Advertisement for orthosearch.org.uk
Results 1 - 100 of 220
Results per page:
Bone & Joint Research
Vol. 11, Issue 2 | Pages 61 - 72
15 Feb 2022
Luobu Z Wang L Jiang D Liao T Luobu C Qunpei L

Aims. Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. Methods. In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays. Results. CircSCAPER was highly expressed in OA cartilage tissues and IL-1β-induced chondrocytes. Knockdown of circSCAPER reduced IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes. Mechanistically, circSCAPER directly bound to miR-140-3p, and miR-140-3p inhibition reversed the effects of circSCAPER knockdown on IL-1β-induced chondrocytes. miR-140-3p was verified to target EZH2, and overexpression of miR-140-3p protected chondrocytes against IL-1β-induced dysfunction via targeting EZH2. Additionally, we confirmed that circSCAPER could regulate EZH2 through sponging miR-140-3p, and the circSCAPER/miR-140-3p/EZH2 axis could activate the PI3K/AKT pathway. Conclusion. CircSCAPER promoted IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes via regulating miR-140-3p/EZH2 axis, which gained a new insight into the pathogenesis of OA. Cite this article: Bone Joint Res 2022;11(2):61–72


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Conclusion. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. Cite this article: Bone Joint Res 2023;12(3):202–211


Bone & Joint Research
Vol. 12, Issue 2 | Pages 91 - 102
1 Feb 2023
Li Z Chen M Wang Z Fan Q Lin Z Tao X Wu J Liu Z Lin R Zhao C

Aims. Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. Methods. Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology. Results. Berberine inhibited proliferation and adhesion of RA-FLS cells, and significantly reduced the expression of MMP-1, MMP-3, RANKL, and TNF-α. Transcriptional results suggested that berberine intervention mainly regulated forkhead box O (FOXO) signal pathway, prolactin signal pathway, neurotrophic factor signal pathway, and hypoxia-inducible factor 1 (HIF-1) signal pathway. Conclusion. The effect of berberine on RA was related to the regulation of RAS/mitogen-activated protein kinase/FOXO/HIF-1 signal pathway in RA-FLS cells. Cite this article: Bone Joint Res 2023;12(2):91–102


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims. Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results. Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion. Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes. Cite this article: Bone Joint Res 2023;12(5):339–351


Bone & Joint Research
Vol. 11, Issue 4 | Pages 200 - 209
1 Apr 2022
Liu YD Liu JF Liu B

Aims. The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods. Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results. The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H. +. -ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion. DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209


Bone & Joint Research
Vol. 10, Issue 10 | Pages 693 - 703
1 Oct 2021
Wang X Wang D Xia P Cheng K Wang Q Wang X Lin Q Song J Chen A Li X

Aims. To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods. In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMDSV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB). Results. In vitro, UTMDSV significantly increased the cholesterol efflux rate and aggrecan, collagen II, and PPARγ levels in OA chondrocytes; these effects were blocked by the PPARγ inhibitor. In vivo, UTMD. SV. significantly increased aggrecan, collagen II, PPARγ, and HDL-C levels, while TC levels and Mankin scores were decreased compared with the UTMD, SV, OA, and control groups. Conclusion. UTMDSV promotes cartilage extracellular matrix synthesis by modulating the PPARγ-mediated cholesterol efflux pathway in OA rabbits. Cite this article: Bone Joint Res 2021;10(10):693–703


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims. Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy. Methods. Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs. Results. Overexpression of BRD4 enhanced while inhibition of Brd4 suppressed the osteogenic differentiation of hBMSCs in vitro. Overexpression of Brd4 increased the expression of mitotically associated long non-coding RNA (Mancr). Downregulation of Mancr suppressed the osteoinductive effect of BRD4. In vivo, inhibition of BRD4 by JQ1 significantly attenuated pathological bone formation in the ATP model (p = 0.001). Conclusion. BRD4 was found to be upregulated in HO and Brd4-Mancr-Runx2 signalling was involved in the modulation of new bone formation in HO. Cite this article: Bone Joint Res 2021;10(10):668–676


Bone & Joint Research
Vol. 13, Issue 4 | Pages 157 - 168
4 Apr 2024
Lin M Chen G Yu H Hsu P Lee C Cheng C Wu S Pan B Su B

Aims. Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods. MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results. Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion. Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion. Cite this article: Bone Joint Res 2024;13(4):157–168


Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims. Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67. phox. was involved in suramin-enhanced chondrocyte phenotype maintenance. Results. Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67. phox. ) activity and membrane translocation. Overexpression of p67. phox. but not p67. phox. AD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67. phox. with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67. phox. -induced COL2A1 and ACAN expression was significantly inhibited. Conclusion. Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67. phox. activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738


Aims. Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results. The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion. APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression. Cite this article: Bone Joint Res 2023;12(8):476–485


Bone & Joint Research
Vol. 10, Issue 7 | Pages 459 - 466
28 Jul 2021
Yang J Zhou Y Liang X Jing B Zhao Z

Aims. Osteoarthritis (OA) is characterized by persistent destruction of articular cartilage. It has been found that microRNAs (miRNAs) are closely related to the occurrence and development of OA. The purpose of the present study was to investigate the mechanism of miR-486 in the development and progression of OA. Methods. The expression levels of miR-486 in cartilage were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN), matrix metalloproteinase (MMP)-13, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) in SW1353 cells at both messenger RNA (mRNA) and protein levels was determined by qRT-PCR, western blot, and enzyme-linked immunosorbent assay (ELISA). Double luciferase reporter gene assay, qRT-PCR, and western blot assay were used to determine whether silencing information regulator 6 (SIRT6) was involved in miR-486 induction of chondrocyte-like cells to a more catabolic phenotype. Results. Compared with osteonecrosis, the expression of miR-486 was significantly upregulated in cartilage from subjects with severe OA. In addition, overexpressed miR-486 promoted a catabolic phenotype in SW1353 cells by upregulating the expressions of ADAMTS4 and MMP-13 and down-regulating the expressions of COL2A1 and ACAN. Conversely, inhibition of miR-486 had the opposite effect. Furthermore, overexpression of miR-486 significantly inhibited the expression of SIRT6, confirming that SIRT6 is a direct target of miR-486. Moreover, SW1353 cells were transfected with small interfering RNA (si)-SIRT6 and it was found that SIRT6 was involved in and inhibited miR-486-induced changes to SW1353 gene expression. Conclusion. Our results indicate that miR-486 promotes a catabolic phenotype in SW1353 cells in OA by targeting SIRT6. Our findings might provide a potential therapeutic target and theoretical basis for OA. Cite this article: Bone Joint Res 2021;10(7):459–466


Bone & Joint Research
Vol. 10, Issue 7 | Pages 437 - 444
27 Jul 2021
Yan F Feng J Yang L Shi C

Aims. The aim of our study is to investigate the effect induced by alternated mechanical loading on Notch-1 in mandibular condylar cartilage (MCC) of growing rabbits. Methods. A total of 64 ten-day-old rabbits were randomly divided into two groups according to dietary hardness: normal diet group (pellet) and soft diet group (powder). In each group, the rabbits were further divided into four subgroups by feeding time: two weeks, four weeks, six weeks, and eight weeks. Animals would be injected 5-bromo-2′-deoxyuridine (BrdU) every day for one week before sacrificing. Histomorphometric analysis of MCC thickness was performed through haematoxylin and eosin (HE) staining. Immunochemical analysis was done to test BrdU and Notch-1. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure expression of Notch-1, Jagged-1, and Delta-like 1 (Dll-1). Results. The thickness of MCC in the soft diet group was thinner than the one in normal diet group. Notch-1 was restricted in fibrous layer, proliferative layer, and hypertrophic layer. The expression of Notch-1 increased from two weeks to six weeks and then fell down. Notch-1 in normal diet group was higher than that in soft diet group in anterior part of MCC. The statistical differences of Notch-1 were shown at two, four, and six weeks (p < 0.05). The result of western blot and quantitative real-time PCR (qRT-PCR) showed the expression of Dll-1 and Jagged-1 rose from two to four weeks and started to decrease at four weeks. BrdU distributed in all layers of cartilage and subchondral bone. The number of BrdU-positive cells, which were less in soft diet group, was decreasing along with the experiment period. The significant difference was found at four, six, and eight weeks in anterior and posterior parts (p < 0.05). Conclusion. The structure and proliferation of MCC in rabbits were sensitive to dietary loading changes. The proper mechanical loading was essential for transduction of Notch signalling pathway and development of mandibular condylar cartilage. Cite this article: Bone Joint Res 2021;10(7):437–444


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims. Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods. In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage. Results. DHCA prevented iNOS and IL-6 from being upregulated by IL-1β. Moreover, the IL-1β-induced upregulation of MMPs could be inhibited by DHCA. Additionally, the administration of DHCA counteracted IL-1β-induced downregulation of aggrecan, collagen II, and SOX9. DHCA protected articular cartilage by blocking the NF-κB and MAPK pathways. Furthermore, DHCA mitigated the destruction of articular cartilage in vivo. Conclusion. We present evidence that DHCA alleviates inflammation and cartilage degradation in OA chondrocytes via suppressing the NF-κB and MAPK pathways, indicating that DHCA may be a potential agent for OA treatment. Cite this article: Bone Joint Res 2023;12(4):259–273


Bone & Joint Research
Vol. 11, Issue 12 | Pages 854 - 861
1 Dec 2022
Park TJ Park SY Cho W Oh H Lee HJ Abd El-Aty AM Bayram C Jeong JH Jung TW

