-α, IL-1β, IL2, and IL4, respectively. This study underscores the multisystemic network behind back pain and highlights the role of genetic background and the immune system in disc herniation disease. Acknowledgments: This study is supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01AR055655, R01AR064733, R01AR074813 to MVR


Bone & Joint 360
Vol. 12, Issue 2 | Pages 6 - 9
1 Apr 2023
O’Callaghan J Afolayan J Ochieng D Rocos B


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 60 - 60
1 Nov 2021
Cazzanelli P Hausmann ON Wuertz-Kozak K
Full Access

Introduction and Objective. Intervertebral disc (IVD) degeneration is one of the major contributors to low back pain, the leading cause of disability worldwide. This multifactorial pathological process involves the degradation of the extracellular matrix, inflammation, and cell loss due to apoptosis and senescence. While the deterioration of the extracellular matrix and cell loss lead to structural collapse of the IVD, increased levels of inflammation result in innervation and the development of pain. Amongst the known regulators of inflammation, toll-like receptors (TLRs) and more specifically TLR-2 have been shown to be specifically relevant in IVD degeneration. As strong post-transcriptional regulators, microRNAs (miRNAs) and their dysregulation has been connected to multiple pathologies, including degenerative diseases such as osteoarthritis and IVD degeneration. However, the role of miRNAs in TLR signalling in the IVD is still poorly understood and was hence investigated in this study. Materials and Methods. Human Nucleus pulposus (hNP) and Annulus fibrosus (hAF) cells (n=5) were treated with the TLR-2/6 specific agonist PAM2CSK4 (100 ng/mL for 6 hours) in order to activate the TLR2 signalling pathway. After the activation both miRNA and mRNA were isolated, followed by next-generation sequencing and qPCR analysis of proinflammatory cytokines respectively. Furthermore, cell supernatants were used to analyze the secretion of proinflammatory cytokines with enzyme-linked immunosorbent assay. TLR-2 knockdown (siRNA) cells were used as a control. Statistical analysis was conducted by performing Kolmogorov-Smirnov test and a two-tailed Student's t-test using GraphPad Prism version 9.0.2 for Windows (GraphPad Software, La Jolla California USA). Results. TLR-2 activation resulted in the induction of an inflammatory cell response, with a significant increase in gene expression of interleukin (IL)-6 (525 ± 180 fold change, p < 0.05) and IL-8 (7513 ± 1907 fold change, p < 0.05) and protein secretion of IL-6 (30.5 ± 8.1 pg/mL) and IL-8 (28.9 ± 5.4 pg/mL). TLR-2 activation was furthermore associated with changes in the miRNA profile of hNP and hAF cells. Specifically, we identified 10 differentially expressed miRNAs in response to TLR-2 activation, amongst which were miR-335–3p (1.45 log2 FC, p < 0.05), miR-125b-1–3p (0.55 log2 FC, p < 0.05), and miR-181a-3p (−1.05 log2 FC, p < 0.05). Conclusions. The identified miRNAs are known to be associated with osteoarthritis (miR-335-3p), inflammation and IVD degeneration (mir-125-1-3p and miR-181a-3p), but the link to TLR signalling has not been previously reported. Experiments to validate the identified miRNAs and elucidate their functional role are undergoing. The identification of these miRNAs provides an opportunity to further investigate miRNAs in the context of TLR activation and inflammation and to enhance our understanding of underlying molecular mechanisms behind disc degeneration, inflammation, and TLR dysregulation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 54 - 54
11 Apr 2023
Šećerović A Ristaniemi A Cui S Li Z Alini M Weder G Heub S Ledroit D Grad S
Full Access

A novel ex vivo intervertebral disc (IVD) organ model and corresponding sample holder were developed according to the requirements for six degrees of freedom loading and sterile culture in a new generation of multiaxial bioreactors. We tested if the model can be maintained in long-term IVD organ culture and validated the mechanical resistance of the IVD holder in compression, tension, torsion, and bending. An ex vivo bovine caudal IVD organ model was adapted by retaining 5-6 mm of vertebral bone to machine a central cross and a hole for nutrient access through the cartilaginous endplate. A counter cross was made on a customized, circular IVD holder. The new model was compared to a standard model with a minimum of bone for the cell viability and height changes after 3 weeks of cyclic compressive uniaxial loading (0.02-0.2 MPa, 0.2 Hz, 2h/ day; n= 3 for day 0, n= 2 for week 1, 2, and 3 endpoints). Mechanical tests were conducted on the assembly of IVD and holder enhanced with different combinations of side screws, top screws, and bone adhesive (n=3 for each test). The new model retained a high level of cell viability after three weeks of in vitro culture (outer annulus fibrosus 82%, inner annulus fibrosus 69%, nucleus pulposus 75%) and maintained the typical values of IVD height reduction after loading (≤ 10%). The holder-IVD interface reached the following highest average values in the tested configurations: 320.37 N in compression, 431.86 N in tension, 1.64 Nm in torsion, and 0.79 Nm in bending. The new IVD organ model can be maintained in long-term culture and when combined with the corresponding holder resists sufficient loads to study IVD degeneration and therapies in a new generation of multiaxial bioreactors


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 68 - 68
17 Apr 2023
Lazaro-Pacheco D Holsgrove T
Full Access

Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The incubation time required is dependent on the working temperatures and tissue thickness. The calcein-AM dye will not be retained in the cells for more than four hours. The specimen preparation and culturing protocol have demonstrated good cell viability at day 0 and after seven days of culture. Processing times and sample preparation play an essential role as the cell viability components in most kits hydrolyse or photobleach quickly. A step-by-step replicable protocol for evaluating the cell viability in IVD will facilitate the evaluation of cell and toxicity-related outcomes of biomechanical testing protocols and IVD regenerative therapies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 146 - 146
1 Nov 2021
Antoniou J
Full Access

Osteoarthritis (OA) is a painful and disabling chronic condition that constitutes a major challenge to health care worldwide. There is currently no cure for OA and the analgesic pharmaceuticals available do not offer adequate and sustained pain relief, often being associated with significant undesirable side effects. Another disease associated with degenerating joints is Intervertebral disc degeneration (IVDD) which is a leading cause of chronic back pain and loss of function. It is characterized by the loss of extracellular matrix, specifically proteoglycan and collagen, tissue dehydration, fissure development and loss of disc height, inflammation, endplate sclerosis, cell death and hyperinnervation of nociceptive nerve fibers. The adult human IVD seems incapable of intrinsic repair and there are currently no proven treatments to prevent, stop or even retard disc degeneration. Fusion is currently the most common surgical treatment of symptomatic disc disease. However, radiographic follow-up studies have revealed that many patients develop adjacent segment disc degeneration due to altered spine biomechanics. The development of safe and efficacious disease modifying OA drugs (DMOADs) that treat pain and inflammation in joints will improve our ability to control the disease. I addition, a biologic treatment of IVDD is desirable. This presentation will provide an overview of recent advances and future prospects of a multimodal biologic treatment of OA, and IVDD. We will focus on Link N, a naturally occurring peptide representing the N terminal region of link protein and the first 1–8 residues of Link N (short Link N, sLN) responsible for the biologic therapy in question


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 488 - 488
1 Nov 2011
Tolofari S Richardson S Hoyland J
Full Access

Introduction: Intervertebral disc (IVD) degeneration is a major underlying factor in the pathogenesis of chronic low back pain. The healthy IVD is both avascular and aneural, however during symptomatic degeneration there is ingrowth of nociceptive nerve fibres and blood vessels into proximal regions of the IVD. Semaphorin 3A (sema3A) is an axonal guidance molecule with the ability to repel nerves. This study aimed to identify whether class 3 semaphorins were expressed by cells of the IVD and addresses the hypothesis that they may play a role in repelling axons surrounding the healthy disc thus maintaining its aneural condition. Methods: Forty human IVD samples were investigated using RT-PCR and immunohistochemistry to identify the expression of sema3A, 3F and their receptors; neuropilins (1 & 2) and plexins (A1-4). Serial sections were stained for PGP9.5 and CD31 to correlate semaphorin expression with nerve and blood vessel ingrowth respectively. Results: Sema3A protein, localised primarily to the OAF, was expressed highly in the healthy disc. In degenerate samples sema3A expression decreased significantly in this region, although chondrocyte clusters within the degenerate NP exhibited strong immunopositivity. mRNA for sema3A receptors was also identified in healthy and degenerate tissues. CD31 and PGP9.5 were expressed most highly in degenerate tissues correlating with low expression of sema3A. Conclusions: This study is the first to establish the expression of semaphorins and their receptors in the human IVD with a decrease seen in the degenerate symptomatic IVD. Sema3A may therefore, amongst other roles, act as a ‘barrier’ to neuronal ingrowth into the healthy disc. Conflicts of Interest: None declared. Sources of Funding: Arthritis Research Campaign


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 48 - 48
1 Jan 2019
Mengoni M Zapata-Cornelio FY Wijayathunga VN Wilcox RK
Full Access

The clinical uptake of minimally invasive interventions for intervertebral disc, such as nucleus augmentation, is currently hampered by the lack of robust pre-clinical testing methods that can take into account the large variation in the mechanical behaviour of the tissues. Using computational modelling to develop new interventions could be a way to test scenarios accounting for variation. However, such models need to have been validated for relevant mechanical function, e.g. compressive, torsional or flexional stiffness, and local disc deformations. The aim of this work was to use a novel in-vitro imaging method to assess the validity of computational models of the disc that employed different degrees of sophistication in the anatomical representation of the nucleus. Bovine caudal bone-disc-bone entities (N=6) were dissected and tested in uniaxial compression in a custom-made rig. Forty glass markers were placed on the surface of each disc. The specimens were scanned both with MRI and micro-CT before and during loading. Specimen-specific computational models were built from CT images to replicate the compression test. The anatomy of the nucleus was represented in three ways: assuming a standard diameter ratio, assuming a cylindrical shape with its volume matching that measured from MRI, and deriving the shape directly from MRI. The three types of models were calibrated for force-displacement. The radial displacement of the glass markers were then compared with their experimental displacement derived from CT images. For a similar accuracy in modelling overall force-displacement, the mean error on the surface displacement was 35% for standard ratio nucleus, 38% for image-based cylindrical nucleus, and 32% for MRI-based nucleus geometry. This work shows that, as long as consistency is kept to develop and calibrate image-based computational models, the complexity of the nucleus geometry does not influence the ability of a model to predict surface displacement in the intervertebral disc


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 14 - 14
7 Aug 2024
Suri P Kazemi-Naini M Freidin M Tsepilov Y Elgaeva E Granville-Smith I Compte R Williams F
Full Access

Background. The association between lumbar intervertebral disc degeneration (LDD) and low back pain (LBP) is modest. We have recently shown that genetic propensity to pain is an effect modifier of the LDD-LBP relationship when LDD is defined as a summary score of LDD (LSUM), suggesting the association may be driven by individuals with the greatest genetic predisposition to pain. This study examined the association between individual spine magnetic resonance imaging (MRI)-determined LDD features and LBP in subgroups defined by genetic predisposition to pain. Method. We developed a polygenic risk score (PRS) for “genetic propensity to pain” defined as the number of non-back pain locations (head, face, neck/shoulder, stomach/abdomen, hip, and knee) with duration ≥3 months in 377,538 UK Biobank participants of European ancestry. This PRS was used to stratify TwinsUK MRI samples (n=645) into four strata of genetic propensity to pain. We examined the association between LBP and MRI features of lumbar disc height, disc signal intensity, disc bulge, and osteophytes with adjustments for age, sex, PRS strata, interaction terms for each MRI feature x PRS strata, and twin status. Results. We found significant effect modification of the LDD-LBP relationship by genetic propensity to pain for the lumbar MRI features of disc height (p=0.03 for the interaction term with highest quartile of genetically-predicted propensity to pain) and disc signal intensity (p=0.001), but not for disc bulge and osteophytes. Conclusion. Genetic propensity to pain modifies the association between individual LDD features and LBP and should be considered in LBP clinical studies. Conflicts of interest. No conflicts of interest. Sources of funding. No funding obtained. Acknowledgement. UKBB data were obtained under the project #18219. This paper is submitted to the Spine journal and is under review