Aims. Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. Methods. Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay. Results. We found that treatment with DEL-1 suppressed palmitate-induced inflammation, ER stress, and apoptosis in human primary tenocytes. DEL-1 treatment augmented LC3 conversion and p62 degradation as well as AMPK phosphorylation. Moreover, small interfering RNA for AMPK or 3-methyladenine (3-MA), an autophagy inhibitor, abolished the suppressive effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes. Similar to DEL-1, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, also attenuated palmitate-induced inflammation, ER stress, and apoptosis in tenocytes, which 3-MA reversed. Conclusion. These results revealed that DEL-1 suppresses inflammation and ER stress, thereby attenuating tenocyte apoptosis through AMPK/autophagy-mediated signalling. Thus, regular exercise or administration of DEL-1 may directly contribute to improving tendinitis exacerbated by obesity and insulin resistance. Cite this article: Bone Joint Res 2022;11(12):854–861


Bone & Joint Research
Vol. 12, Issue 7 | Pages 433 - 446
7 Jul 2023
Guo L Guo H Zhang Y Chen Z Sun J Wu G Wang Y Zhang Y Wei X Li P

Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo. Results. HDAC4 markedly improved the survival rate and biofunction of chondrocytes. RNA-seq analysis of the EP and HDAC4 groups showed that HDAC4 induced 2,668 significant gene expression changes in chondrocytes (1,483 genes upregulated and 1,185 genes downregulated, p < 0.05), and ribosomes exhibited especially large increases. The results were confirmed by RNA-seq of the EP versus mutated HDAC4 groups and the validations in vitro and in vivo. Conclusion. The enhanced ribosome pathway plays a key role in the mechanism by which HDAC4 improves the survival rate and biofunction of chondrocytes. Cite this article: Bone Joint Res 2023;12(7):433–446


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims. Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Methods. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p. Results. The expression of PCBP1-AS1 was pre-eminent in OP tissues and decreased throughout the development of human bone marrow-derived mesenchymal stem cells (hBMSCs) into osteoblasts. PCBP1-AS1 knockdown and overexpression respectively promoted and suppressed hBMSC proliferation and osteogenic differentiation capacity. Mechanistically, PCBP1-AS1 sponged miR-126-5p and consequently targeted PAK2. Inhibiting miR-126-5p significantly counteracted the beneficial effects of PCBP1-AS1 or PAK2 knockdown on hBMSCs’ ability to differentiate into osteoblasts. Conclusion. PCBP1-AS1 is responsible for the development of OP and promotes its progression by inducing PAK2 expression via competitively binding to miR-126-5p. PCBP1-AS1 may therefore be a new therapeutic target for OP patients. Cite this article: Bone Joint Res 2023;12(6):375–386


Bone & Joint Research
Vol. 12, Issue 11 | Pages 677 - 690
1 Nov 2023
Wang X Jiang W Pan K Tao L Zhu Y

Aims. Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis. Methods. The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene. Results. Melatonin promoted apoptosis of RAW264.7 cells and increased the expression of BMAL1 to inhibit the activation of ROS and phosphorylation of mitogen-activated protein kinase (MAPK)-p38. Silencing the bmal1 gene weakened the above effects of melatonin. After that, we used dehydrocorydaline (DHC) to enhance the activation of MAPK-p38, and the effects of melatonin on reducing ROS levels and promoting apoptosis of RAW264.7 cells were also blocked. Then, we constructed a mouse model of postmenopausal osteoporosis and administered melatonin. The results showed that melatonin improves bone loss in ovariectomized mice. Finally, we established a model of overexpression of the bmal1 gene, and these results suggest that the bmal1 gene can regulate ROS activity and change the level of the MAPK-p38 signalling pathway. Conclusion. Our study confirmed that melatonin promotes the apoptosis of RAW264.7 cells through BMAL1/ROS/MAPK-p38, and revealed the therapeutic effect and mechanism of melatonin in postmenopausal osteoporosis. This finding enriches BMAL1 as a potential target for the treatment of osteoporosis and the pathogenesis of postmenopausal osteoporosis. Cite this article: Bone Joint Res 2023;12(11):677–690


Bone & Joint Research
Vol. 11, Issue 9 | Pages 652 - 668
7 Sep 2022
Lv G Wang B Li L Li Y Li X He H Kuang L

Aims. Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Methods. Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot. Results. DC-exo inhibited macrophage autophagy (p = 0.002) and promoted M1 macrophage polarization (p = 0.002). DC-exo at 20 μg/ml induced collagen degradation (p < 0.001) and inflammatory cell infiltration (p = 0.023) in rats. OANCT was elevated in DC (p < 0.001) and in cartilage tissues of OA patients (p < 0.001), and positively correlated with patients’ Kellgren-Lawrence grade (p < 0.001). PIK3R5 was increased in DC-exo-treated cartilage tissues (p < 0.001), and OANCT bound to fat mass and obesity-associated protein (FTO) (p < 0.001). FTO bound to PIK3R5 (p < 0.001) to inhibit the stability of PIK3R5 messenger RNA (mRNA) (p < 0.001) and disrupt the PI3K/AKT/mTOR pathway (p < 0.001). Conclusion. Exosomal OANCT from DC could bind to FTO protein, thereby maintaining the mRNA stability of PIK3R5, further activating the PI3K/AKT/mTOR pathway to exacerbate OA. Cite this article: Bone Joint Res 2022;11(9):652–668


Bone & Joint Research
Vol. 11, Issue 11 | Pages 803 - 813
1 Nov 2022
Guan X Gong X Jiao ZY Cao HY Liu S Lin C Huang X Lan H Ma L Xu B

Aims. The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Methods. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency. Results. IBA1 and cyclin D1 in the ipsilateral spinal horn increased in a time-dependent fashion. Spinal microglia proliferated in BCP rats. The microglia inhibitor minocycline attenuated the pain behaviour in BCP rats. The cyclin-dependent kinase inhibitor flavopiridol inhibited the proliferation of spinal microglia, and was associated with an improvement in pain behaviour in BCP rats. Conclusion. Our results revealed that the inhibition of spinal microglial proliferation was associated with a decrease in pain behaviour in a rat model of BCP. Cyclin D1 acts as a key regulator of the proliferation of spinal microglia in a rat model of BCP. Disruption of cyclin D1, the restriction-point control of cell cycle, inhibited the proliferation of microglia and attenuated the pain behaviours in BCP rats. Cyclin D1 and the proliferation of spinal microglia may be potential targets for the clinical treatment of BCP. Cite this article: Bone Joint Res 2022;11(11):803–813


Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry. Results. We demonstrated that mCRP increases nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and Lipocalin 2 (LCN2) expression in human AF and NP cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signalling of mCRP. Finally, we demonstrated the presence of mCRP in human AF and NP tissues. Conclusion. Our results indicate, for the first time, that mCRP can be localized in IVD tissues, where it triggers a proinflammatory and catabolic state in degenerative and healthy IVD cells, and that NF-κβ signalling may be implicated in the mediation of this mCRP-induced state. Cite this article: Bone Joint Res 2023;12(3):189–198


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 112 - 112
23 Feb 2023
Deng Y Zhang D Smith P Li R
Full Access

Hip and knee arthroplasty (HKA) are two of the most successful orthopaedic procedures. However, one major complication necessitating revision surgery is osteolysis causing aseptic loosening of the prosthesis. JAK-STAT has been demonstrated to influence bone metabolism and can be regulated by microRNA (miRNA). Adult patients with osteolysis or aseptic loosening undergoing revision HKA were recruited. Age and gender matched patients undergoing primary hip or knee arthroplasty were our controls. Samples of bone, tissue and blood were collected and RNA isolation was performed. The best quality samples were used for RNA-sequencing. Data analysis was performed using RStudio and Galaxy to identify differentially expressed genes. Western blotting of IL6 was used to confirm protein expression. Five circulating miRNA were identified which had 10 differentially expressed genes in bone and 11 differentially expressed genes in tissue related to the JAK-STAT pathway. IL6 in bone and EpoR in bone were highly significant and IL6 in tissue, MPL in bone, SOCS3 in tissue, JAK3 in bone and SPRED1 in bone were borderline significant. Western blot results demonstrated up-expression of IL6 in bone tissue of revision patients. Periprosthetic osteolysis and aseptic loosening can be attributed to miRNA regulation of the JAK-STAT pathway in osteoblasts and osteoclasts, leading to increased bone resorption. These findings can be used for further experiments to determine utility in the clinical setting for identifying diagnostic markers or therapeutic targets


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 109 - 109
4 Apr 2023
Ouyang Z Ding Y Lin S Wen Z
Full Access

Aseptic inflammation is the main factor causing aseptic loosening of artificial joints. Studies have shown that inflammatory cells can activate STING (stimulator of interferon genes, STING) after being stressed. This study aims to explore the specific mechanism of STING in aseptic loosening of artificial joints, and provide new strategies for disease prevention. Titanium particles with a diameter of 1.2-10 μm were prepared to stimulate macrophages (RAW 264.7) to simulate the periprosthetic microenvironment. A lentiviral vector targeting the STING gene was designed and transfected into macrophages to construct a cell line targeting STING knockdown. The expression and secretion levels of TNF-α were detected by qPCR and ELISA, the activation levels of inflammatory pathways (NF-κB, IRF3, etc.) were detected by western blot, and the nucleus translocation of P65 and IRF3 was observed by cellular immunofluorescence. After titanium particles stimulated macrophages, qPCR and ELISA showed that the transcription and secretion levels of TNF-α were significantly increased. Western blot showed that titanium particle stimulation could increase the phosphorylation levels of NF-κB and IRF3 pathways. While knockdown of STING can significantly reduce titanium particle-induced TNF production, attenuate the activation levels of NF-κB and IRF3 pathways as well as the nucleus translocation of P65 and IRF3. Conclusions: STING positively regulates the level of inflammation in macrophages induced by titanium particles, and targeted inhibition of STING can reduce inflammation, which may delay the progression of aseptic loosening of artificial joints


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 113 - 113
4 Apr 2023
Qiu X Ding Y Huang D
Full Access

Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment. Human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids transfection and immunoprecipitation were used to explore the specific mechanism of melatonin. In vivo, the rat IDD model were constructed and melatonin was injected intraperitoneally to evaluate its therapeutical effect on IDD. We demonstrated that melatonin could alleviate the development of IDD in a rat model and reverse TNF-α–impaired metabolism of NP cells in vitro. Further investigation revealed that the protective effects of melatonin on NP cells mainly rely on MTNR1B, which subsequently activates Gαi2 protein. The activation of Gαi2 could upregulate the yes-associated protein (YAP) level, resulting in anabolic enhancement of NP cells. In addition, melatonin-mediated YAP upregulation increased the expression of IκBα and suppressed the TNF-α–induced activation of the NF-κB pathway, thereby inhibiting the catabolism of NP cells. Our results revealed that melatonin can reverse TNF-α–impaired metabolism of NP cells via the MTNR1B/Gαi2/YAP axis and suggested that melatonin can be used as a potential therapeutic drug in the treatment of IDD


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 126 - 126
11 Apr 2023
Kim Y Choi Y Cho S
Full Access

Chronic lateral ankle instability (CLAI) is treated operatively, whereas acute ligament injury is usually treated nonoperatively. Such treatments have been widely validated. Apoptosis is known to cause ligament degeneration; however, few reports have focused on the possible role of apoptosis in degeneration of ruptured lateral ankle ligaments. The aim of our study is to elucidate the apoptosis that occurs within anterior talofibular ligament (ATFL) to further validate current CLAI treatments by adducing molecular and cellular evidence. Between March 2019 and February 2021, 50 patients were prospectively enrolled in this study. Ruptured ATFL tissues were collected from 21 CLAI patients (group C) and 17 acute ankle fracture patients (group A). Apoptotic cells were counted using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Western blotting for caspases 3, 7, 8, and 9 and cytochrome c, was performed to explore intrinsic and extrinsic apoptotic pathways. Immunohistochemistry was used to detect caspases 3, 7, 8, and 9 and cytochrome c, in ligament vessel endothelial cells. More apoptotic cells were observed in group C than group A in TUNEL assay. Western blotting revealed that the apoptotic activities of group C ligaments were significantly higher than those of group A (all p < 0.001). Immunohistochemistry revealed increased expression of caspases 3, 7, 8, and 9, and cytochrome c, in group C compared to group A. The ATFL apoptotic activities of CLAI patients were significantly higher than those of acute ankle fracture patients, as revealed biochemically and histologically. Our data further validate current CLAI treatments from a molecular and cellular perspective. Efforts should be made to reverse or prevent ATFL apoptosis in CLAI patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 144 - 144
2 Jan 2024
Anghileri G DeVoogt W Seinen C Peacock B Vader P Martin-Fabiani I Davies O
Full Access

Matrix-bound vesicles (MBVs) are embedded within osteoid and function as the site of initial mineral formation. However, they remain insufficiently characterised in terms of biogenesis, composition and function while their relationship with secreted culture medium EVs (sEVs) such as exosomes remains debated. We aimed to define the biogenesis and pro-mineralisation capacity of MBVs and sEVs to understand their potential in regenerative orthopaedics. sEVs and MBVs isolated from conditioned medium (differential ultracentrifugation) and ECM (collagenase digestion and differential ultracentrifugation) of mineralising MC3T3 pre-osteoblast and human bone marrow MSC cultures were characterised by nanoparticle tracking analysis, western blotting, nano-flow cytometry, super resolution microscopy (ONI) and TEM. Immunoprecipitated populations positive for alkaline phosphatase (ALP), a putative marker of mineralisation capacity, were also characterised. Collagen binding efficiency was evaluated using MemGlow staining. Results reported were comparative across both cell lines. Western blots indicated MBV fractions were positive for markers of endosomal biogenesis (CD9, CD81, ALIX, TSG101) and pro-mineralising proteins (ALP, Pit1, Annexin II, Annexin V), with Annexin V and CD9 present in immunoprecipitated ALP-positive fractions. MBVs were significantly larger than sEVs (p<0.05) and contained a higher amount of ALP (p<0.05) with a significant increase from day 7 to day 14 of cellular mineralisation (p<0.05). This mirrored the pattern of electron-dense vesicles seen via TEM. Super resolution single vesicle analysis revealed for the first-time co-expression of ALP with markers of endosomal biogenesis (CD9, CD63, CD81, ALIX) and Annexin II in both vesicle types, with higher co-expression percentage in MBVs than sEVs. MBVs also exhibited preferential collagen binding. Advanced imaging methods demonstrated that contrary to opinions in the field, MBVs appear to possess exosomal markers and may arise via endosomal biogenesis. However, it was evident that a higher proportion of MBVs possessed machinery to induce mineralisation and were enriched in mineral-dense material


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 124 - 124
2 Jan 2024
Manon J Evrard R Fievé L Xhema D Maistriaux L Schubert T Lengelé B Behets C Cornu O
Full Access

Decellularization techniques have advanced to reduce the risk of immune rejection in transplantation. Validation of these protocols typically relies on Crapo's criteria. 1. , which include the absence of visible nuclei and low DNA content. In our study, five decellularization protocols were compared to determine the optimal approach for human fascia lata (HFL) samples. However, our findings raised questions as to why recipients can still develop immunity despite meeting validation criteria. HFL samples were decellularized using four protocols with SDS-Triton X100-DNase (D1 to D4-HFL) and one protocol using solvent-detergent-based baths (D5-HFL). The decellularized samples (D-HFL) were compared to native samples (N-HFL) using histology, and DNA content was measured. The human leukocyte antigen (HLA) content within the matrix was assessed using western blot analysis. Both D-HFL and N-HFL samples, along with negative control patches, were implanted in the backs of 28 Wistar rats. Anti-human IgG serum levels were evaluated after one month. H&E and Hoechst staining revealed the absence of residual cells in all decellularization protocols. DNA content was consistently below the critical threshold (p<0.05). All implanted D-HFL samples resulted in significantly lower anti-human IgG levels compared to N-HFL (p<0.01). However, 2.5 out of 4 rats developed immunity after being implanted with D1 to D4-HFL, with varying levels of anti-human IgG. Only rats implanted with D5-HFL showed undetectable levels of IgG and were considered non-immunized. Western blot analysis indicated that only D5-HFL had a residual HLA content below 1%. The literature on decellularization has primarily relied on Crapo's criteria, which do not consider the role of HLA mismatch in acute immune rejection. Our results suggest that a residual HLA content below 1% should also be considered to prevent immunization, even if other validation criteria are met. Further research is needed to evaluate the impact of residual HLA levels on human allotransplantation outcomes


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims. Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods. OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot. Results. Tert-butylhydroquinone significantly attenuated cartilage destruction in DMM-induced mice in vivo. It demonstrated clear evidence of inhibiting IL-1β-induced chondrocyte apoptosis, inflammation, and differentiation defect in vitro. Meanwhile, tBHQ inhibited LPS-induced activation of NF-κB and MAPK signalling pathways, and also inhibited LPS-induced reactive oxygen species production and macrophages repolarization in vitro. Conclusion. Taken together, tBHQ might be a potential therapeutic strategy for protecting against OA development. Cite this article: Bone Joint Res 2021;10(11):704–713


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims. Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Methods. Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining. Results. Suramin inhibited IL-1β-induced apoptosis, downregulated matrix metalloproteinase (MMP)-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5, and upregulated collagen 2A (Col2a1) and aggrecan in IL-1β-treated NP cells. IL-1β-induced inflammation, assessed by IL-1β, IL-8, and tumour necrosis factor α (TNF-α) upregulation, was alleviated by suramin treatment. Suramin suppressed IL-1β-mediated proteoglycan depletion and the induction of MMP-3, ADAMTS-4, and pro-inflammatory gene expression in ex vivo experiments. Conclusion. Suramin administration represents a novel and effectively therapeutic approach, which could potentially alleviate IDD by reducing extracellular matrix (ECM) deposition and inhibiting apoptosis and inflammatory responses in the NP cells. Cite this article: Bone Joint Res 2021;10(8):498–513


Objectives. Osteoporosis is a systemic bone metabolic disease, which often occurs among the elderly. Angelica polysaccharide (AP) is the main component of angelica sinensis, and is widely used for treating various diseases. However, the effects of AP on osteoporosis have not been investigated. This study aimed to uncover the functions of AP in mesenchymal stem cell (MSC) proliferation and osteoblast differentiation. Methods. MSCs were treated with different concentrations of AP, and then cell viability, Cyclin D1 protein level, and the osteogenic markers of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2) were examined by Cell Counting Kit-8 (CCK-8) and western blot assays, respectively. The effect of AP on the main signalling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin was determined by western blot. Following this, si-H19#1 and si-H19#2 were transfected into MSCs, and the effects of H19 on cell proliferation and osteoblast differentiation in MSCs were studied. Finally, in vivo experimentation explored bone mineral density, bone mineral content, and the ash weight and dry weight of femoral bone. Results. The results revealed that AP significantly promoted cell viability, upregulated cyclin D1 and increased RUNX2, OCN, ALP, and BMP-2 protein levels in MSCs. Moreover, we found that AP notably activated PI3K/AKT and Wnt/β-catenin signalling pathways in MSCs. Additionally, the relative expression level of H19 was upregulated by AP in a dose-dependent manner. The promoting effects of AP on cell proliferation and osteoblast differentiation were reversed by H19 knockdown. Moreover, in vivo experimentation further confirmed the promoting effect of AP on bone formation. Conclusion. These data indicate that AP could promote MSC proliferation and osteoblast differentiation by regulating H19. Cite this article: X. Xie, M. Liu, Q. Meng. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19: An animal study. Bone Joint Res 2019;8:323–332. DOI: 10.1302/2046-3758.87.BJR-2018-0223.R2


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims. Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model. Methods. The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). Results. PARP-1 expression level significantly increased in the cartilage of the established OA rat model. sh-PARP-1 treatment suppressed PARP-1 levels, decreased the Δ Force (the difference between the weight on ipsilateral limb and contralateral limb) and the knee joint width, inhibited cartilage matrix catabolic enzymes, and ameliorated OA cartilage degradation and attenuated inflammatory response. Conclusion. PARP-1 inhibition attenuates OA cartilage inflammatory response in the OA rat model. Cite this article: Bone Joint Res 2021;10(7):401–410