Background. Magnetic resonance imaging (MRI) algorithm identifies end stage severely degenerated disc as ‘black’, and a moderately degenerate to non-degenerated disc as ‘white’. MRI is based on signal intensity changes that identifies loss of proteoglycans, water, and general radial bulging but lacks association with microscopic features such as fissure, endplate damage, persistent inflammatory catabolism that facilitates proteoglycan loss leading to ultimate collapse of annulus with neo-innervation and vascularization, as an indicator of pain. Thus, we propose a novel machine learning based imaging tool that combines quantifiable microscopic histopathological features with macroscopic signal intensities changes for hybrid assessment of disc degeneration. Methods. 100-disc tissue were collected from patients undergoing surgeries and cadaveric controls, age range of 35–75 years. MRI Pfirrmann grades were collected in each case, and each disc specimen were processed to identify the 1) region of interest 2) analytical imaging vector 3) data assimilation, grading and scoring pattern 4) identification of machine learning algorithm 5) predictive learning parameters to form an interface between hardware and software operating system. Results. Kernel algorithm defines non-linear data in xy histogram. X,Y values are scored histological spatial variables that signifies loss of proteoglycans, blood vessels ingrowth, and occurrence of tears or fissures in the inner and outer annulus regions mapped with the dampening and graded series of signal intensity changes. Conclusion. To our knowledge this study is the first to propose a machine learning method between microscopic spatial tissue changes and macroscopic signal intensity grades in the intervertebral disc. No conflict of interest declared.  . Sources of Funding. ICMR/5/4-5/3/42/Neuro/2022-NCD-1, Dr TMA PAI SMU/ 131/ REG/ TMA PURK/ 164/2020. A part of the above study was presented as an oral paper at the International Society for the Study of Lumbar Spine (ISSLS) meeting held on 1–5. th. May 2023, Melbourne, Australia


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 45 - 45
1 Mar 2021
Russo F Ambrosio L Ngo K Vadalà G Denaro V Fan Y Sowa G Kang JD Vo N
Full Access

Intervertebral disc degeneration (IDD) is a major cause of low back pain, which affects 80% of the adult population at least once in their life. The pathophysiological conditions underlying IDD are still poorly understood. Genetic makeup, aging, smoking, physical inactivity and mechanical overloading, especially due to obesity, are among the strongest risk factors involved. Moreover, IDD is often associated with chronic inflammation within disc tissues, which increases matrix breakdown, glycosaminoglycan (GAG) loss and cell death. This micro-inflammatory environment is typical of several metabolic disorders, including diabetes mellitus (DM). As the etiopathogenesis of IDD in diabetic subjects remains scarcely understood, we hypothesised that this may be driven by a DM-induced inflammation leading to a combination of reduced GAG levels, decreased proteoglycan synthesis and increased matrix breakdown within the disc. The objective of the study was to investigate the pathogenesis of IDD in a murine model of type 1 DM (T1DM), namely non-obese diabetic (NOD) mouse. Total disc glycosaminoglycan (GAG) content, proteoglycan synthesis, aggrecan fragmentation mediated by matrix metalloproteinases (MMPs) and a Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS), glucose transporter (mGLUT1) gene expression and apoptosis (TUNEL assay) were assessed in NOD mice and wild-type euglycemic control mice. Spinal structural and molecular changes were analysed by micro-computed tomography (mCT), histological staining (Safranin-O and fast green) and quantitative immunofluorescence (anti-ADAMTS-4 and 5 antibodies). Statistical analysis was conducted considering the average of 35 samples ± standard error for each measurement, with 95% confidence intervals calculated to determine statistical significance (p-value < 0.05). IVDs of NOD mice showed increased disc apoptosis (p < 0.05) and higher aggrecan fragmentation mediated by ADAMTS (p < 0.05). However, ADAMTS-4 and −5 did not appear to be involved in this process. The total GAG content normalized to DNA and PG synthesis showed no statistically significant alterations, as well as Safranin O staining. Although not significantly, NOD mice showed reduced glucose uptake. In addition, the vertebral structure of NOD mice at mCT seemed not to be altered. These data demonstrate that DM may contribute to IDD by increasing aggrecan degradation and promoting cell apoptosis, which may represent early indicators of the involvement of DM in the pathogenesis of IDD


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 58 - 58
1 Nov 2021
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction and Objective. Low back pain (LBP) is a major cause of long-term disability in adults worldwide and it is frequently attributed to intervertebral disc (IVD) degeneration. So far, no consensus has been reached regarding appropriate treatment and LBP management outcomes remain disappointing. Spine unloading or traction protocols are common non-surgical approaches to treat LBP. These treatments are widely used and result in pain relief, decreased disability or reduced need for surgery. However, the underlying mechanisms -namely, the IVD unloading mechanobiology- have not yet been studied. The aim of this first study was to assess the feasibility of IVD unloading in a large animal organ culture set-up and evaluate its impact on mechanobiology. Materials and Methods. Bovine tail discs (diameter 16.1 mm ± 1.2 mm), including the endplates, were isolated and prepared for culture. Beside the day0 sample that was processed directly, three other discs were cultured for 3 days and processed on day4. One disc was loaded in the bioreactor according to a previously established physiological (compressive) loading protocol (2h/day, 0.2Hz). The two other discs were embedded in biocompatible resin, leaving the cartilage endplate free to permit nutrient diffusion, and fitted in the traction holder; one of these discs was kept in free swelling conditions, whereas the second was submitted to cyclic traction loading (2h/day, 0.2Hz) corresponding to 30% of the animal body weight corrected for organ culture. Results. The cell viability assessed on lactate dehydrogenase and ethidium homodimer stained histological slides was not different between the three cultured discs. This means that the disc viability was not affected neither by the embedding, nor by the traction itself. Compared to the physiologically loaded disc, the gene expression of COL1, COL2 and ACAN was higher in the nucleus pulposus and inner annulus fibrosus of the traction treated disc. In the outer annulus fibrosus of this disc TAGLN and MKX were higher expressed upon traction than in the physiologically loaded disc. Conclusions. Based on these preliminary data, we can conclude that large animal organ culture allows effective unloading of the disc, while preserving cell viability and modulating cellular gene expression responses. This sets the ground for future experiments and opens the door to an evidence-based improvement of clinical spine traction protocols and LBP management overall


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1036 - 1039
1 Sep 2002
Tai CC Want S Quraishi NA Batten J Kalra M Hughes SPF

Antibiotics are often administrated prophylactically in spinal procedures to reduce the risk of infection of the disc space. It is still not known which antibiotics are able to penetrate the intervertebral disc effectively. In a prospective, randomised, double-blind clinical study, we examined the penetration of the intervertebral discs of two commonly used antibiotics, cefuroxime and gentamicin. The patients, randomised into two groups, received either 1.5 g of cefuroxime or 5 mg/kg of gentamicin prophylactically two hours before their intervertebral discs were removed. A specimen of blood, from which serum antibiotic levels were determined, was obtained at the time of discectomy. Therapeutic levels of antibiotic were detectable in the intervertebral discs of the ten patients who received gentamicin. Only two of the ten patients (20%) who received cefuroxime had a quantifiable level of antibiotic in their discs although therapeutic serum levels of cefuroxime were found in all ten patients. Our results show that cefuroxime does not diffuse into human intervertebral discs as readily as gentamicin. It is possible that the charge due to ionisable groups on the antibiotics can influence the penetration of the antibiotics. We therefore recommend the use of gentamicin in a single prophylactic dose for all spinal procedures in order to reduce the risk of discitis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 39 - 39
1 Sep 2019
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Methods and Results. Immunohistochemistry for the senescence marker: p16. INK4A. was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16. INK4A. positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. Conclusions. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression, which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro. No conflicts of interest. Sources of funding: Funded by ARUK and MRC


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 142 - 142
1 Jul 2002
Faulkner A Johnson W Eisenstein S Zhao X White B Franklin V Lyndon F Tighe B Roberts S
Full Access

Introduction: Intervertebral disc degeneration occurs with ageing and is often associated with back pain. During such degeneration, gross morphological differences between the central nucleus pulposus (NP) and outer annulus fibrosus (AF) are lost and the disc loses hydration and height due to decreased proteoglycan content. The cartilage endplate may also become calcified and this blocks the passage of nutrients into the disc, causing cell death and further degeneration. A potential therapy of degeneration is “re-inflation” of the disc with the use of hydrogels seeded with autologous disc cells. In this study, we have assessed the ability of a variety of hydrogels to support intervertebral disc cell growth. Method: Intervertebral disc cells were isolated enzymatically from bovine tails and cultured as a monolayer in 10% foetal calf serum in DMEM containing antibiotics and ascorbic acid. This stimulates the cells to proliferate and thereby produces increased cell numbers. The cells were then seeded onto various hydrogels including hyaluronic acid (HA), 2-hydroxyethyl methacrylate (HEMA), N’N’ dimethyl methacrylate (NNDMA) and polyacryloyl morpholine (AMO) before harvesting at set time points of 1, 3, 6 and 9 days for hyaluronic acid and 1, 7, 14, 21, and 28 days for the other hydrogels. Cell number, morphology, viability and adherence to or migration into the hydrogels were assessed. Cell proliferation was also determined by immunostaining for the Ki67 antigen. Results: Disc cells became incorporated in the HA gel, adopted a spherical morphology and remained viable for up to nine days. However, after a few days, a large proportion of the cells began to migrate through the gel to form a monolayer on the bottom of the tissue culture well. These monolayered cells became fibroblastic and proliferated. NP cells appeared to proliferate to a greater extent than AF cells both in monolayer and in suspension. Ki67 antigen immunostaining confirmed cell proliferation. On the non-porous HEMA, NNDMA and AMO, both cell types adhered and adopted a fibroblast-like morphology. Cell adhesion was greatest to the HEMA. NNDMA and AMO had lower levels of cell adherence. Both cell types became incorporated into the porous materials and adopted a rounded morphology. Cell incorporation appeared to be greatest into porous HEMA. Conclusion: These initial studies show that intervertebral disc cells will adhere to or migrate into a variety of hydrogels and remain viable. The morphology and proliferative capacity of cells derived from both the AF and NP were responsive to the structure of the hydrogel with which they were cultured. Thus, cells were able to become fibroblastic or chondrocytic. Further analyses will reveal whether matrix synthesis by disc cells is similarly responsive to the hydrogel format. The results of these experiments suggest that the hydrogels tested have potential as support matrices in intervertebral disc repair to provide relief from discogenic low-back pain


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 53 - 53
11 Apr 2023
Vadalà G Di Giacomo G Ambrosio L Cicione C Tilotta V Russo F Papalia R Denaro V
Full Access

This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following incubation with 5, 10 and 25 ng/mL r-irisin for 24 hours and subsequent culture with 10 ng/ml IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with r-irisin). Irisin increased hNPC proliferation (p<0.001), metabolic activity (p<0.05), GAG content (p<0.01), as well as COL2 (p<0.01), aggrecan (p<0.05), TIMP-1 and −3 (p<0.01) gene expression, while decreasing MMP-13 (p<0.05) and IL-1β (p<0.001) mRNA levels. r-irisin pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p<0.001) and a decrease of IL-1β (p<0.05) levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to r-irisin increased hNPC metabolic activity (p<0.001), COL2 gene expression (p<0.05) and decreased IL-1β (p<0.05) and ADAMTS-5 levels (p<0.01). Irisin stimulates hNPC proliferation, metabolic activity, and anabolism by reducing IL-1β and catabolic enzyme expression while promoting matrix synthesis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 54 - 54
1 Jul 2020
Epure LM Grant M Mwale F Antoniou J Bolt A Mann K Chou H
Full Access

Tungsten has been increasing in demand for use in manufacturing and recently, medical devices, as it imparts flexibility, strength, and conductance of metal alloys. Given the surge in tungsten use, our population may be subjected to elevated exposures. For instance, embolism coils made of tungsten have been shown to degrade in some patients. In a cohort of breast cancer patients who received tungsten-based shielding for intraoperative radiotherapy, urinary tungsten levels remained over tenfold higher 20 months post-surgery. In vivo models have demonstrated that tungsten exposure increases tumor metastasis and enhances the adipogenesis of bone marrow-derived mesenchymal stem cells while inhibiting osteogenesis. We recently determined that when mice are exposed to tungsten [15 ppm] in their drinking water, it bioaccumulates in the intervertebral disc tissue and vertebrae. This study was performed to determine the toxicity of tungsten on intervertebral disc. Bovine nucleus pulposus (bNP) and annulus fibrosus (bAF) cells were isolated from bovine caudal tails. Cells were expanded in flasks then prepared for 3D culturing in alginate beads at a density of 1×10. ∧. 6 cells/mL. Beads were cultured in medium supplemented with increasing tungsten concentrations in the form of sodium tungstate [0, 0.5, 5, 15 ug/mL] for 12 days. A modified GAG assay was performed on the beads to determine proteoglycan content and Western blotting for type II collagen (Col II) synthesis. Cell viability was determined by counting live and dead cells in the beads following incubation with the Live/Dead Viability Assay kit (Thermo Fisher Scientific). Cell numbers in beads at the end of the incubation period was determined using Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific). Tungsten dose-dependently decreased the synthesis of proteoglycan in IVD cells, however, the effect was significant at the highest dose of 15 ug/mL. (n=3). Furthermore, although tungsten decreased the synthesis of Col II in IVD cells, it significantly increased the synthesis of Col I. Upregulation of catabolic enzymes ADAMTS4 and −5 were also observed in IVD cells treated with tungsten (n=3). Upon histological examination of spines from mice treated with tungsten [15 ug/mL] in their drinking water for 30 days, disc heights were diminished and Col I upregulation was observed (n=4). Cell viability was not markedly affected by tungsten in both bNP and bAF cells, but proliferation of bNP cells decreased at higher concentration. Surprisingly, histological examination of IVDs and gene expression analysis demonstrated upregulation of NGF expression in both NP and AF cells. In addition, endplate capillaries showed increases in CGRP and PGP9.5 expression as determined on histological sections of mouse IVDs, suggesting the development of sensory neuron invasion of the disc. We provide evidence that prolonged tungsten exposure can induce disc fibrosis and increase the expression of markers associated with pain. Tungsten toxicity may play a role in disc degeneration disease


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives. The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity. Methods. A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12. Results. No MMP12 expression was detected in the nucleus pulposus. Expression of MMP12 in the annulus progressively increased from group I to groups II and III, mainly at the concave side. Many growth plate chondrocytes expressed MMP12 in the control group, less in group I and rare in groups II and III. Changes in cell phenotype and reduction of cell number were observed, together with disorganisation of matrix microstructure similar to disc degeneration. ProMMP12 was detected at the area of 54 kDa and active MMP12 at 22 kDa. Conclusions. Expression of MMP12 after application of asymmetric loading in a rat tail increased in the intervertebral disc but decreased in the growth plate and correlated with the degree of the deformity and the side of the wedged disc. Cite this article: Bone Joint Res 2014;3:273–9


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 29 - 29
1 Nov 2018
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However, to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Immunohistochemistry for the senescence marker: p16INK4A was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16 INK4A positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 502 - 502
1 Sep 2009
Eisenstein N Yu J Urban J
Full Access

Intervertebral discs (IVDs) are fibrocartilagenous ovoids located between the vertebral bodies of the spine that provide the sole source of flexibility in that structure. IVDs are clinically very important as degeneration has been shown to be strongly associated with lower back pain, sciatica, and disc herniation: potentially disabling conditions that affect a very large section of the UK population. The aetiology of disc degeneration is poorly understood although upregulation of matrix metalloproteinase (MMP) activity is thought to be involved. Degradation products of the extra-cellular matrix are known to increase MMP production and activity in other tissues. This project concentrated on examining the effects of degredation products of elastin. Elastin fragments (κ-elastin peptides) have been shown to upregulate mRNA levels and increase expression of pro-MMP-1 in human skin fibroblasts, cells that are thought to be similar to those residing in the annulus fibrosus of intervertebral discs. This study examined their effect on disc cells and on skin fibroblasts. Total MMP-2 and -7 activity produced by cells extracted from the annulus fibrosus of bovine intervertebral disc cells and cultured for 24 hours with 0–300μg/ml κ-elastin was determined using fluorimetric and zymographic analyses. κ-elastin was prepared from bovine ligamentum nuchae or bovine intervertebral discs. Culture with κ-elastin prepared from bovine ligamentum nuchae caused skin and disc cell potential pro-MMP-2 activity to increase in a dose-dependent manner; the potential pro-MMP-2 activity of both cell types is more than doubled when cultured with 300μg/ml κ-elastin. These findings suggest that in the bovine disc, matrix breakdown may cause a feedback loop with degraded elastin stimulating disc cells to increase production of pro-MMP-2, with the possibility of further degrading elastin and other proteins and contributing to IVD breakdown


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 4 - 4
1 Oct 2019
Partridge S Snuggs J Thorpe A Cole A Chiverton N Le Maitre C Sammon C
Full Access

Introduction. Injectable hydrogels via minimally invasive surgery offer benefits to the healthcare system, reduced risk of infection, scar formation and the cost of treatment. Development of new treatments with the use of novel biomaterials requires significant pre-clinical testing and must comply with regulations before they can reach the bedside. In the European economic area (EEA) one of the first hurdles of this process is attaining the CE marking which protects the health, safety and environmental aspects of a product. Implanted materials fall under the class III medical device EU745 regulation standards. To attain the CE marking for a product parties must provide evidence of the materials safety with an investigational medicinal product dossier (IMPD). Methods and Results. We have been working to develop a new thermoresponsive injectable biomaterial hydrogel (NPgel) for the treatment of intervertebral disc (IVD) disease. A large part of the IMPD requires information on how the hydrogel physical properties change over time in bodily conditions. We have been studying 6 batches of NPgel over 18 months, tracking the materials wet/ dry weight, structure and composition. To date we have found that NPgel in liquids more similar to the body (with protein and salts) appear to be stable and safe, whilst those in distilled water swell and disintegrate over time. Subtle long-term changes to the material composition were found and we are currently investigating its ramifications. Conclusion. The study highlights the need to test materials in detail in physiologically representative environments before approaching the bedside and demonstrates promise for NPgel as a suitable CE candidate. Conflicts of interest: CS and CLM are named inventors on the patent for NPgel/BGel. Funded by the Medical Research Council and Versus Arthritis UK: SNiPER


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 484 - 484
1 Nov 2011
Owen S Roberts S Trivedi J Sharp C
Full Access

Background: The cells of the intervertebral disc must synthesise and maintain their surrounding matrix for it to function normally, providing all its physiological and mechanical properties. However, disc cells survive in an environment that most cells would not tolerate, ie with a low pH and relatively little oxygen. Cells which experience such potentially damaging conditions, including excessive heat, elicit a stress response and synthesise a range of proteins, called heat shock proteins (Hsps); these facilitate repair and survival or removal of damaged cells. Methods and Results: We have studied Hsp production by disc cells, both in vitro and in vivo. We measured Hsps produced by bovine skin and disc cells grown in monolayer and heated up to 45°C and also immunostained human surgical discs for stress proteins, Hsp27 and Hsp72. Disc cells responded differently to dermal fibroblasts; when freshly isolated they had a reduced or attenuated stress response and produced much less Hsp 70 than freshly isolated skin cells. After culturing in monolayer (by passage 2) all cells produced more Hsps. Human surgical discs produced varying amounts of Hsp, with most being produced by cells in herniated discs, particularly those within clusters of cells. Conclusion: Our results suggest that intervertebral disc cells in vivo normally have a reduced stress response. Hsp production is considered to protect against damage, suggesting that the reduced response may contribute to disc degeneration and back pain. The prosurvival stress response of disc cells could provide a novel therapeutic target in patients with degenerative disc disease. Conflict of Interest: None. Source of Funding: Wolfson Charitable Trust


The Journal of Bone & Joint Surgery British Volume
Vol. 33-B, Issue 4 | Pages 607 - 611
1 Nov 1951
Virgin WJ

1. The intervertebral disc is an organic viscous elastic structure capable of maintaining very great loads without disintegration. 2. Recovery of the disc after deformation depends upon: a) the imbibition of tissue fluid by the disc, b) the removal of the deforming force. Complete recovery is modified by the duration of the force. 3. Factors that interfere with the elasticity of the disc are: extreme youth (immaturity of the disc), chronic wasting diseases (general nutritional disturbance), and local pathological changes in the bodies of the vertebrae which interrupt or damage its blood supply. The intervertebral disc reaches its greatest state of efficiency in adult life—that is, when the nucleus pulposus has disappeared as an entity. The function of the disc appears not to depend upon the presence of the nucleus : rather does the presence of the nucleus indicate immaturity of the disc. 4. The highly resilient elastic nature of the vertebral column is provided by the intervertebral discs, which constitute one-third of the whole length of the column. 5. The imbibition of fluid requires further investigation. It appears that from lacunae in the adjacent bodies finger-like pockets dip into the discs and that fluid passes through the lining membrane of these pockets


The Journal of Bone & Joint Surgery British Volume
Vol. 49-B, Issue 3 | Pages 502 - 519
1 Aug 1967
Smith L Brown JE

1. An account of experiences in seventy-five cases with a new method of treatment of low back pain and sciatica caused by intervertebral disc lesions has been presented. The method is based on the fact that chymopapain, a proteolytic enzyme, can break down displaced intervertebral disc material without deleterious effects upon adjacent tissues. 2. Chymopapain was injected into intervertebral discs by the postero-lateral or preferably the lateral approach. Two milligrams per disc constitute an effective dose. The enzyme was administered to seventy-five patients who were potential candidates for laminectomy. These patients were followed for four to thirty months and results were graded as "good" (76 per cent), "fair" (15 per cent) and "poor" (9 per cent). 3. Although untoward reactions have been encountered, none of these has been attributable to chymopapain. 4. Our investigations have convinced us that enzymatic dissolution of a lumbar intervertebral disc lesion is a safe, effective method of relieving sciatica and low back pain in selected cases


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 36 - 36
1 Mar 2005
Gargiulo B Menage J Curtis C Caterson B Urban J Eisenstein S Roberts S
Full Access

Introduction: Degeneration of the intervertebral disc is characterised by loss of normal cell activity, disc matrix and loss of disc height. There is currently much interest in using cells to effect a biological repair in connective tissues, eg autologous chondrocyte implantation for cartilage repair. Intervertebral discs have a low cell density, with those cells present often being unhealthy and necrotic. Hence, identification of an alternative source of cells for autologous disc repair could be beneficial. Thus we have investigated other types of connective tissue cells to determine if they may be encouraged to undertake a disc cell phenotype. Materials and Methods: Cells were enzymatically/mechanically extracted from bovine coccygeal discs (annulus and nucleus), skin, bone marrow, periosteum and tendon and the efficiency and proliferation rates assessed. Dermal fibroblasts and bone marrow cells were also grown in a 3D alginate system and compared to disc nucleus pulposus cells for phenotypic expression from 0–28 days. Cell phenotype was assessed via morphology, immunohistochemistry, Western blotting and RT-PCR for mRNA expression. Results: All cell types could be extracted and proliferated in monolayer, with a flattened and fibroblast-like morphology. Proliferation was slowest for bone marrow cells (4 times slower than nucleus pulposus cells). Cells cultured in alginate became rounded with chondrocyte-like morphology. They remained viable for 4 weeks, but with little replication. Expression or production of proteoglycans, both aggrecan and the small proteoglycans (especially fibromodulin) and collagen types I, II and X was demonstrated for all cell types. There was, however, a difference in the timescale of production between some cell types. Conclusions: Plasticity of different cell types is well known and the connective tissue cells investigated in this study are capable of responding to the environment in which they are cultured. They can synthesise matrix molecules typically produced by disc cells in vivo and hence warrant further investigation as a potential source of cells for biological repair of the intervertebral disc


The Journal of Bone & Joint Surgery British Volume
Vol. 33-B, Issue 4 | Pages 612 - 625
1 Nov 1951
Smith JW Walmsley R