Bone & Joint Research
Vol. 10, Issue 9 | Pages 558 - 570
1 Sep 2021
Li C Peng Z Zhou Y Su Y Bu P Meng X Li B Xu Y

Aims. Developmental dysplasia of the hip (DDH) is a complex musculoskeletal disease that occurs mostly in children. This study aimed to investigate the molecular changes in the hip joint capsule of patients with DDH. Methods. High-throughput sequencing was used to identify genes that were differentially expressed in hip joint capsules between healthy controls and DDH patients. Biological assays including cell cycle, viability, apoptosis, immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were performed to determine the roles of the differentially expressed genes in DDH pathology. Results. More than 1,000 genes were differentially expressed in hip joint capsules between healthy controls and DDH. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that extracellular matrix (ECM) modifications, muscle system processes, and cell proliferation were markedly influenced by the differentially expressed genes. Expression of Collagen Type I Alpha 1 Chain (COL1A1), COL3A1, matrix metalloproteinase-1 (MMP1), MMP3, MMP9, and MMP13 was downregulated in DDH, with the loss of collagen fibres in the joint capsule. Expression of transforming growth factor beta 1 (TGF-β1) was downregulated, while that of TGF-β2, Mothers against decapentaplegic homolog 3 (SMAD3), and WNT11 were upregulated in DDH, and alpha smooth muscle actin (αSMA), a key myofibroblast marker, showed marginal increase. In vitro studies showed that fibroblast proliferation was suppressed in DDH, which was associated with cell cycle arrest in G0/G1 and G2/M phases. Cell cycle regulators including Cyclin B1 (CCNB1), Cyclin E2 (CCNE2), Cyclin A2 (CCNA2), Cyclin-dependent kinase 1 (CDK1), E2F1, cell division cycle 6 (CDC6), and CDC7 were downregulated in DDH. Conclusion. DDH is associated with the loss of collagen fibres and fibroblasts, which may cause loose joint capsule formation. However, the degree of differentiation of fibroblasts to myofibroblasts needs further study. Cite this article: Bone Joint Res 2021;10(9):558–570


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 59 - 59
1 Jul 2020
Qiu H Cheng T Chim SM Zhu S Xu H Qin A Wang C Teguh D Zhang G Tickner J Yao F Vrielink A Smithers L Pavlos N Xu J
Full Access

Bone is a connective tissue that undergoes constant remodeling. Any disturbances during this process may result in undesired pathological conditions. A single nucleotide substitution (596T-A) in exon eight which leads to a M199K mutation in human RANKL was found to cause osteoclast-poor autosomal recessive osteopetrosis (ARO). Patients with ARO cannot be cured by hematopoietic stem cell transplantation and, without proper treatments, will die in their early age. To date, how this mutation alters RANKL function has not been characterized. We thus hypothesized that hRANKL M199 residue is a structural determinant for normal RANKL-RANK interaction and osteoclast differentiation. By sharing our findings, we aim to achieve an improved clinical outcome in treating bone-related diseases such as osteoporosis, ARO and osteoarthritis. Site-directed mutagenesis was employed to create three rat RANKL mutants, replacing the methionine 200 (human M199 equivalent residue) with either lysine (M200K), alanine (M200A) or glutamic acid (M200E). Recombinant proteins were subsequently purified through affinity chromatography and visualized by Coomassie blue staining and western blot. MTS was carried out before osteoclastogenesis assay in vitro to measure the cellular toxicity. Bone resorption pit assay, immuno-fluorescent staining, luciferase reporter assay, RT-PCR, western blot and calcium oscillation detection were also conducted to explore the biological effect of rRANKL mutants. Computational modeling, thermal Shift Assay, western blot and protein binding affinity experiments were later carried out for structural analyses. rRANKL mutants M200K/A/E showed a drastically reduced ability to induce osteoclast formation and did not demonstrate features of competitive inhibition against wild-type rRANKL. These mutants are all incapable of supporting osteoclastic polarization and bone resorption or activating RANKL-induced osteoclast marker gene transcription. Consistently, they were unable to induce calcium flux, and also showed a diminished induction of IκBa degradation and activation of NF-kB and NFATc1 transcriptional activity. Furthermore, the transcriptional activation of the antioxidant response element (ARE) crucial in modulating oxidative stress and providing cytoprotection was also unresponsive to stimulation with rM200s. Structural analyses showed that rM200 is located in a hydrophobic pocket critical for protein folding. Thermal shift and western blot assays suggested that rM200 mutants formed unstructured proteins, with disturbed trimerisation and the loss of affinity to its intrinsic receptors RANK and OPG. Taken together, we first demonstrates the underlying cause of M199-meidated ARO in a cellular and molecular level by establishing a phenotype in BMMs similar to observed in human samples. Further investigation hints the structural significance of a hydrophobic pocket within the TNF-like region. Combined with pharmaceutical studies on small-molecule drugs, this finding may represent a therapeutic target motif for future development of anti-resorptive treatments


Bone & Joint Research
Vol. 10, Issue 8 | Pages 526 - 535
1 Aug 2021
Xin W Yuan S Wang B Qian Q Chen Y

Aims. Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. Methods. RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations. Results. Circ_0066523 was upregulated in osteogenic induction process of BMSCs. Silencing circ_0066523 restrained the proliferation and osteogenic differentiation of BMSCs. Mechanistically, circ_0066523 activated phosphatidylinositol-4,5-bisphosphate 3-kinase / AKT serine/threonine kinase 1 (PI3K/AKT) pathway via recruiting lysine demethylase 5B (KDM5B) to epigenetically repress the transcription of phosphatase and tensin homolog (PTEN). Functionally, AKT signalling pathway agonist or PTEN knockdown counteracted the effects of silenced circ_0066523 on BMSC proliferation and differentiation. Conclusion. Circ_0066523 promotes the proliferation and differentiation of BMSCs by epigenetically repressing PTEN and therefore activating AKT pathway. This finding might open new avenues for the identification of therapeutic targets for osteoblast differentiation related diseases such as ONFH. Cite this article: Bone Joint Res 2021;10(8):526–535


Bone & Joint Research
Vol. 9, Issue 11 | Pages 821 - 826
1 Nov 2020
Hagi T Nakamura T Kita K Iino T Asanuma K Sudo A

Aims. Tocilizumab, an interleukin-6 (IL-6) receptor (IL-6R) targeting antibody, enhances the anti-tumour effect of conventional chemotherapy in preclinical models of cancer. We investigated the anti-tumour effect of tocilizumab in osteosarcoma (OS) cell lines. Methods. We used the 143B, HOS, and Saos-2 human OS cell lines. We first analyzed the IL-6 gene expression and IL-6Rα protein expression in OS cells using reverse transcription real time quantitative-polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. We also assessed the effect of tocilizumab on OS cells using proliferation and invasion assay. Results. The OS cell lines 143B, HOS, and Saos-2 expressed IL-6R. Recombinant human IL-6 treatment increased proliferation of 143B and HOS cells. Tocilizumab treatment decreased proliferation and invasion of 143B, HOS, and Saos-2. Conclusion. In conclusion, we confirmed the production of IL-6 and the expression of IL-6R in OS cells and demonstrated that tocilizumab inhibits proliferation and invasion in OS cells. Cite this article: Bone Joint Res 2020;9(11):821–826


Bone & Joint Research
Vol. 10, Issue 4 | Pages 259 - 268
1 Apr 2021
Lou A Wang L Lai W Zhu D Wu W Wang Z Cai Z Yang M

Aims. Rheumatoid arthritis (RA), which mainly results from fibroblast-like synoviocyte (FLS) dysfunction, is related to oxidative stress. Advanced oxidation protein products (AOPPs), which are proinflammatory mediators and a novel biomarker of oxidative stress, have been observed to accumulate significantly in the serum of RA patients. Here, we present the first investigation of the effects of AOPPs on RA-FLSs and the signalling pathway involved in AOPP-induced inflammatory responses and invasive behaviour. Methods. We used different concentrations of AOPPs (50 to 200 µg/ml) to treat RA-FLSs. Cell migration and invasion and the expression levels of tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP-3), and MMP-13 were investigated. Western blot and immunofluorescence were used to analyze nuclear factor-κB (NF-κB) activation. Results. AOPPs promoted RA-FLS migration and invasion in vitro and significantly induced the messenger RNA (mRNA) and protein expression of TNF-α, IL-6, MMP-3, and MMP-13 in dose- and time-dependent manners. Moreover, AOPPs markedly activated the phosphorylation of nuclear factor-κB (NF-κB) p65 protein, which triggered inhibitory kappa B-alpha (IκBα) degradation, NF-κB p65 protein phosphorylation, and NF-κB p65 translocation into the nucleus. Furthermore, treatment with a neutralizing antibody specific to receptor for advanced glycation end products (RAGE) significantly suppressed aggressive behaviour and inflammation, decreased TNF-α, IL-6, MMP-3, and MMP-13 expression, and blocked AOPP-induced NF-κB pathway activation. Conclusion. The results indicate that AOPPs can enhance aggressive behaviour and the inflammatory response in RA-FLSs via the RAGE–NF-κB pathway. These results present AOPPs as a new class of potentially important mediators of progressive disease in RA patients. Cite this article: Bone Joint Res 2021;10(4):259–268


Bone & Joint Research
Vol. 9, Issue 11 | Pages 827 - 839
1 Nov 2020
Hameister R Lohmann CH Dheen ST Singh G Kaur C