1. The normal anatomy of the intervertebral disc of immature rabbits is described. 2. An account is given of the changes that occur after an operative incision in the ventral part of the intervertebral discs of rabbits which allowed the escape of the nucleus pulposus. The account is based on observations made on fifty-five young animals killed at intervals during the twenty-five months after operation. 3. The superficial part of the wound in the annulus heals rapidly by active fibrosis. Thereafter there is a chondrification of the ventral region of the disc, followed by ossification. A prominent bony ridge ultimately ankyloses the vertebrae adjoining the disc. 4. The site of the nucleus pulposus is eventually occupied by a dense pad of fibrocartilage. A tongue of this tissue projects into the deep median part of the wound which remains unhealed. 5. A hypothesis is submitted regarding the mechanism of rupture of the annulus fibrosus and prolapse of the nucleus pulposus in man; this hypothesis is based in part on the observations of lesions in discs not subjected to operation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 46 - 46
1 Jul 2020
Adoungotchodo A Lerouge S Alinejad Y Mwale F Grant M Epure L Antoniou J
Full Access

Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor mechanical properties. In this study, we investigated several novel thermosensitive chitosan hydrogels for their ability to mimic the mechanical properties of the nucleus pulposus (NP) while being able to sustain the viability of NP cells, and retain proteoglycans. CH hydrogels were prepared by mixing the acidic chitosan solution (2% w/v) with various combinations of three gelling agents: sodium hydrogen carbonate (SHC) and/or beta-glycerophosphate (BGP) and/or phosphate buffer (PB) (either BGP0.4M, SHC0.075M-BGP0.1M, SHC0.075M-PB0.02M or SHC0.075M-PB0.04M). The gelation speed was assessed by following rheological properties within 1h at 37°C (strain 5% and 1Hz). The mechanical properties were characterized and compared with that of human NP tissues. Elastic properties of the hydrogels were studied by evaluating the secant modulus in unconfined compression. Equilibrium modulus was also measured, using an incremental stress-relaxation test 24h after gelation in unconfined compression (5% strain at 5%/s followed by 5min relaxation, five steps). Cells from bovine IVD were encapsulated in CH-based gels and maintained in culture for 14 days. Cytocompatibility was assessed by measuring cell viability, metabolism and DNA content. Glycosaminoglycan (GAG) synthesis (retained in the gel and released) was determined using DMMB assay. Finally injectability was tested using human cadaveric discs. Unconfined compression confirmed drastically enhanced mechanical properties compared to conventional CH-BGP hydrogels (secant Young modulus of 105 kPa for SHC0.075PB0.02 versus 3–6 kPa for BGP0.04). More importantly, SHC0.075PB0.02 and SHC0.075BGP0.1 hydrogels exhibited mechanical properties very similar to NP tissue. For instance, equilibrium modulus was 5.2±0.6 KPa for SHC0.075PB0.02 and 8±0.8 KPa for SHC0.075BGP0.1 compared to 6.1±1.7 KPa for human NP tissue. Rheological properties and gelation time (G′=G″ after less than 15 s at 37°C, and rapid increase of G') of these hydrogels also appear to be adapted to this application. Cell survival was greater than 80% in SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels. Cells encapsulated in the new formulations also showed significantly higher metabolic activity and DNA content after 14 days of incubation compared to cells encapsulated in BGP0.4 hydrogel. Cells encapsulated in SHC0.075BGP0.1 and SHC0.075PB0.02 produced significantly higher amounts of glycosaminoglycans (GAG) compared to cells encapsulated in SHC0.075PB0.04 and BGP0.4 hydrogels. The total amount of GAG was higher in SHC0.075BGP0.1 hydrogel compared to SHC0.075PB0.02. Interestingly, both the SHC0.075BGP0.1 and SHC0.075PB0.02 hydrogels retained similar amounts of GAG. Injectability through a 25G syringe, filling of nuclear clefts and good retention in human degenerated discs was demonstrated for SHC0.075PB0.02 hydrogel. SHC0.075BGP0.1 appears to be a particularly promising injectable scaffold for IVD repair by providing suitable structural environment for cell survival, ECM production and mechanical properties very similar to that of NP tissue


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2019
Snuggs J Rustenberg C Emanuel K Partridge S Sammon C Smit T Le Maitre C
Full Access

Purpose of study and background. Low back pain affects 80% of the population at some point in their lives with 40% of cases attributed to intervertebral disc (IVD) degeneration. A number of potential regenerative approaches are under investigation worldwide, however their translation to clinic is currently hampered by an appropriate model for testing prior to clinical trials. Therefore, a more representative large animal model for IVD degeneration is needed to mimic human degeneration. Here we investigate a caprine IVD degeneration model in a loaded disc culture system which can mimic the native loading environment of the disc. Methods and Results. Goat discs were excised and cultured in a bioreactor under diurnal, simulated-physiological loading (SPL) conditions, following 3 days pre load, IVDs were degenerated enzymatically for 2hrs and subsequently loaded for 10 days under physiological loading. A PBS injected group was used as controls. Disc deformation was continuously monitored and changes in disc height recovery quantified using stretched-exponential fitting. Histological staining was performed on caprine discs to assess extracellular matrix production and immunohistochemistry performed to determine expression of catabolic protein expression. The injection of collagenase and cABC induced mechanical behavior akin to that seen in human degeneration. A decrease in collagens and glycosaminoglycans (GAGs) was seen in enzyme injected discs, which was accompanied by increased cellular expression for degradative enzymes and catabolic cytokines. Conclusion. This model provides a reproducible model of IVD degeneration which mimics human degeneration. This model allows the testing of biomaterials and other potential treatments of IVD degeneration on a scale more representative of the human disc. There are no conflicts of interest. Funded by MRC and Versus Arthritis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 30 - 30
1 Apr 2018
Emanuel K Peeters M Kingma I Mader K Rustenburg C Sammon C Smit T
Full Access

Biomechanical overloading initiates intervertebral disc degeneration. We hypothesized that this is due to mechanosensitivity of the cells, which break down the extracellular matrix. Previously, we found that overloading in a loaded disc culture system causes upregulation of remodeling- and inflammatory gene expressions. Fourier Transform Infrared Spectroscopy is a novel technique to identify, visualize and quantify ECM. In this research, we first identified novel spectroscopic markers for disc degeneration, and then applied these markers to investigate the first steps into disc degeneration by overloading. In dataset 1, 18 discs of 9 goats were injected with chondroitinase ABC (degenerated) or not (control), and obducted 3 months after injection. This was used to find new spectroscopic markers for degeneration. In dataset 2, 42 goat discs were loaded with a physiological loading regime (50–150N) or overloading (50–400N) in a loaded disc culture system. In 18 of these discs, the cell activity was diminished in advance by freeze-thaw cycles and culturing on saline alone (non-vital group)). 24 additional discs were cultured in culture medium immediately post-mortem (vital group). Thereby, we are able to control whether the effect of the overloading is due to cell activity. The discs were fixed in formaldehyde, and 4 μm mid-sagittal were mounted to steel reflectance slides. Infrared spectroscopic mosaic images (23 × 57 images) were collected in transflectance mode at a spectral region of 1025–1150 cm. −1. Data was pre-processed by second derivative transformation and MCR-MALS with two factors. The two factors were transferable between datasets, confirming the reliability. The first factor represents proteoglycans, as confirmed by Saffrin-O staining. In dataset 1, the degenerated group had less proteoglycan factor overall, especially in the nucleus (p<0.05). The second factor was found to have a lower entropy (p<0.01), showing a disorganization in the matrix. In dataset 2, no significant reduction in proteoglycan was found due to overloading in any group. However, the entropy was lower in the overloaded vital group (p<0.05), but not in the overloaded non-vital group (p>0.5). Therefore, we conclude that infrared spectroscopy is a promising tool to investigate early disc degeneration. Overloading can cause changes in the extracellular matrix, but only due to cell activity. Entropy is an early marker for early disc degeneration, implying that cutting of the extracellular matrix by cell activity is the first step into intervertebral disc degeneration


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 93
1 Mar 2002
Boubriak O Urban J
Full Access

The aim of this study was to measure diffusion coefficients of solutes through the disc in relation to molecular weight. The intervertebral disc is avascular thus nutrients and other factors from the blood supply are transported into the intervertebral disc by diffusive and convective flow. For small solutes such as lactate and glucose and oxygen, diffusion appears to predominate however convection may aid transport of larger molecules such as growth factors. At present there however, there is virtually no information on diffusion of solutes of different molecular weights through the disc; this information is necessary for assessing and modelling transport pathways. Diffusion coefficients were measured in nucleus and annulus sections of bovine intervertebral discs by a novel method which prevented tissue swelling and proteoglycan loss. Briefly strips of fluorescent or radiolabelled solute-saturated filter-paper were placed adjacent to the disc and the resulting concentration gradients measured at appropriate times. Solute sizes from 0.01 to 70 kDa were investigated. All results are reported as mean + s.e.m (n=6). Diffusion coefficients (D) fell steeply with increase in molecular weight following a log-log relationship as predicted by theory. For small solutes (lactate) D for the outer annulus was 3.4 ± 1.1.10. −6. cm. 2. /sec while for 70 kDa dextran, D was 1.4 ± 0.6.10. −7. There was no significant difference between values of D for nucleus and outer annulus for any solute. Diffusion coefficients through the disc follow relationships seen in other cartilages and are dependant on tissue properties and molecular weight. The similarities between values for nucleus and outer annulus demonstrate the conflicting roles of proteoglycan and water contents in governing diffusion through the matrix with D decreasing both with increase in proteoglycan and decrease in water content


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 48 - 48
1 Sep 2019
Partridge S Thorpe A Le Maitre C Sammon C
Full Access

Introduction. Injectable hydrogels via minimally invasive surgery reduce the risk of infection, scar formation and the cost of treatment. Degradation of the intervertebral disc (IVD) currently has no preventative treatment. An injectable hydrogel material could restore disc height, reinforce local mechanical properties, and promote tissue regeneration. We present a hydrogel material Laponite. ®. associated poly(N-isopropylacrylamide)-co-poly(dimethylacrylamide) (NPGel). Understanding how the components of this hydrogel system influence material properties, is crucial for tailoring treatment strategies for the IVD and other tissues. Methods & Results. The effect of hydrogel wt./wt., clay and co-monomer percentages were assessed using a box-Behnken design. Rheometry, SEM, FTIR and swelling was used to measure changes in material properties in simulated physiological conditions. Rheometry revealed gelation temperature of hydrogel materials could be modified with dimethyl-acrylamide co-monomer; however, final maximum mechanical properties remained unaffected. Increasing the weight % and clay % increased resultant mechanical properties from ∼500–2500 G' (Pa), increased viscosity, but retained the ability to flow through a 26G needle at 39°C. Discussion & Conclusions. By increasing the weight and clay percentage of the material we can attain greater mechanical properties, this could be beneficial for orthopaedic or even dental applications. By modifying the co-monomer percentage, we can control gelation temperature important for ensuring the material is fully set at 37°C, this could also be utilised to locally deliver drugs from the implanted material. Our current work is focused on comparing our NPGel material formulation with human IVD tissue. Acknowledgements. We would like to thank Arthritis Research UK grant number 21497 for supporting this research. No conflicts of interest. Sources of Funding: Funded by Arthritis Research UK grant number 21497


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 4 | Pages 529 - 534
1 Nov 1981
Beard H Roberts S O'Brien J

Specific antisera to collagen Types I, II and III and proteoglycan were used to investigate the distributions of these molecules in normal human intervertebral discs. Immunofluorescent staining indicated the presence of small amounts of Type III collagen located pericellularly in normal adult intervertebral discs. This finding had not been demonstrated previously by other methods. Similar specimens of intervertebral discs from 17 patients with scoliosis of varying aetiologies were examined, but no evidence was obtained for primary connective tissue defects. Secondary changes, especially marked vascularisation of the inner annulus, were apparent in a number of scoliotic discs, and some of these showed enhanced staining for collagen Type I and proteoglycan, and intercellular matrix staining for Type III collagen


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 23 - 23
1 Sep 2019
Munir S Freidin M Rade M Määttä J Livshits G Williams F
Full Access

Background. Endplate defect is an MRI trait, found to be associated with intervertebral disc degeneration. There is a lack of understanding regarding the mechanism underlying lumbar disc degeneration (LDD). This large-scale longitudinal population-based study aimed to determine the order of appearance of degenerative change in the vertebral body and intervertebral disc, the influence of endplate degeneration on LBP and whether there is a genetic influence on endplate damage. Methods. Individuals from the TwinsUK spine study having longitudinal T2-weighted lumbar MRI scans at baseline (n=996) and a decade later (n=438) were included. LDD, vertebral endplate defect expressed as a total endplate (TEP) score and Modic change (MC) were assessed using standard techniques. Mixed-effects models were used to determine the association between spine pathology features adjusted for covariates. Endplate defect heritability was estimated using variance component analysis. Results. Significant association between endplate defect, LDD, MRI features of LDD and MC was observed. Endplate defect was independently associated with severe disabling LBP episodes. An association between LDD at baseline and MC at follow-up was shown at upper lumbar levels. TEP score was heritable with estimated additive genetic component A = 55.3% (95% CI 43.0–65.4). Conclusion. Endplate defect, LDD and MC are all independent risk factors for episodes of severe and disabling LBP. Longitudinal analysis showed LDD is followed by MC. Endplate defect has significant heritability. However, whether endplate defect triggers LDD or these pathological changes occur concurrently could not be determined conclusively. Conflicts of interest: none. Sources of Funding: This work was funded by the EU FP7 project Pain_Omics


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 23 - 23
1 May 2017
Snuggs J Day R Chiverton N Cole A Bunning R Conner M Le Maitre C
Full Access

Introduction. The intervertebral disc (IVD) is a highly hydrated tissue which is reduced during degeneration leading to loss of function. Aquaporins (AQP) are a family of 13 (AQP0-12) transmembrane channel proteins that selectively allow the passage of water and other small molecules in and out of cells and are responsible for maintaining water homeostasis. AQP1, 2, 3 and 5 have been identified in the IVD. Here gene and protein expression of all 13 AQPs was investigated in a large cohort of human IVDs to investigate expression during IVD degeneration. Methods. Gene expression of all 13 AQPs was investigated in non-degenerate and degenerate tissue from 102 human NP samples using RT-qPCR. AQPs which were expressed at gene level were further investigated in 30 IVD samples by Immunohistochemistry. Results. At gene level, AQP0, 1, 2, 3, 4, 5, 6, 7 and 9 were expressed in both non-degenerate and degenerate tissue. For the first time, protein expression of AQP6, 7 and 9 was identified in human IVD tissue, in which AQP2 and 3 were also identified. Conclusion. Hydration of the IVD is vital for its correct biomechanical function and a loss of water is associated with degeneration. The presence of many AQP isoforms within IVDs may suggest multiple roles for these water channels related to the survival and adaptation of NP cells, and physiology of the healthy IVD. The functional role of AQPs within the IVD is yet to be elucidated and thus warrants further investigation. No conflicts of interest. Funded by BMRC, Sheffield Hallam University


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 24 - 24
1 Oct 2019
Emanuel K Mader K Peeters M Kingma I Rustenburg C Vergroesen P Sammon C Smit T
Full Access

Purpose of study and background. Mechanical overloading initiates intervertebral disc degeneration, presumably because cells break down the extracellular matrix (ECM). We used Fourier Transform Infrared Spectroscopy (FTIR) imaging to identify, visualize and quantify the ECM and aimed to identify spectroscopic markers for early disc degeneration. Methods and Results. In seven goats, one disc was injected with chondroitinase ABC (mild degeneration) and after three months compared to control. Ex vivo, 50 caprine discs received physiological loading (50–150N) or overloading (50–400N) in a loaded disc culture system. To determine whether ECM degeneration is due to cell activity, half of the discs was subjected to freeze-thaw cycles. Spectroscopic images were collected at 1000–1300 cm. −1. and analyzed using multivariate curve resolution analysis. In vivo, less proteoglycan was found in the degenerated group (p<0.05), especially in the nucleus. Collagen content was increased in the nucleus and anterior annulus, and had higher entropy (p<0.01), indicating matrix disorganization. In the ex vivo experiment, the proteoglycan/collagen ratio was decreased (p<0.05) in the vital group and there was an increase in collagen entropy (p<0.05). A significant interaction between loading and vitality was found in the amount of collagen (p<0.05), but not in the entropy. Conclusion. Three weeks of mild overloading causes measurable changes in the extracellular matrix. Increased collagen entropy indicates that remodeling of collagen is a first step into disc degeneration. We could not confirm, however, that increase in entropy was due to cell activity. FTIR imaging allows more detailed investigation of early disc degeneration than traditional measures. There are no conflicts of interest. Partially funded by Dutch Arthritis Funds, personal grant KSE


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 18 - 18
1 Feb 2018
Snuggs J Day R Chiverton N Cole A Bunning R Conner M Tryfonidou M Le Maitre C
Full Access

Introduction. During development the central disc contains large, vacuolated notochordal (NC) cells which in humans are replaced by mature nucleus pulposus (NP) cells during aging, but are maintained in certain breeds of dogs. During degeneration the disc becomes less hydrated which affects its normal function. Aquaporins (AQP) are a family of 13 transmembrane channel proteins that allow passage of water and are responsible for maintaining water homeostasis. AQP1, 2, 3 and 5 have been identified in the intervertebral disc (IVD). Here, expression of AQPs in human and canine IVDs to determine expression in NC v/s NP cells and whether expression changes during degeneration. Methods. Gene expression of all 13 AQPs, were investigated in 102 human NP samples using RT-qPCR. AQPs which were expressed at gene level were further investigated by Immunohistochemistry in human and canine IVD samples. Results. At gene level, AQP0, 1, 2, 3, 4, 5, 6, 7 and 9 were expressed in both non-degenerate and degenerate tissue. For the first time, protein expression of AQP0, 4, 6, 7 and 9 was identified in human IVD tissue, AQP 1, 4 and 5 protein expression decreased during degeneration whilst AQP 7 was increased. AQPs were also expressed in canine IVD tissue, particularly within NC cell populations. Conclusion. Hydration of the IVD is vital for its correct biomechanical function and water loss is associated with degeneration. The presence of many AQP isoforms within NC and NP cells may suggest multiple roles related to the development, survival and adaptation of native cells, and physiology of the healthy IVD. No conflicts of interest. Funded by BMRC, Sheffield Hallam University


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 279 - 280
1 Mar 2003
Fagan A Moore R Roberts BV Blumbergs P Fraser R
Full Access

INTRODUCTION: Although it is well recognised that the outer annulus is innervated, the relative densities of innervation of different regions of the disc have not been quantitated. We present here the first comparative analysis of the innervation of the innervation of different regions of the lumbar intervertebral disc. METHODS: A sheep model was used allowing evaluation of the whole motion segment. Four sheep spines were used. One was processed for PGP 9.5 immunofluorescence and three were processed for PGP 9.5 immunoperoxidase histochemistry. Serial sagittal sections were obtained and a count was made of the densities of innervation of different regions of the endplate and annulus. These were compared to identify which areas of the disc and endplate are most innervated. RESULTS: The endplate innervation is concentrated centrally adjoining the nucleus. The mean density of innervation of the central endplate was 0.44 (SEM 0.07) nerves/mm2 while the mean density of the peripheral endplate was 0.10 (SEM 0.03) nerves/ mm. 2. (p= 0.0001). There was no significant difference between the overall endplate and annulus innervation densities 0.52 (SEM 0.1) v 0.37 (SEM 0.07) p=0.2. But the peri-annular connective tissue, external to the outer annulus contained the densest innervation of any region in the motion segment 1.05 (SEM 0.16). DISCUSSION: The lumbar intervertebral disc has a meagre innervation. This is concentrated in the peri-annular connective tissue and the central endplate. While receptor threshold is more closely related to noci-ceptive function than innervation density, these findings have important implications for any treatment of discogenic pain


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 7 - 7
1 Oct 2019
Ligorio C Vijayaraghavan A Hoyland J Saiani A
Full Access

Introduction. Intervertebral disc degeneration (IVDD) associated with low back pain is a major contributor to global disability. Current treatments are poorly efficient in the long-term resulting in medical complications. Therefore, minimally invasive injectable therapies are required to repopulate damaged tissues and aid regeneration. Among injectable biomaterials, self-assembling peptide hydrogels (SAPHs) represent potential candidates as 3D cell carriers. Moreover, the advent of graphene-related materials has opened the route for the fabrication of graphene-containing hydrogel nanocomposites to direct cellular fate. Here, we incorporated graphene oxide (GO) within a SAPH to develop a biocompatible and injectable hydrogel to be used as cell carrier to treat IVDD. Methods and results. Hydrogel morphology and mechanical properties have been investigated showing high mechanical properties (G'=12kPa) comparable with human native nucleus pulposus (NP) tissue (G'=10kPa), along with ease of handling and injectability in dry and body fluid conditions. Hydrogel nanocomposites resulted biocompatible for the encapsulation of bovine NP cells, showing higher viability (>80%) and metabolic activity in 3D cell culture over 7 days, compared to GO-free hydrogels. Moreover, GO has demonstrated to bind TGF-β3 biomolecules with high efficiency, suggesting the use of GO as local reservoir of growth factors within the injected hydrogel to promote extracellular matrix deposition and tissue repair. Conclusions. Our results show that incorporation of GO within the SAPH improves cell viability and metabolic activity. Furthermore, its tissue-mimicking mechanical properties and chemical tunability make it a promising candidate as injectable carrier of NP cells for the treatment of IVDD. Part of this work has been published (DOI: 10.1016/j.actbio.2019.05.004). Conflicts of interests: No conflicts of interest. Sources of funding: The authors thank the EPSRC & MRC CDT in Regenerative Medicine for its financial support (EP/L014904/1)


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 84 - 85
1 Jan 2004
Fagan A Moore R Roberts BV Blumbergs P Fraser R
Full Access

Introduction: Although it is well recognized that the outer annulus is innervated, the relative densities of innervation of different regions of the disc have not been quantitated. We present here the first comparative analysis of the innervation of the innervation of different regions of the lumbar intervertebral disc. Methods: A sheep model was used allowing evaluation of the whole motion segment. Four sheep spines were used. One was processed for PGP 9.5 immunoflourescence and three were processed for PGP 9.5 immunoperoxidase histochemistry. Serial sagittal sections were obtained and a count was made of the densities of innervation of different regions of the endplate and annulus. These were compared to identify which areas of the disc and endplate are most innervated. Results: The endplate innervation is concentrated centrally adjoining the nucleus. The mean density of innervation of the central endplate was 0.44 (SEM 0.07) nerves/ mm. 2. while the mean density of the peripheral endplate was 0.10 (SEM 0.03) nerves/ mm. 2. (p= 0.0001). There was no significant difference between the overall endplate and annulus innervation densities 0.52 (SEM 0.1) v 0.37 (SEM 0.07) p=0.2. But the peri-annular connective tissue, external to the outer annulus contained the densest innervation of any region in the motion segment 1.05 (SEM 0.16). Discussion: The lumbar intervertebral disc has a meagre innervation. This is concentrated in the peri-annular connective tissue and the central endplate. While receptor threshold is more closely related to nociceptive function than innervation density, these findings have important implications for any treatment of discogenic pain


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 242 - 242
1 Mar 2003
Pollintine P Garbutt S Tobias J Dolan P Adams M
Full Access