Aims. This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss. Methods. TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results. Macrophages, lymphocytes, and endothelial cells displayed strong TNF-α immunoexpression in periprosthetic tissues containing metal wear debris. Colocalization of TNF-α with the macrophage marker CD68 and the pan-T cell marker CD3 confirmed TNF-α expression in these cells. Cobalt-treated MM6 cells secreted more TNF-α than control cells, reflecting the role of metal wear products in activating the TNF-α pathway in the myeloid cells. While TNF-α did not alter the immunoexpression of the TNF-receptor 1 (TNF-R1) in SaOs-2 cells, it increased the release of the soluble TNF-receptor 1 (sTNF-R1). There was also evidence for TNF-α-induced apoptosis. TNF-α further elicited the expression of the endoplasmic reticulum stress markers inositol-requiring enzyme (IRE)-1α, binding-immunoglobulin protein (BiP), and endoplasmic oxidoreductin1 (Ero1)-Lα. In addition, TNF-α decreased pro-collagen I α 1 secretion without diminishing its synthesis. TNF-α also induced an inflammatory response in SaOs-2 cells, as evidenced by the release of reactive oxygen and nitrogen species and the proinflammatory cytokine vascular endothelial growth factor. Conclusion. The results suggest a novel osteoblastic mechanism, which could be mediated by TNF-α and may be involved in metal wear debris-induced periprosthetic bone loss. Cite this article: Bone Joint Res 2020;9(11):827–839


Bone & Joint Research
Vol. 9, Issue 11 | Pages 751 - 760
1 Nov 2020
Li Y Lin X Zhu M Xun F Li J Yuan Z Liu Y Xu H

Aims. This study aimed to investigate the effect of solute carrier family 20 member 2 (SLC20A2) gene mutation (identified from a hereditary multiple exostoses family) on chondrocyte proliferation and differentiation. Methods. ATDC5 chondrocytes were cultured in insulin-transferrin-selenium medium to induce differentiation. Cells were transfected with pcDNA3.0 plasmids with either a wild-type (WT) or mutated (MUT) SLC20A2 gene. The inorganic phosphate (Pi) concentration in the medium of cells was determined. The expression of markers of chondrocyte proliferation and differentiation, the Indian hedgehog (Ihh), and parathyroid hormone-related protein (PTHrP) pathway were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Results. The expression of SLC20A2 in MUT group was similar to WT group. The Pi concentration in the medium of cells in MUT group was significantly higher than WT group, which meant the SLC20A2 mutation inhibited Pi uptake in ATDC5 chondrocytes. The proliferation rate of ATDC5 chondrocytes in MUT group was greater than WT group. The expression of aggrecan (Acan), α-1 chain of type II collagen (COL2A1), and SRY-box transcription factor 9 (SOX9) were higher in MUT group than WT group. However, the expression of Runt-related transcription factor 2 (Runx2), α-1 chain of type X collagen (COL10A1), and matrix metallopeptidase 13 (MMP13) was significantly decreased in the MUT group. Similar results were obtained by Alcian blue and Alizarin red staining. The expression of Ihh and PTHrP in MUT group was higher than WT group. An inhibitor (cyclopamine) of Ihh/PTHrP signalling pathway inhibited the proliferation and restored the differentiation of chondrocytes in MUT group. Conclusion. A mutation in SLC20A2 (c.C1948T) decreases Pi uptake in ATDC5 chondrocytes. SLC20A2 mutation promotes chondrocyte proliferation while inhibiting chondrocyte differentiation. The Ihh/PTHrP signalling pathway may play an important role in this process. Cite this article: Bone Joint Res 2020;9(11):751–760


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 79 - 79
4 Apr 2023
Mao J Ding Y Huang L Wang Q Ding L
Full Access

Previous studies showed that telo-peptides degraded from type II collagen, a type of collagen fragments, could induce cartilage damage in bovine stifle joints. We aim to investigate the role of integrins (ITGs) and matrix metalloproteinases (MMPs) in collagen fragment-induced human cartilage damage that is usually observed in osteoarthritis (OA). We hypothesized that N-telopeptide (NT) derived from type II collagen could up-regulate the expression of β1 integrin (ITGB1) and then MMPs that may lead to osteoarthritic cartilage damage. Human chondrocytes were isolated from femoral head or tibial plateau of patients receiving arthroplasty (N = 24). Primary chondrocyte cultures were either treated with 30 µM NT, or 30 µM scrambled NT (SN), or PBS, or left untreated for 24 hrs. Total proteins and RNAs were extracted for examination of expression of ITGB1 and MMPs-3&13 with Western blotting and quantitative real-time PCR. Compared to untreated or PBS treated chondrocytes, NT-treated chondrocytes expressed significantly higher levels of ITGB1 and MMPs-3&-13. However, SN also up-regulated expression of ITGB1 and MMP-13. ITGB1 and MMPs-3&-13 might mediate the catalytic effect of NT, a type of collagen fragments, on human cartilage damage that is a hallmark of OA


Bone & Joint Research
Vol. 9, Issue 10 | Pages 689 - 700
7 Oct 2020
Zhang A Ma S Yuan L Wu S Liu S Wei X Chen L Ma C Zhao H

Aims. The study aimed to determine whether the microRNA miR21-5p (MiR21) mediates temporomandibular joint osteoarthritis (TMJ-OA) by targeting growth differentiation factor 5 (Gdf5). Methods. TMJ-OA was induced in MiR21 knockout (KO) mice and wild-type (WT) mice by a unilateral anterior crossbite (UAC) procedure. Mouse tissues exhibited histopathological changes, as assessed by: Safranin O, toluidine blue, and immunohistochemistry staining; western blotting (WB); and quantitative real-time polymerase chain reaction (RT-qPCR). Mouse condylar chondrocytes were transfected with a series of MiR21 mimic, MiR21 inhibitor, Gdf5 siRNA (si-GDF5), and flag-GDF5 constructs. The effects of MiR-21 and Gdf5 on the expression of OA related molecules were evaluated by immunofluorescence, alcian blue staining, WB, and RT-qPCR. Results. UAC altered the histological structure and extracellular matrix content of cartilage in the temporomandibular joint (TMJ), and KO of MiR21 alleviated this effect (p < 0.05). Upregulation of MiR21 influenced the expression of TMJ-OA related molecules in mandibular condylar chondrocytes via targeting Gdf5 (p < 0.05). Gdf5 overexpression significantly decreased matrix metalloproteinase 13 (MMP13) expression (p < 0.05) and reversed the effects of MiR21 (p < 0.05). Conclusion. MiR21, which acts as a critical regulator of Gdf5 in chondrocytes, regulates TMJ-OA related molecules and is involved in cartilage matrix degradation, contributing to the progression of TMJ-OA. Cite this article: Bone Joint Res 2020;9(10):689–700


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 74 - 74
2 Jan 2024
Lehner C Benedetti B Tempfer H Traweger A
Full Access

Tendinopathy is a disease associated with pain and tendon degeneration, leading to a decreased range of motion and an increased risk of tendon rupture. The etiology of this frequent disease is still unknown. In other musculoskeletal tissues like cartilage and intervertebral discs, transient receptor potential channels (TRP- channels) were shown to play a major role in the progression of degeneration. Due to their responsiveness to a wide range of stimuli like temperature, pH, osmolarity and mechanical load, they are potentially relevant factors in tendon degeneration as well. We therefore hypothesize that TRP- channels are expressed in tendon cells and respond to degeneration inducing stimuli. By immunohistochemistry, qRT-PCR and western blot analyses, we found three TRP channel members, belonging to the vanilloid (TRPV), and ankyrin (TRPA) subfamily, respectively, to be expressed in healthy human tendon tissue as well as in rodent tendon, with expression being located to cells within the dense tendon proper, as well as to endotenon resident cells. In vitro-inflammatory and ex vivo-mechanical stimulation led to a significant upregulation of TRPA1 expression in tendon cells, which correlates well with the fact that TRPA1 is considered as mechanosensitive channel being sensitized by inflammatory mediators. This is the first description of TRP- channels in human and rodent tendon. As these channels are pharmacologically targetable by both agonists and antagonists, they may represent a promising target for novel treatments of tendinopathy


Bone & Joint Research
Vol. 10, Issue 4 | Pages 237 - 249
1 Apr 2021
Chen X Chen W Aung ZM Han W Zhang Y Chai G

Aims. LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling. Methods. The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic media for osteogenesis. Specific staining, a bone resorption assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were subsequently used to evaluate the effect of LY3023414. Moreover, small interfering RNA (siRNA) was applied to knockdown Akt1 or Akt2 for further validation. Lastly, western blot was used to examine the exact mechanism of action. Results. LY3023414 attenuated PI3K/protein kinase B (Akt)/GSK3-dependent activation of β-catenin and nuclear factor-activated T cell 1 (NFATc1) during osteogenesis and osteoclastogenesis, respectively. LY3023414 mainly inhibited osteoclast formation instead of mature osteoclast function. Moreover, it suppressed osteogenesis both in the early stage of differentiation and late stage of calcification. Similarly, gene knockdown of Akt isoforms by siRNA downregulated osteogenic and osteoclastogenic processes, indicating that Akt1 and Akt2 acted synergistically. Conclusion. LY3023414 can suppress osteogenesis and osteoclastogenesis through inhibition of the PI3K/Akt/GSK3 signalling pathway, which highlights the potential benefits and side effects of LY3023414 for future clinical applications. Cite this article: Bone Joint Res 2021;10(4):237–249


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 107 - 107
4 Apr 2023
Li C Ding Y Li S Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches. We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides, immunofluorescence staining for F4/80 as macrophage marker and TAK1 were conducted as well. TAK1 expression was examined in RAW264.7 macrophages stimulated by HMGB1 via qPCR (Quantitative polymerase chain reaction) and Western blotting, and the effect of TAK1 inhibitor (5z-7 oxozeaenol) on TNF-α production was evaluated by immunofluorescence staining. Further, we explored the influence of intra-articular shRNA (short hairpin RNA) targeting TAK1 on collagenase-induced osteoarthritis in mice. Immunohistochemical staining confirmed significant elevation of TAK1 in osteoarthritic synovium, and immunofluorescence staining suggested macrophages as predominant residence of TAK1. In HMGB1-stimulated RAW264.7 macrophages, TAK1 expression was up-regulated both in mRNA and protein level. Besides, TAK1 inhibitor significantly impairs the production of TNF-α by macrophages upon HMGB1 stimulation. Moreover, intra-articular injection of lentivirus loaded with shRNA targeting TAK1 (sh-TAK1) reduced peri-articular osteophyte formation in collagenase-induced osteoarthritis in mice. TAK1 exerts a potent role in the pathogenesis of osteoarthritis by mediating the activation of macrophages