Introduction: Osteoporotic fractures affect certain bones more than others, suggesting that systemic bone loss is not the only underlying cause. We have shown that age-related intervertebral disc degeneration causes the anterior vertebral body (VB) to be stress-shielded in erect postures, and yet severely loaded when the spine is flexed (1). We hypothesise that this unequal loading causes exaggerated bone loss from the anterior vertebral body, making it vulnerable to fracture when the spine is heavily loaded in a forward stooping (flexed) posture. Materials and Methods: Regional volumetric bone mineral density (BMD) was measured in 35 thoracolumbar motion segments (aged 64–92 yrs) using dual-energy x-ray absorptiometry. The distribution of compressive stress was measured along the mid-sagittal diameter of each intervertebral disc using a miniature pressure transducer. Stresses were integrated over area to give the compressive force acting on the anterior and posterior halves of the VB (1). Motion segment compressive strength was measured in moderate flexion. Results: BMD of the anterior half of the VB was 26% (STD 13%) lower than that of the posterior half (p< 0.0001), was correlated with % load on the anterior VB in erect posture (r. 2. =0.48, p< 0.0001), and was a better predictor of motion segment compressive strength (in flexion) than was BMD of the whole vertebral body (r. 2. = 0.79 compared to r. 2. = 0.59). Conclusion: These results clearly support our hypothesis. It appears that intervertebral disc degeneration leads to exaggerated bone loss from the anterior VB, leaving it more vulnerable to fracture when the spine is flexed. Future work aims to confirm this important result on a larger number of specimens, and to compare the relative importance of disc degeneration and overall bone loss on vertebral compressive strength. Pollintine P et al (2001). SBPR Annual Meeting, Bristol. Backcare Research Award 2002


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 737 - 742
1 Jul 1998
Suseki K Takahashi Y Takahashi K Chiba T Yamagata M Moriya H

It has been thought that lumbar intervertebral discs were innervated segmentally. We have previously shown that the L5-L6 intervertebral disc in the rat is innervated bilaterally from the L1 and L2 dorsal root ganglia through the paravertebral sympathetic trunks, but the pathways between the disc and the paravertebral sympathetic trunks were unknown. We have now studied the spines of 17 rats to elucidate the exact pathways. We examined serial sections of the lumbar spine using immunohistochemistry for calcitonin gene-related peptide, a sensory nerve marker. We showed that these nerve fibres from the intervertebral disc ran through the sinuvertebral nerve into the rami communicantes, not into the corresponding segmental spinal nerve. In the rat, sensory information from the lumbar intervertebral discs is conducted through rami communicantes. If this innervation pattern applies to man, simple decompression of the corresponding nerve root will not relieve discogenic pain. Anterior interbody fusion, with the denervation of rami communicantes, may be effective for such low back pain


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 53 - 53
1 Aug 2020
Cherif H Bisson D Kocabas S Haglund L
Full Access

Intervertebral discs (IVDs) degeneration is one of the major causes of back pain. Upon degeneration, the IVDs tissue become inflamed, and this inflammatory microenvironment may cause discogenic pain. Cellular senescence is a state of stable cell cycle arrest in response to a variety of cellular stresses including oxidative stress and adverse load. The accumulation of senescent IVDs cells in the tissue suggest a crucial role in the initiation and development of painful IVD degeneration. Senescent cells secrete an array of cytokines, chemokines, growth factors, and proteases known as the senescence-associated secretory phenotype (SASP). The SASP promote matrix catabolism and inflammation in IVDs thereby accelerating the process of degeneration. In this study, we quantified the level of senescence in degenerate and non-degenerate IVDs and we evaluated the potential of two natural compounds to remove senescent cells and promote overall matrix production of the remaining cells. Human IVDs were obtained from organ donors. Pellet or monolayer cultures were prepared from freshly isolated cells and cultured in the presence or absence of two natural compounds: Curcumin and its metabolite vanillin. Monolayer cultures were analyzed after four days and pellets after 21 days for the effect of senolysis. A cytotoxicity study was performed using Alamar blue assay. Following treatment, RNA was extracted, and gene expression of senescence and inflammatory markers was evaluated by real-time q-PCR using the comparative ΔΔCt method. Also, protein expression of p16, Ki-67 and Caspase-3 were evaluated in fixed pellets or monolayer cultures and total number of cells was counted on consecutive sections using DAPI and Hematoxylin. Proteoglycan content was evaluated using SafraninO staining or DMMB assay to measure sulfated glycosaminoglycan (sGAG) and antibodies were used to stain for collagen type II expression. We observed 40% higher level of senescent cells in degenerate compare to the non-degenerate discs form unrelated individuals and a 10% increase when we compare degenerate compare to the non-degenerate discs of the same individual. Using the optimal effective and safe doses, curcumin and vanillin cleared 15% of the senescent cells in monolayer and up to 80% in pellet cultures. Also, they increased the number of proliferating and apoptotic cells in both monolayer and pellets cultures. The increase in apoptotic cell number and caspase-3/7 activity was specific to degenerate cells. Following treatment, mRNA expression levels of SASP factors were decreased by four to 32-fold compared to the untreated groups. Senescent cell clearance decreased, protein expression of MMP-3 and −13 by 15 and 50% and proinflammatory cytokines levels of IL-1, IL-6 and IL-8 by 42, 63 and 58 %. Overall matrix content was increased following treatment as validated by an increase in proteoglycan content in pellet cultures and surrounding culture media. This work identifies novel senolytic drugs for the treatment of IVD degeneration. Senolytic drugs could provide therapeutic interventions that ultimately, decrease pain and provide a better quality of life of patients living with IVDs degeneration and low back pain


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 11 - 11
1 Oct 2019
Wignall F Richardson S Hoyland JA
Full Access

Study purpose and background. Novel regenerative therapies have the potential to restore function and relieve pain in patients with low back pain (LBP) caused by intervertebral disc (IVD) degeneration. We have previously shown that stimulation of adipose-derived stem cells (ASCs) with growth differentiation factor-6 (GDF6) promotes differentiation into nucleus pulposus (NP) cells of the IVD, which have potential for IVD regeneration. We have also shown that GDF6 stimulation activates the Smad1/5/8 and ERK1/2 signalling cascades. The aim of this study was to progress our understanding of the immediate/early response mechanisms in ASCs (N=3) which may direct GDF6-induced differentiation. Methods and results. RNAseq was used to perform transcriptome-wide analysis across a 12-hour time course, post-stimulation. Gene ontology analysis revealed greater transcription factor and biological processes activity at 2hrs than at the 6hr and 12hr time points, where molecular and cellular activities appeared to stabilise. Interestingly, a number of lineage determining genes were identified as differentially expressed and work is ongoing to investigate whether the early response genes are maintained throughout differentiation, or whether they are responsible for early NP lineage commitment. Conclusion. This study is the first transcriptome-wide analysis on GDF6-mediated stimulation of ASCs, elucidating important early response mechanisms involved in directing appropriate differentiation. Identification of additional key markers and signalling pathways of differentiation will allow improved selection of ASCs for IVD regeneration. ‘No conflicts of interest’. Funding sources: NIHR Manchester Biomedical Research Centre and The RoseTrees Trust


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 230 - 230
1 Sep 2005
Curtis C Eisenstein S Roberts S Caterson B
Full Access

Introduction: Proteoglycans are found both in the annulus fibrosus and nucleus pulposus of the intervertebral disc and contribute to the hydration of the tissue (aggrecan) and the regulation of matrix assembly (small proteoglycans) [. 1. ]. Whilst loss of proteoglycan is the main chemical change in disc degeneration seen in back pain patients, little is known of the events leading to and controlling this loss. In this study the metabolism of the most common proteoglycan, aggrecan, and others including decorin, biglycan, lumican, fibromodulin and versican, together with collagen types I and II were studied in diseased and normal discs. Methods: Ten discs from patients aged 11–57 years (mean:39±15) with scoliosis (n=1), spondylolisthesis (n=1) and low back pain (n=8), were graded for macroscopic degeneration (Grades 1–4). Three ‘normal’ cadaveric discs from 3 individuals aged 25–27 years (mean 26±1) were also investigated. Disc was either snap-frozen (for RNA isolation) or the proteoglycans extracted with 4M GuHCl. Total RNA was isolated and RT-PCR performed using various oligonucleotide primers. GuHCl-extracted proteoglycan fragments were analysed using Western blotting with a number of antibodies to aggrecan metabolites, collagen metabolites and small leucine-rich proteoglycans. Results: Intervertebral discs contain a very heterogenous population of proteoglycans demonstrating extensive enzymic degradation, particularly with increasing age and macroscopic degeneration such as is seen in back pain patients. Younger, less degenerate discs contained more biglycan than the older, more degenerate discs. However, the mRNA gene expression analyses demonstrated little cellular activity and potential synthetic response, there was very little expression of particularly in comparison to osteoarthritic cartilage cells which show considerable synthetic capability for all the major matrix components. Discussion: Our analyses indicate that several biochemical, catabolic and biosynthetic changes occur in disc matrix molecules which are likely to contribute to loss of disc function with ageing and degeneration. The loss of biosynthetic capability of cells is very important in considering the potential of newer therapeutic modalities such as cellular repair and genetic engineering for the treatment of degenerative disc disease


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 101 - 101
2 Jan 2024
Risbud MV
Full Access

The hypoxic nucleus pulposus cells were thought to contain few, functionally redundant mitochondria. However in contrast to this widely held notion, new evidence shows presence of functional mitochondrial networks in disc cells. The lecture will discuss this evidence and provide insights into how microenvironmental cues govern mitochondrial function. The lecture will also discuss emerging evidence on how mitochondrial dysfunction of nucleus pulposus cells results in metabolic dysregulation and acquisition of a state that promotes inflammation and degeneration.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 6 - 6
1 Oct 2019
Davies K Richardson S Milner C Hoyland J
Full Access

Background. Degeneration of the intervertebral disc (IVD) is a leading cause of lower back pain, and a significant clinical problem. Inflammation mediated by IL-1β and TNF-α drives IVD degeneration through promoting a phenotypic switch in the resident nucleus pulposus (NP) cells towards a more catabolic state, resulting in extracellular matrix degradation. Bone marrow mesenchymal stem cells (MSCs) produce bioactive factors that modulate local tissue microenvironments and their anti-inflammatory potential has been shown in numerous disease models. Thus MSCs offer a potential therapy for IVD degeneration. In a clinical setting, adipose-derived stem cells (ASCs) might represent an alternative and perhaps more appealing cell source. However, their anti-inflammatory properties remain poorly understood. Methods. Here we assess the anti-inflammatory properties of donor-matched human ASCs and MSCs using qPCR and western blotting. Results. We demonstrate that stimulating ASCs or MSCs with IL-1β and/or TNF-α elicits a strong anti-inflammatory response with increased expression of IL-1 receptor antagonist (IL-1Ra), cyclooxygenase-2 (COX-2) and the tissue protective protein tumour-necrosis factor stimulated gene-6 (TSG-6). ASCs produced significantly higher levels of IL-1Ra and TSG-6 than their matched MSCs at both gene and protein levels, indicating that ASCs are potentially a more potent anti-inflammatory cell type. This anti-inflammatory response was also observed upon co-culture with degenerate NP cells without exogenous cytokine. Signalling analyses suggested this difference between cell types might be mediated through differences in the activation of inflammation-associated transcription factors. Conclusion. These data indicate that the anti-inflammatory properties of ASCs may be useful in developing future therapies for IVD degeneration. No conflicts of interest. Sources of funding: EPSRC-MRC Centre for Doctoral Training in Regenerative Medicine (EP/L014904/1)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 42 - 42
1 Oct 2019
Grad S Wangler S Peroglio M Menzel U Benneker L Haglund L Sakai D Alini M
Full Access

Background and Purpose. Intervertebral disc (IVD) degeneration is a prominent cause of low back pain. IVD cells expressing angiopoietin-1 receptor Tie2 represent a progenitor cell population which decreases with progression of IVD degeneration. Homing of mesenchymal stem cells (MSCs) is a physiological mechanism aiming to enhance the regenerative capacity of the IVD. The purpose of this study was to assess the effect of MSC homing on the Tie2 positive IVD progenitor cell population, the IVD cell viability, and the proliferative phenotype of the IVD cells. Methods and Results. Human MSCs were isolated from bone marrow aspirates and labelled with fluorescent dye. Whole IVDs with endplates were harvested from bovine tails; MSCs were placed on the endplates. Human traumatic, degenerative and healthy IVD tissues were obtained from patients and organ donors. MSCs were added onto tissue samples. After 5 days, IVD cells were isolated. Percentages of Tie2 positive, DAPI positive (dead) and Ki-67 positive (proliferative) IVD cells were determined. MSC homing or co-culture significantly increased the proportion of Tie2 positive progenitor IVD cells in bovine and 7/10 human IVDs, decreased the fraction of dead IVD cells in bovine and 7/10 human IVDs, and induced a proliferative phenotype in bovine and 5/6 human IVDs. Conclusion. Stimulation of bovine and human IVDs by MSC homing resulted in an enhanced population of Tie2 positive IVD progenitor cells, induced a proliferative response and reduced IVD cell death. Hence, the interaction with recruited MSCs may contribute to an improved survival of IVD cells, helping to reverse or slow down an ongoing degenerative process. Conflicts of interest: The authors declare no conflicts of interest. Sources of funding: AO Foundation and AOSpine International