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 108 - 108
4 Apr 2023
Wen Z Ding Y Lin S Li C Ouyang Z
Full Access

As peri-prosthetic aseptic loosening is one of the main causes of implant failure, inhibiting wear particles induced macrophages inflammation is considered as a promising therapy for AL to expand the lifespan of implant. Here, we aim at exploring the role of p110δ, a member of class IA PI3K family, and Krüppel-like factor 4 (KLF4) in titanium particles (TiPs) induced macrophages-inflammation and osteolysis. Firstly, IC87114, the inhibitor of p110δ and siRNA targeting p110δ were applied and experiments including ELISA and immunofluorescence assay were conducted to explore the role of p110δ. Sequentially, KLF4 was predicted as the transcription factor of p110δ and the relation was confirmed by dual luciferase reporter assay. Next, assays including RT-PCR, western blotting and flow cytometry were performed to ensure the specific role of KLF4. Finally, TiPs-induced mice cranial osteolysis model was established, and micro-CT scanning and immunohistochemistry assay were performed to reveal the role of p110δ and KLF4 in vivo. Here, we found that p110δ was upregulated in TiPs-stimulated macrophages. The inhibition of p110δ or knockdown of p110δ could significantly dampen the TiPs-induced secretion of TNFα and IL-6. Further mechanistic studies confirmed that p110δ was responsible for TNFα and IL-6 trafficking out of Golgi complex without affecting their expression in TiPs-treated macrophages. Additionally, we explored the upstream regulators and confirmed that Krüppel-like factor 4 (KLF4) was the transcription repressor of p110δ. Apart from that, KLF4, targeted by miR-92a, could also attenuate TiPs-induced inflammation by mediating NF-κB pathway and M1/M2 polarization. By the establishment of TiPs-induced mice cranial osteolysis model, we found that KLF4 knockdown exacerbated TiPs-induced osteolysis which was strikingly ameliorated by knockdown of p110δ. In summary, our study suggests the key role of miR-92a/KLF4/p110δ signal in TiPs-induced macrophages inflammation and osteolysis


Bone & Joint Research
Vol. 9, Issue 9 | Pages 578 - 586
1 Sep 2020
Ma M Liang X Wang X Zhang L Cheng S Guo X Zhang F Wen Y

Aims. Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection. Results. The mRNA and protein expression levels of COMP were significantly lower in KBD chondrocytes than control chondrocytes. After the T-2 toxin intervention, the COMP mRNA expression of C28/I2 chondrocyte reduced and the protein level of COMP in three intervention groups was significantly lower than in the control group. MTT assay showed that the survival rate of COMP overexpression KBD chondrocytes were notably higher than in the blank control group. The mRNA expression levels of Survivin, SOX9, Caspase-3, and type II collagen were also significantly different among COMP overexpression, negative control, and blank control groups. Conclusion. Our study results confirmed the functional relevance of COMP with KBD. COMP may play an important role in the excessive chondrocytes apoptosis of KBD patients. Cite this article: Bone Joint Res 2020;9(9):578–586


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 7 - 7
1 Aug 2022
Mathieu H Amani H Patten SA Parent S Aragon J Barchi S Joncas J Child A Moldovan F
Full Access

The aim of this study is to clarify the implication of ciliary pathway on the onset of the spinal curvature that occurs in Adolescent Idiopathic Scoliosis (AIS) patients through functional studies of two genes: POC5 and TTLL11. Since the genetic implication for AIS is accepted, many association and candidate gene analysis revealed the implication of ciliary genes. The characterisation of these two proteins was assessed by qPCR, WB and immunofluorescence in vitro using control cells and cells derived from AIS patients. The impact of genetic modification of these genes on the functionality of the proteins in vitro and in vivo was analysed in zebrafish model created by CRISPR/Cas9 using microCT and histologic analysis. Our study revealed that mutant cells, for both gene, were less ciliated and the primary cilia was significantly shorter compared to control cells. We also observed a default in cilia glutamylation by immunofluorescence and Western Blot. Moreover, we observed in both zebrafish model, a 3D spine curvature similar to the spinal deformation in AIS. Interestingly, our preliminary results of immunohistology showed a retinal defect, especially at the cone cell layer level. This study strongly supports the implication of the ciliary pathway in the onset of AIS and this is the first time that a mechanism is described for AIS. Indeed, we show that shorter cilia could be less sensitive to environmental factors due to lower glutamylation and result in altered signalling pathway. Identifying the biological mechanism involved is crucial for elucidating AIS pathogenesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 10 - 10
11 Apr 2023
Manon J
Full Access

Periosteal mesenchymal stem cells (PMSC) are an emerging niche of stem cells to enhance bone healing by tissue engineering process. They have to be differentiated into osteoprogenitors in order to synthesize new bone matrix. In vitro differentiation with specific differentiation medium (DM) is not exactly representative of what occurs in vivo. The interaction between PMSC and growth factors (GF) present in biological matrix is somewhat less understood. The goal of this study is to explore the possibility of spontaneous PMSC differentiation in contact with different biological matrices without DM. 500.000 porcine PMSC were seeded on 6-well plates and cultured with proliferation medium (PM). When reaching 80% confluence, biological samples (n=3) of demineralized bone matrix (DBM), decellularized porcine bone allograft (AOp), human bone allograft (AOh), human periosteum (HP) and human fascia lata (HFL) were added. Negative and positive control wells included cells with only PM or DM, respectively. The differentiation progress was assessed by Alizarin Red staining at days 7, 14 and 21. Bone morphogenetic protein content (BMP 2, 4, 5, 6, 7, 8, 9 and 11) of each sample was also investigated by western blot. Alizarin red highlighted bone nodules neoformation on wells containing AOp, AOh and DBM, like positive controls. HP and HFL wells did not show any nodules. These results are correlated to a global higher BMP expression profile in AOp than in HP and HFL but not statistically significant (p=0.38 and p>.99, respectively). The highest expression in each tissue was that of BMP2 and BMP7, which play an important role in osteoinduction. PMSC are well known to participate to bone formation but, despite BMP presence in HP and HFL, they did not permit to achieve osteogenesis alone. The bone contact seems to be essential to induce in vitro differentiation into osteoprogenitors


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 88 - 88
2 Jan 2024
Joris V Balmayor E van Griensven M
Full Access

Bone homeostasis is a highly regulated process involving pathways in bone as WNT, FGF or BMP, but also requiring support from surrounding tissues as vessels and nerves. In bone diseases, the bone-vessel-nerve triad is impacted. Recently, new players appeared as regulators of bone homeostasis: microRNAs (miRNA). Five miRNAs associated with osteoporotic fractures are already known, among which miR-125b is decreasing bone formation by downregulating human mesenchymal stem cells (hMSCs) differentiation. Other miRNAs, as miR-214 (in cluster with miR-199a), are secreted by osteoclasts to regulate osteoblasts and inhibit bone formation. This forms a very complex regulatory network. hMSCs and osteoblasts (n=3) were transfected with mimic/antagomiR of miR-125b, miR-199a-5p or miR-214, or with a scrambled miRNA (negative control) in osteogenic differentiation calcium-enriched medium (Ca++). Mineralization was assessed by Alizarin Red/CPC staining, miRNA expression by qPCR and protein by western blotting. Exposure of hMSCs or osteoblasts to Ca++ increased mineralization compared to basal medium. hMSCs transfected with miR-125b mimic in Ca++ presented less mineralization compared to scramble. This correlated with decreased levels of BMPR2 and RUNX2. hMSCs transfected with miR-125b inhibitor presented higher mineralization. Interestingly, hMSCs transfected with miR-214 mimic in Ca++ presented no mineralization while miR-214 inhibitor increased mineralization. No differences were observed in hMSCs transfected with miR-199a-5p modulators. On the contrary, osteoblasts transfected with miR-199a-5p mimic present less mineralization than scrambled-transfected and same was observed for miR-214 and miR-125b mimics. We highlight that miR-125b and miR-214 decrease mineralization of hMSCs in calcium-enriched medium. We noticed that miR-199a-5p is able to regulate mineralization in osteoblasts but not in hMSCs suggesting that this effect is cell-specific. Interestingly, the cluster miR-199a/214 is known as modulator of vascular function and could thus contribute to bone remodeling via different ways. With this work we slightly open the door to possible therapeutic approaches for bone diseases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 21 - 21
2 Jan 2024
Strauss C Djojic D Grohs J Schmidt S Windhager R Stadlmann J Toegel S
Full Access

Intervertebral disc (IVD) degeneration is responsible for severe clinical symptoms including chronic back pain. Galectins are a family of carbohydrate-binding proteins, some of which can induce functional disease markers in IVD cells and other musculoskeletal diseases. Galectins −4 and −8 were shown to trigger disease-promoting activity in chondrocytes but their effects on IVD cells have not been investigated yet. This study elucidates the role of galectin-4 and −8 in IVD degeneration. Immunohistochemical evidence for the presence of galectin-4 and −8 in the IVD was comparatively provided in specimens of 36 patients with spondylochondrosis, spondylolisthesis, or spinal deformity. Confocal microscopy revealed co-localization of galectin-4 and −8 in chondrocyte clusters of degenerated cartilage. The immunohistochemical presence of galectin-4 correlated with histopathological and clinical degeneration scores of patients, whereas galectin-8 did not show significant correlations. The specimens were separated into annulus fibrosus (AF), nucleus pulposus (NP) and endplate, which was confirmed histologically. Separate cell cultures of AF and NP (n=20) were established and characterized using cell type-specific markers. Potential binding sites for galectins including sialylated N-glycans and LacdiNAc structures were determined in AF and NP cells using LC/ESI-MS-MS. To assess galectin functions, cell cultures were treated with recombinant galectin-4 or −8, in comparison to IL-1β, and analyzed using RT-qPCR and In-cell Western blot. In vitro, both galectins triggered the induction of functional disease markers (CXCL8 and MMP3) on mRNA level and activated the nuclear factor-kB pathway. NP cells were significantly more responsive to galectin-8 and Il-1β than AF cells. Phosphorylation of p-65 was time-dependently induced by both galectins in both cell types to a comparable extent. Taken together, this study provides evidence for a functional role of glycobiological processes in IVD degeneration and highlights galectin-4 and −8 as regulators of pro-inflammatory and degrative processes in AF and NP cells