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 4 - 4
1 Jan 2019
Coe R Warren J Sikora S Miles DE Mengoni M Wilcox RK
Full Access

Intervertebral disc (IVD) degeneration is one of the major causes of back pain. A number of emerging treatments for the condition have failed during clinical trial due to the lack of robust biomechanical testing during product development. The aim of this work was to develop improved in-vitro testing methods to enable new therapeutic approaches to be examined pre-clinically. It forms part of a wider programme of research to develop a minimally invasive nucleus augmentation procedure using self-assembling hydrogels. Previous static testing on extracted IVDs have shown large inter-specimen variation in the measured stiffness when specimen hydration and fluid flow were not well controlled. In this work, a method of normalising the hydration state of IVDs prior-to and during compressive testing was developed. Excised adult bovine IVDs underwent water-pik treatment and a 24-hour agitated bath in monosodium citrate solution to maximise fluid mobility. Specimens were submerged in a saline bath and held under constant pressure for 24 hours, after which the rate of change of displacement was low. Specimens were then cyclically loaded, from which the normalised specimen stiffness was determined. A degenerate disc model was developed with the use of enzymatic degeneration, allowing specimens to be tested sequentially in a healthy, degenerate, and then treated state. Self-assembling peptide-GAG hydrogels were tested using the developed method and the effect of treatment on stiffness and disc height were assessed. Compared to previous static tests, the improved method reduced the variation in the normalised specimen stiffness. In addition, statistically significant differences were seen before and after enzymatic degradation to simulate degeneration, thus providing controls against which to evaluate treatments. The augmentation of the nucleus with the hydrogel intervention reduces the stiffness of the degenerate disc towards that of the healthy disc. This method is now being used to further investigate nucleus augmentation devices


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 31 - 31
1 Nov 2018
Wignall F Hodgkinson T Richardson S Hoyland J
Full Access

Low back pain (LBP), caused by intervertebral disc (IVD) degeneration represents one of the most significant socioeconomic conditions facing Western economies. Novel regenerative therapies, however, have the potential to restore function and relieve pain. We have previously shown that stimulation of adipose-derived stem cells (ASCs) with growth differentiation factor-6 (GDF6) promotes differentiation to nucleus pulposus (NP) cells of the IVD, offering a potential treatment for LBP. The aims of this study were to i) elucidate GDF6 cell surface receptor profile and signalling pathways to better understand mechanism of action; and (ii) develop a microparticle (MP) delivery system for GDF6 stimulation of ASCs. GDF6 receptor expression by ASCs (N=6) was profiled through western blot, immunofluorescence (IF) and flow cytometry. Signal transduction through Smad1/5/9 and non-Smad pathways following GDF6 (100ng/ml) stimulation was assessed using western blotting and confirmed using pathway specific blockers and type II receptor sub-unit knockdown using CRISPR. Release kinetics of GDF6 from MPs was calculated (BCA assay, ELISAs) and ASC differentiation to NP cells was assessed. BMPR profiling revealed high BMPR2 expression on ASCs. GDF6 stimulation of ASCs resulted in significant increases in Smad1/5/9 and Erk phosphorylation, but not p38 signalling. Blocking GDF6 signalling confirmed differentiation to NP cells required Smad phosphorylation, but not Erk. GDF6 release from MPs was controlled over 14days in vitro and demonstrated comparable NP-like differentiation to exogenous GDF6 delivery. This study elucidates the signalling mechanisms responsible for GDF6-induced ASC differentiation to NP cells and also demonstrates an effective and controllable release vehicle for GDF6


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1298 - 1304
1 Oct 2012
Hughes SPF Freemont AJ Hukins DWL McGregor AH Roberts S

This article reviews the current knowledge of the intervertebral disc (IVD) and its association with low back pain (LBP). The normal IVD is a largely avascular and aneural structure with a high water content, its nutrients mainly diffusing through the end plates. IVD degeneration occurs when its cells die or become dysfunctional, notably in an acidic environment. In the process of degeneration, the IVD becomes dehydrated and vascularised, and there is an ingrowth of nerves. Although not universally the case, the altered physiology of the IVD is believed to precede or be associated with many clinical symptoms or conditions including low back and/or lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These include biological therapies and novel surgical techniques (such as total disc replacement), although many of these are still in their experimental phase. Central to developing further methods of treatment is the need for effective ways in which to assess patients and measure their outcomes. However, significant difficulties remain and it is therefore an appropriate time to be further investigating the scientific basis of and treatment of LBP


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 47 - 47
1 Jan 2003
Kokubo Y Furusawa N Maezawa Y Uchida K Miyazaki T Yayama T Yoshizawa K Fukuda M Baba H
Full Access

To investigate the histological findings for a herniated cervical intervertebral disc that produces a high intensity signal on MR images. Fifty-five herniated cervical intervertebral discs harvested from 49 patients were histologically and immunohistochemically examined. Herniated cervical intervertebral discs with a high intensity signal on axial T2 MR images were classified as a globular, linear, or mosaic type. The specimens were embedded with paraffin using standard procedures. Serial 4 μm thick cryostat sagittal sections were prepared for HE, toluidine blue, PAS, and Elastica van Gieson staining as well as immunohistochemical study. The monoclonal antibodies used were specific for human CD68, IL-1β, and TNF-α. Preoperative axial T2 MR images indicated that 3 discs had no high intensity signal and 52 discs had a high intensity signal; 22 discs were globular, 20 were linear, and 10 were mosaic. Histopathologically, high intensity signal areas in globular discs consisted of nucleus pulposus surrounded by macrophages. These macrophages and the chondrocytes around them expressed IL-1β and TNF-α. Almost all of the patients with a globular disc, had had severe radicular pain. For the linear disc patients, the fissure was observed consistent with the high intensity signal. A substance that would produce positive results for PAS staining was rarely observed. The current histological study suggests that a globular type of disc with a high intensity signal on an axial T2 MR image consisted of a nucleus pulposus. Results demonstrated that, in these herniated discs, infiltrated macrophages and chondrocytes expressed inflammatory cytokines, and these reactions were associated with radicular pain. In contrast, linear and mosaic discs showed no obvious substance corresponding with the high-intensity zone, but the fissure was observed. It appears that a high-intensity zone for a linear or mosaic type of disc suggested of a fluid-filled area and/or mucoid fluid


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 6 - 6
1 Jan 2003
Kesani A Akmal M Enobakhare B Mannering N Goodship A Bentley G
Full Access

Nicotine is a constituent of tobacco smoke and is present in the body fluids of smokers. 1,. 2. Numerous studies have confirmed that smoking is a strong risk factor for back pain. 3. The most widely accepted explanation for the association is that smoking leads to malnutrition of spinal discs due to carboxyhaemoglobin formation. However, other constituents of smoke, such as nicotine, may also be responsible for intervertebral disc (IVD) degeneration by leading to cell necrosis in both the nucleus pulposus and annulus fibrosis. Despite evidence suggesting the detrimental effect on a variety of tissues, the effect of nicotine on IVD cells has not previously been investigated. This study investigated the influence of nicotine on the metabolism and viability of IVD cells cultured in vitro. Bovine nucleus pulposus (NP) intervertebral disc cells were isolated by sequential digestion of caudal spinal disc nuclei with pronase and collagenase and seeded in 2% alginate at 5x10. 6. cells/ml. The constructs were cultured for 21 days in standard culture medium (DMEM + 20% Fetal calf serum) containing free base nicotine (Sigma) at concentrations ranging from 25nM and 300nM, which reflected the normal physiological concentrations found in the serum of smokers. The medium was replaced every 3 days and representative constructs were removed from culture, digested and assayed for DNA, glycosaminoglycan (GAG) and hydroxyproline content at time points 3, 7, 14 and 21 days. Further constructs were processed for standard histology and immunolocalisation of collagen types I, II and chondroitin-6-sulphate. The results were analysed statistically using an ANOVA test followed by a non-parametric Dunnit’s test. NP cells demonstrated a dose dependent response. At 25nM dose of nicotine there was a significant increase (p< 0.05) in DNA content, GAG and collagen synthesis in the constructs. At 100nM, 200nM and 300nM doses, there was a significant dose dependent decrease (p< 0.05) in all of these parameters compared to controls cultured under nicotine free conditions. In addition, adverse morphological changes were observed on histology, which included reduced cell proliferation, disrupted cell architecture, disintegration of cells and extracellular matrix. Immunohistochemistry showed the production of type I collagen rather than type II collagen as in the controls. Nicotine has an overall detrimental effect on cultured nucleus pulposus disc cells in vitro. There was significant inhibition of cell proliferation and extracellular matrix synthesis. Nicotine in tobacco smoke may therefore play a role in the aetiology of disc degeneration that leads to back pain in smokers


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 154 - 160
1 Jan 1997
Edwards AG McNally DS Mulholland RC Goodship AE

Posterior fixation of intervertebral discs is used to treat, and occasionally diagnose, discogenic pain since it is thought that it will reduce the internal loading of the discs in vitro. We measured the internal loading of ten intervertebral discs using stress profilometry under simulated physiological loads and then after posterior fixation. Partial discectomies were performed to simulate advanced disc degeneration and the sequence repeated. Posterior fixation had very little effect on the magnitude of the loads acting on the disc and none when disc degeneration was simulated. It did, however, reduce bulging of the anterior annulus under combined bending and compression (p < 0.03). Recent experiments in vivo have shown that discogenic pain is associated with abnormal bulging of the annulus which suggests that the clinical benefit of fixation may be due to this


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 204 - 205
1 Apr 2005
Vadalà G Denaro E Sobajima S Kang J Gilbertson L
Full Access

Current therapies for intervertebral disc degeneration are aimed at treating the pathologic and disabling conditions arising from discopathy rather than directly treating the underlying problem of disc degeneration. Our group is exploring the potential of cell therapy to repopulate the disc and stop the progressive loss of proteoglycans. Stem cells appear to be excellent candidates for this purpose, based on their ability to differentiate along multiple connective tissue lineages. The purpose of this study is to investigate the interaction between stem cells and nucleus polposus cells to test the feasibility of stem cell therapy for the treatment of disc degeneration. Human nucleus polposus cells (NPCs) were isolated from patients undergoing disc surgery and were co-cultured for 2 weeks with muscle-derived stem cells (MdSCs) from 3-week-old mdx mice in monolayer culture system at different ratio with or without added TGF-β1. Each well contained an admixture of cells with NPC-to-SC ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. Proteoglycan synthesis and DNA content were measured. Co-culturing of NPCs with MdSCs in the monolayer culture system resulted in vigorous increases in proteoglycans synthesis as compared with NPCs alone and MdSCs alone both with and without TGF-β1. The increases were on the 200% for an NPC-to-MDSC ratio of 75:25. Addition of TGF-β1 to the NPC and MDSC co-cultures resulted in further increases up to 400%. DNA content also increased with co-culture. The data from this study show that there is a synergistic effect between stem cells and nNPC resulting in upregulated proteoglycan synthesis in vitro. The observed benefits of co-culture might be due either to stem cell plasticity, the stem cells trans-differentiation towards chondrocyte-like cells, or the stimulation of NPC by agents synthesised by stem cells or other mechanisms. Elucidation of the precise mechanisms of action may permit development of strategies to optimise the synergistic effects in vivo. These results support the feasibility of developing a stem cell therapy approach to treat and prevent intervertebral disc degeneration


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 143 - 143
1 Jul 2002
Jones D Bibby S Urban J
Full Access