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 36 - 36
2 Jan 2024
Bagur-Cardona S Perez-Romero K Stiliyanov K Calvo J Gayà A Barceló-Coblijn G Rodriguez RM Gomez-Florit M
Full Access

Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an osteosarcoma cell line. Monocytes were extracted from buffy coats and cultured in RPMI medium with platelet lysate or M-CSF. After 6 days of seeding, Mφ were differentiated into M1 and M2 with INF-γ/LPS and IL-4/IL-13, respectively. The medium with M1 or M2 derived EVs was collected and EVs were isolated by differential centrifugation and size exclusion chromatography and its morphology and size were characterized with SEM and NTA, respectively. The presence of typical EVs markers (CD9, CD63) was assessed by Western Blot. Finally, EVs from M1 or M2-polarized Mφ were added onto osteosarcoma cell cultures and their effect on cell viability and cell cycle, proliferation, and gene expression was assessed. The EVs showed the typical shape, size and surface markers of EVs. Overall, we observed that osteosarcoma cells responded differentially to EVs isolated from the M1 and M2-polarized Mφ. In summary, the use of Mφ-derived EVs for the treatment of osteosarcoma and other cancers deserves further study as it could benefit from interesting traits of EVs such as low immunogenicity, nontoxicity, and ability to pass through tissue barriers. Acknowledgements: Carlos III Health Institute and the European Social Fund for contract CP21/00136 and project PI22/01686


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 76 - 76
2 Jan 2024
Zamboulis D Ali F Thorpe C
Full Access

Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to age-related injury. Tendons have poor healing capacity and a lack of effective treatments can lead to ongoing pain, reduced function and re-injury. It is therefore important to identify the mechanisms underpinning age-related tendinous changes in order to develop more effective treatments. Our recent single cell sequencing data has shown that tendon cell populations have extensive heterogeneity and cells housed in the tendon interfascicular matrix (IFM) are preferentially affected by ageing. There is, however, a lack of established surface markers for cell populations in tendon, limiting the capacity to isolate distinct cell populations and study their contribution to age-related tendon degeneration. Here, we investigate the presence of the cell surface proteins MET proto-oncogene (MET), integrin subunit alpha 10 (ITGA10), fibroblast activation protein alpha (FAP) and platelet derived growth factor receptor alpha (PDGFRA) in the equine SDFT cell populations and their co-localisation with known markers. Using Western blot we validated the specificity of selected antibodies in equine tissue before performing immunohistochemistry to establish the location of the respective proteins in the SDFT. We subsequently used double labelling immunofluorescence with the established mural cell marker desmin (DES) to distinguish between tenocyte and mural cell populations. In situ, MET, ITGA10, and FAP presence was found in cells throughout the tendon whereas PDGFRA was present in cells within the IFM. Double labelling immunofluorescence with the mural cell marker DES showed lack of co-localisation between PDGFRA and DES suggesting PDGFRA is labelling an IFM cell population distinct from those associated with blood vessels. PDGFRA is a promising target for the specific cell sorting of IFM-localised tenocytes, enabling their isolation and subsequent characterisation. Acknowledgments: The authors acknowledge the Biotechnology and Biological Sciences Research Council (BB/W007282/1) for funding this work


Full Access

Mesenchymal stem cells (MSCs) have been studied for the treatment of Osteoarthritis (OA), a potential mechanism of MSC therapies has been attributed to paracrine activity, in which extracellular vesicles (EVs) may play a major role. It is suggested that MSCs from younger donor compete with adult MSC in their EV production capabilities. Therefore, MSCs generated from induced pluripotent mesenchymal stem cells (iMSC) appear to provide a promising source. In this study, MSCs and iMSC during long term-expansion using a serum free clinical grade condition, were characterized for surface expression pattern, proliferation and differentiation capacity, and senescence rate. Culture media were collected continuously during cell expansion, and EVs were isolated. Nanoparticle tracking analysis (NTA), transmission electron microscopy, western blots, and flow cytometry were used to identify EVs. We evaluated the biological effects of MSC and iMSC-derived EVs on human chondrocytes treated with IL-1α, to mimic the OA environment. In both cell types, from early to late passages, the amount of EVs detected by NTA increased significantly, EVs collected during cells expansion, retained tetraspanins (CD9, CD63 and CD81) expression. The anti-inflammatory activity of MSC-EVs was evaluated in vitro using OA chondrocytes, the expression of IL-6, IL-8 and COX-2 was significantly reduced after the treatment with hMSC-derived EVs isolated at early passage. The miRNA content of EVs was also investigated, we identify miRNA that are involved in specific biological function. At the same time, we defined the best culture conditions to maintain iMSC and define the best time window in which to isolate EVs with highest biological activity. In conclusion, a clinical grade serum-free medium was found to be suitable for the isolation and expansion of MSCs and iMSC with increased EVs production for therapeutic applications. Acknowledgments: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874671


Bone & Joint Research
Vol. 9, Issue 3 | Pages 99 - 107
1 Mar 2020
Chang C Jou I Wu T Su F Tai T

Aims. Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing. Methods. We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests. Results. In the smoking group, Western blot analysis and immunohistochemical staining revealed less expression of vascular endothelial growth factor (VEGF) and von Willebrand factor (vWF). The smoking group also had a lower microvessel density than the control group. Image and biochemical analysis also demonstrated delayed bone healing. Conclusion. Cigarette smoke inhalation was associated with decreased expression of angiogenic markers in the early bone healing phase and with impaired bone healing. Cite this article:Bone Joint Res. 2020;9(3):99–107


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 41 - 41
10 Feb 2023
Fryer C Jackson C Mckelvey K Lin H Xue. M
Full Access

Tendinopathy is a tendon pathology often resulting from a failed healing response to tendon injury. Activated protein C (APC) is a natural anti-coagulant with anti-inflammatory and wound healing promoting functions, which are mainly mediated by its receptors, endothelial protein C receptor (EPCR) and protease activated receptors (PARs). This study aimed to determine whether APC stimulates tenocyte healing and if so, to assess the involvement of the receptors. Mouse-tail tenocytes were isolated from 3-week-old wild type (WT), PAR- 1 knockout (KO) and PAR-2 KO mice. The expression of EPCR, PAR-1 and −2 and the effect of APC on tenocytes tendon healing and the underlying mechanisms were investigated by Reverse transcription real time PCR, western blot, 3- (4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, zymography, and scratch wound healing/ migration assay. When compared to WT cells, PAR-1 KO tenocytes showed increased cell proliferation (3.3-fold, p<0.0001), migration (2.7-fold, p<0.0001) and wound healing (3-fold, p<0.0001), whereas PAR-2 KO cells displayed decreased cell proliferation (0.6-fold, p<0.05) and no change in cell migration or wound healing. APC at 1 μg/ml stimulated WT and PAR-1 KO tenocyte proliferation (~1.3, respectively, p<0.05) and wound healing (~1.3-fold, respectively, p<0.05), and additionally promoted PAR1-KO cell migration (1.4-fold, p<0.0001). APC only increased the migration (2-fold, p<0.05) of PAR-2 KO tenocytes. The activation of AKT, extracellular signal-regulated kinase (ERK)-2, and glycogen synthase kinase (GSK)-β3, the intracellular molecules that are associated with cell survival/growth, and matrix metalloproteinase (MMP)-2 that is related to cell migration and wound healing, were increased in all three cell lines in response to APC treatment. These findings show that PAR-1 and PAR-2 act differentially in tenocyte proliferation/migration/wound healing. APC likely promotes tenocyte proliferation/ wound healing via PAR-2, not PAR-1


Bone & Joint Research
Vol. 9, Issue 10 | Pages 667 - 674
1 Oct 2020
Antich-Rosselló M Forteza-Genestra MA Calvo J Gayà A Monjo M Ramis JM

Aims. Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). Methods. EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca. 2+. ) content. Results. Osteogenic differentiation of MSCs was confirmed when treated with UC-isolated EVs. In order to disprove that the effect was due to co-isolated proteins, EVs were isolated by SEC. Purer EVs were obtained and proved to maintain the differentiation effect on MSCs and showed a dose-dependent response. Conclusion. PL-derived EVs present an osteogenic capability comparable to PL treatments, emerging as an alternative able to overcome PL and PRP limitations. Cite this article: Bone Joint Res 2020;9(10):667–674


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 87 - 87
1 Mar 2021
Graceffa V Govaerts A Lories R Jonkers I
Full Access