Introduction: The intervertebral disc is a significant contributor to back pain, and is thus a tissue that is often examined postmortem. Tissue preservation during storage is of importance both experimentally, for research and teaching purposes, and clinically, for possible use in transplantation. The biomechanical function of the disc after storage has been investigated. However, to our knowledge the biological and metabolic consequences of storage have not been studied. Here we have investigated the effects of storage in the intervertebral disc on glucose, lactate, and cell viability. Method: A total of 53 discs from 14 bovine tails were obtained within 24 hours of slaughter. Discs were either removed immediately and wrapped in clingfilm or kept in situ, surrounded by muscle. Tissue was stored at 4_C, and samples were taken at 2 hours to 9 days. Disc tissue was analysed for lactate, glucose, and cell viability. Muscle was analysed for lactate. Statistical analysis of data was performed using Student’s t test. Results: Lactate concentrations in discs stored in tails increased with time of storage, being significantly higher even after 24 hours (p< 0.01). In contrast, lactate levels in isolated discs remained constant. Glucose levels were undetectable in discs, irrespective of storage. Muscle lactate was always significantly higher than disc (p< 0.01). The percentage of live cells fell significantly with storage in situ (p< 0.01). Discussion: The increase in lactate observed in discs remaining in situ appears to arise from lactate diffusing in from surrounding muscle, as no increase was noted in isolated discs. As would be expected, this high concentration of lactate and low glucose appears to affect cell viability adversely, possibly as a consequence of lowered pH. This change in metabolite concentration and hence cell viability is important to note when considering human postmortem tissue, as it may affect the biological function of the disc


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 113 - 113
1 Nov 2018
Grad S
Full Access

In recent years, novel therapies for intervertebral disc (IVD) regeneration have been developed that are based on the delivery of cells, biomaterials or bioactive molecules. The efficacy of these biological therapies depends on the type and degree of IVD degeneration. Whole organ culture bioreactors provide an attractive platform for pre-clinical testing of IVD therapeutics, since the cells are maintained within their native extracellular matrix, and the endplate remains intact to fulfil its function. Moreover, defined regimes of mechanical stress are applied to the IVD, representing either physiological or degenerative, detrimental loading. Different degrees of degeneration can be induced by high load, low nutrition, enzyme injection, and/or mechanical damage; while recent organ culture models also implement an inflammatory component. Using whole organ culture models, we found that mesenchymal stem cell injection into nucleotomized IVDs had an anabolic effect on the IVD cells. Furthermore, hyaluronan hydrogels were beneficial for cell delivery and mechanical support. We also found that anti-inflammatory treatment could partially prevent the induction of cytokines in an inflammatory model. However, chemokine delivery did not induce a significant repair response in an annulus fibrosus defect. In line with 3R principles, relevant ex-vivo models are essential to reliably test biological IVD treatments


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 5 | Pages 719 - 723
1 Nov 1986
Gibson M Buckley J Mulholland R Worthington B

Magnetic resonance imaging (MRI) of the spine produces images which reflect the chemical composition of the intervertebral disc. We have conducted a prospective study of the serial changes in the MRI appearance of the intervertebral disc after chemonucleolysis with the enzyme chymopapain. Fourteen patients were studied after single-level chemonucleolysis and the results compared with a control group of 17 discs in six patients who had diagnostic discography without enzyme insertion. A consistent pattern of gradual loss of signal from the nucleus pulposus culminating in complete loss of nuclear signal was seen in all cases after chemonucleolysis. Chymopapain therefore produced MRI changes analogous with premature gross disc degeneration. The rate at which this occurred varied; complete loss of signal took at least six weeks. Transitory minor end-plate changes were present in five patients, probably representing a mild chemical discitis. No similar changes were seen in the discography group


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 92
1 Mar 2002
Johnson W Eisenstein S Roberts S
Full Access

Mature human intervertebral disc cells have generally been described as being either fibroblast-like or chondrocyte-like; i.e. appearing either elongated and bipolar or rounded/oval. Fibroblast-like cells are observed within the outer regions of the anulus fibrosus whilst chondrocyte-like cells are found in the more central regions of the disc. However, a few reports have noted that in some circumstances disc cells appear to extend more elaborate cytoplasmic processes into their surrounding extracellular matrix. In this study, we have examined healthy and pathological human intervertebral discs for the presence of the cytoskeletal elements, F-actin and vimentin. Tissues examined included discs of no known pathology, discs with spondylolithesis, scoliosis specimens taken from the convex and concave sides, and degenerated discs. F-actin was not readily observed within discs cells but was a marked feature of vascular tissue within the disc and occasionally seen in infiltrating cells. Vimentin was more readily seen within cells of the inner anulus fibrosus and nucleus pulposus. In general, disc cell morphology was fibrocyte or chondrocyte-like; however, in spondylolisthetic discs, cells with numerous cytoplasmic projections were frequently observed. The differential morphologies and cytoskeletal composition observed in disc cells may be indicative of variations in mechanical strains and/or pathologies, or indeed of cell function


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 39 - 39
1 Feb 2018
Humphreys M Richardson S Hoyland J
Full Access

Background. Intervertebral disc degeneration is implicated as a major cause of chronic lower back pain. Current therapies for lower back pain are aimed purely at relieving the symptoms rather than targeting the underlying aberrant cell biology. As such focus has shifted to development of cell based alternatives. Notochordal cells are progenitors to the adult nucleus pulposus that display therapeutic potential. However, notochordal cell phenotype and suitable culture conditions for research or therapeutic application are poorly described. This study aims to develop a suitable culture system to allow comprehensive study of the notochordal phenotype. Methods & Results. Porcine notochordal cells were isolated from 6 week post natal discs using dissection and enzymatic digestion and cultured in vitro under different conditions: (1)DMEM vs αMEM (2)laminin-521, fibronectin, gelatin and untreated tissue culture plastic (3)2% 02 vs normoxia (4)αMEM (300 mOsm/L) vs αMEM (400 mOsm/L). Notochordal cells were cultured in alginate beads as a control. Adherence, cell viability, morphology and expression of known notochordal markers (CD24, KRT8, KRT18, KRT19 and T) were assessed throughout the culture period. Use of αMEM media and laminin-521 coated surfaces displayed the greatest cell adherence, viability and retention of notochordal cell morphology and gene expression, which was further enhanced through culture in hypoxia and hyperosmolar media mimicking the intervertebral disc niche. Conclusions. Assessment of the therapeutic potential of notochordal cells is potentially valuable to development of a cell based therapy for chronic lower back pain. Our model has provided a system in which notochordal cells can be studied extensively. Conflicts of Interest: None. Funding obtained from the Henry Smith Charity, London


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 20 - 20
1 Dec 2019
Hanberg PE J⊘rgensen AR Stilling M Thomassen M Bue M
Full Access

Aim. Cefuroxime is a time-dependent antibiotic widely used as intravenous perioperative prophylaxis in spine surgery. A previous study has indicated that a single dose of cefuroxime provided insufficient spine tissue concentrations for spine procedures lasting more than 2–3 hours. Due to the fact that postoperative pyogenic spondylodiscitis is associated with prolonged antimicrobial therapy and high relapse rates, we aimed to evaluate if a twofold increase of standard dosage of 1.5g cefuroxime given as one double dose or two single doses with 4-hours intervals will lead to sufficient cefuroxime spine tissue concentrations throughout the dosing interval. Method. This is preliminary data for 8 out of 16 female pigs. Data from all 16 pigs will be included for the conference. Eight pigs were randomized into two groups: Group A received one double dose of cefuroxime (3g) as a bolus, and Group B received two single doses of cefuroxime (2×1.5g) with 4-hours intervals. Measurements were obtained from plasma, subcutaneous tissue (SCT), vertebral cancellous bone and the intervertebral disc (IVD) for 8-hours thereafter. Microdialysis was applied for sampling in solid tissues. The cefuroxime concentrations were determined using ultra-high performance liquid chromatography. Results. The time with concentrations above the minimal inhibitory concentration (T>MIC) for the clinical breakpoint MIC for Staphylococcus aureus of 4 μg/ml, was superior in all compartments when administering cefuroxime as two single doses with 4-hours intervals. For the target MIC of 4 μg/ml, the mean T>MIC in all compartments ranged between 53–73% and 85–95% for Group A and B, respectively. For both groups the area under the concentration-curve (AUC) was higher for plasma compared to the remaining compartments, and the lowest AUCs were found in the vertebral cancellous bone and the IVD. There were no differences in AUC between the two groups. Furthermore, the maximal concentrations were lower for both vertebral cancellous bone and IVD compared to both SCT and plasma. When comparing the two groups, higher maximal concentrations were found in all compartments for Group A. Tissue penetration was incomplete and delayed for all compartments and comparable between the two groups. Conclusions. Despite comparable pharmacokinetic results between the two groups, Group B exhibited superior T>MIC in all compartments for the clinical breakpoint MIC for Staphylococcus aureus of 4 μg/ml. As such administration of cefuroxime as two single doses with 4-hours intervals provided sufficient cefuroxime spine tissue concentrations for a minimum of 85% of an 8-hour dosing interval, which may be acceptable for most spine procedures


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 420 - 420
1 Oct 2006
Denaro E Vadalà G Sobajima S Kang J Gilbertson L
Full Access

Mesenchymal stem cells (MSCs) are exciting candidates for cellular repopulation and repair in intervertebral disc degeneration (IDD). Our purpose is to investigate the interaction between MSCs and nucleus polposus cells (NPCs) and to determine viability of MSC in the intervertebral disc (IVD). Human NPCs and hMSCs were co-cultured in pellet system at different ratios. Proteoglycans were measured and normalized with DNA content. Histological analysis were also performed. Rabbit MSCs from bone marrow were trasduced with LacZ reporter gene and were injected into a rabbit IVD. Rabbits were sacrificed postoperatively at 3, 6, 12 and 24 weeks. Histological analysis was performed. Co-culturing of hNPCs with hMSCs resulted in increases proteoglycans as compared with hNPCs alone. Histological examination of the injected IVDs revealed presence of MSCs without apparent decrease in numbers or diminishment of protein production at 3, 6, 12 and 24 weeks. The data from this study show that there is a synergistic effect between MSCs and NPCs resulting in upregulated proteoglycan synthesis in-vitro. MSC remain viable and continue to express an ex-vivo transduced protein for up to 24 weeks. These results suggest that MSCs can survive in the harsh environment of the IVD and may favourably modify ECM production


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 145 - 145
1 Mar 2006
Little J Adam C Evans J Pettet G Pearcy M
Full Access

Introduction: Low back pain (LBP) is an ailment affecting a large portion of the population and may result from degeneration of the intervertebral discs. Degeneration of the discs may be characterized by a loss of hydration, a more granular texture in the disc components and the presence of anular lesions which are tears in the anulus fibrosus. Research to date has been lacking in defining a relationship between LBP and anular lesions. In this study a materially and geometrically accurate finite element model (FEM) of an L4/5 intervertebral disc was developed in order to study the effects of anular lesions on the disc mechanics. Methods: An anatomically accurate transverse profile for the disc FEM was derived from transversely sectioned human cadaveric discs. The anulus fibrosus ground substance was represented as an incompressible material using an Ogden hyperelastic strain energy equation. Material parameters were derived from experimentation on sheep discs. In order to separately assess the effects of degeneration of the nucleus and of the entire disc, four models were analysed. A healthy disc was modelled as reference and the three degenerate models comprised a degenerate nucleus (no hydrostatic nucleus pressure) with either a healthy anulus, or with a radial or rim anular lesion. Loading conditions to simulate the extreme range of physiological motions about the 6 axes of rotation were applied to the models and the peak rotation moments compared. Results: The reduction in peak moment between the Healthy Disc FEM and the Healthy Anulus FEM ranged from 24% under flexion to 86% under right lateral bending. When the lesions were simulated, the rim and radial lesion resulted in variations in peak moment from the Healthy Anulus FEM of 1–10% and 0–4%, respectively. Conclusions: The analysis suggested that loss of the nucleus pulposus pressure had a much greater effect on the disc mechanics than the presence of anular lesions. This indicated that the development of anular lesions prior to the degeneration of the nucleus would have minimal effect on the disc mechanics. But the response of an entirely degenerate disc would show significantly different mechanics compared to a healthy disc. With the degeneration of the nucleus, the disc stiffness will reduce and the outer innervated anulus may become overloaded and painful