In a healthy joint, mechanical loading increases matrix synthesis and maintains cell phenotype, while reducing catabolic activities. It activates several pathways, most of them yet largely unknown, with integrins, TGF-β, canonical (Erk 1/2) and stress-activated (JNK) MAPK playing a key role. Degenerative joint diseases are characterized by Wnt upregulation and by the presence of proteolytic fibronectin fragments (FB-fs). Despite they are known to impair some of the aforementioned pathways, little is known on their modulatory effect on cartilage mechanoresponsiveness. This study aims at investigating the effect of mechanical loading in healthy and in vitro diseased cartilage models using pro-hypertrophic Wnt agonist CHIR99021 and the pro-catabolic FB-fs 30 kDa. Human primary chondrocytes from OA patients have been grown in alginate hydrogels for one week, prior to be incubated for 4 days with 3μM CHIR99021 or 1 μM FB-fs. Human cartilage explants isolated from OA patients have incubated 4 days with 3 μM CHIR99021 or 1 μM FB-fs. Both groups have then been mechanically stimulated (unconfined compression, 10% displacement, 1.5 hours, 1 Hz), using a BioDynamic bioreactor 5270 from TA Instruments. Expression of collagen type I, II and X, aggrecan, ALK-1, ALK-5, αV, α5 and β1 integrins, TGF-β1 have been assessed by Real Time-PCR and normalized with the expression of S29. Percentage of phosphorylated Smad2, Smad1 and JNK were determined through western blot. TGF-β1 content was quantified by sandwich ELISA; MMP-13 and GAG by western blot and DMMB assay, respectively. At least three biological replicates were used. ANOVA test was used for parametric analysis; Kruskal-Wallis and Mann-Whitney post hoc test for non-parametric. Preliminary data show that compression increased collagen II expression in control, but not in CHIR99021 and FB-fs pre-treated group (Fig. 1A-B). This was associated with downregulation of β1-integrin expression, which is the main collagen receptor and further regulates collagen II expression, suggesting inhibition of Erk1/2 pathway. A trend of increase expression of collagen type X after mechanical loading was observed in CHIR and FB-fs group. ALK-1 and ALK-5 showed a trend toward stronger upregulation in CHIR99021 group after compression, suggesting the activation of both Smad1/5/8 and Smad 2/3 pathways. To further investigate pathways leading to these different mechano-responses, the phosphorylation levels of Smad1 and Smad2, Erk1/2 and JNK proteins are currently being studied. Preliminary results show that Smad2, Smad1 and JNK protein levels increased in all groups after mechanical loading, independently of an increase in TGF-β1 expression or content. Compression further increased phosphorylation of Smad2, but not of Smad1, in all groups


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction. Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture. The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 86 - 86
1 Dec 2022
Grant M Bokhari R Alsaran Y Epure LM Antoniou J Mwale F
Full Access

Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of proteoglycan and Col II in NP and AF cells, similar to treatment with IL-1b. (n = 4). Contrarily to IL-1b, Ca. 2+. and cincalcet did not significantly increase the expression of catabolic enzymes save ADAMTS5. Similar effects were observed in whole organ cultures, as Ca. 2+. and cinacalcet decreased proteoglycan and collagen content. Although both Ca. 2+. and cinacalcet increased the expression of alkaline phosphatase (ALP), only in Ca. 2+. -treated IVDs was there evidence of calcium deposits in NP and AF tissues as determined by von Kossa staining. Biomechanical studies on Ca. 2+. and cinacalcet-treated IVDs demonstrated decreases in complex modulus (p<0.01 and p<0.001, respectively; n=5), however, only Ca. 2+. -treated IVDs was there significant increases stiffness in NP and AF tissues (p<0.001 and p<0.05, respectively; n=3). Our results suggest that changes in the local concentrations of calcium and activation of CaSR affects matrix protein synthesis, calcification and IVD biomechanics. Ca. 2+. may be a contributing factor in IVD degeneration and calcification


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 55 - 55
1 Jul 2020
Epure LM Grant M Alaqeel M Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a chronic degenerative joint disorder that affects millions of people. There are currently no therapies that reverse or repair cartilage degradation in OA patients. Link N (DHLSDNYTLDHDRAIH) is a naturally occurring peptide that has been shown to increase both collagen and proteoglycan synthesis in chondrocytes and intervertebral disc cells [1,2]. Recent evidence indicates that Link N activates Smad1/5 signaling in cultured rabbit IVD cells presumably by interacting with the bone morphogenetic protein (BMP) type II receptor [3], however, whether a similar mechanism exists in chondrocytes remains unknown. In this study we determined whether Link N can stimulate matrix production and reverse degradation of human OA cartilage under inflammatory conditions. OA cartilage was obtained from donors undergoing total knee arthroplasty with informed consent. OA cartilage/bone explants and OA chondrocytes were prepared from each donor. Cells were prepared in alginate beads (2×106 cells/mL) for gene expression analysis using qPCR. Cells and cartilage explants were exposed to IL-1β (10ng/ml), human Link N (hLN) (1μg/ml) or co-incubated with IL-1β+hLN for 7 and 21 days, respectively. Media was supplemented every three days. Cartilage/bone explants were measured for total glycosaminoglycan (GAG) content (retained and released) using the dimethylmethylene blue (DMMB) assay. Western blotting was performed to determine aggrecan and collagen expression in cartilage tissue. To determine NFκB activation, Western blotting was performed for detection of P-p65 in chondrocytes cultured in 2D following 10 min exposure of IL-1β in the presence of 10, 100, or 1000 ng/mL hLN. Link N significantly decreased in a dose-dependent manner IL-1β-induced NFκB activation in chondrocytes. Gene expression profiling of matrix proteins indicated that there was a trend towards increased aggrecan and decreased collagen type I expression following hLN and IL-1β co-incubation. HLN significantly decreased the IL-1β-induced expression of catabolic enzymes MMP3 and MMP13, and the neuronal growth factor NGF (p < 0 .0001, n=3). In OA cartilage/bone explants, hLN reversed the loss of proteoglycan in cartilage tissue and significantly increased its synthesis whilst in the presence of IL-1β. Link N stimulated proteoglycan synthesis and decreased MMP expression in OA chondrocytes under inflammatory conditions. One mechanism for Link N in preserving matrix protein synthesis may, in part, be due to its ability in rapidly suppressing IL-1β-induced activation of NF-κB. Further work is needed to determine whether Link N directly inhibits the IL-1β receptor or interferes with NFκB activation through an independent pathway(s)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 56 - 56
1 Jul 2020
Epure LM Grant M Salem O Huk OL Antoniou J Mwale F
Full Access

Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension. Bovine articular cartilage explants (10 months) were used as a control. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. Immunohistochemistry was performed on cartilage explants to measure expression of Col X, MMP-13, and alkaline phosphatase. The sulfated glycosaminoglycan (GAG, predominantly aggrecan) content of cartilage was analyzed using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay, and aggregan fragmentation was determined by Western blotting using antibody targeted to its G1 domain. Western blotting was also performed on cell lysate from both OA and normal chondrocytes to measure aggrecan, Col II, MMP-3 and −13, ADAMTS-4 and −5. Ca2+ significantly decreased the proteoglycan content of the cartilage explants as determined by the DMMB assay. The presence of aggrecan and Col II also decreased as a function of calcium, in both the human OA and bovine cartilage explants. When normal and OA chondrocytes were cultured in medium supplemented with increasing concentrations of calcium (0.5–5 mM Ca2+), aggrecan and Col II expression decreased dose-dependently. Surprisingly, increasing Ca2+ did not induce the release of MMP-3, and −13, or ADAMTS-4 and-5 in conditioned media from OA and normal chondrocytes. Interestingly, inhibition of the extracellular calcium-sensing receptor CaSR) reversed the effects of calcium on matrix protein synthesis. We provide evidence that Ca2+ may play a direct role in cartilage degradation by regulating the expression of aggrecan and Col II through activation of CaSR


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 48 - 48
1 Dec 2021
Alkhrayef MN Hotchen AJ McCaskie AW Birch MA
Full Access

Abstract. Objectives. Mesenchymal stromal/stem cells (MSCs) are increasingly recognized as regulators of immune cells during disease or tissue repair. During these situations, the extracellular matrix (ECM) is very dynamic and therefore, our studies aim to understand how ECM influences the activity of MSCs. Methods. Human MSCs cultured on tissue culture plastic (TCP) and encapsulated within collagen type I, fibrin, or mixed Collagen-Fibrin were exposed to low dose TNFα and IFNɣ. Transcription profiles were examined using bulk RNA sequencing (RNAseq) after 24h of treatment. ELISA, Western blot, qPCR and immunofluorescence were employed to validate RNAseq results and to investigate the significance of transcriptional changes. Flow cytometry evaluated monocyte/macrophage phenotype. Results. Previously, we showed that human MSC expression of TNFAIP6 and CXCL10 in 3D environments is significantly upregulated in response to pro-inflammatory stimuli. Here, RNAseq revealed that there were 2,085 highly significant upregulated genes in 3D matrices compared to TCP. Notably, >90% of highly expressed genes (including FOSB, FOS and TNFAIP6) were shared in all hydrogels. Gene ontology confirmed the TNF signalling pathway among the most significantly represented. Protein-protein interaction predictions identified TNF-alpha/NF-kappa B and AP1 pathways as differentially influenced by the hydrogel environment. Using inhibitors to these pathways, NFkB, but not AP1, impacted on the upregulation of TNFAIP6 and CXCL10 in 3D culture. Conditioned media from these studies was added to cultures of human monocytes with distinct changes in the resulting macrophage phenotype. MSCs in a 3D environment promoted a greater acquisition of the M2 repair macrophage phenotype and impacted on the numbers of pro-inflammatory M1 macrophages. Conclusion. These data provide further evidence that the immunomodulatory action of human MSCs can be influenced by the surrounding structural environment. These observations have significance for understanding the events that following skeletal injury and the potential to be exploited in preconditioning MSCs for cell therapy


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 7 - 7
1 Nov 2021
Trivanovic D Volkmann N Stoeckl M Tertel T Schlierf B Kreuzahler T Giebel B Rudert M Herrmann M
Full Access

Introduction and Objective. The early pro-inflammatory hematoma phase of bone healing is characterized by platelet activation followed by growth factor release. Bone marrow mesenchymal stromal cells (MSC) play a critical role in bone regeneration. However, the impact of the pro-inflammatory hematoma environment on the function of MSC is not fully understood. We here applied platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of MSC in comparison to a non-inflammatory control environment simulated by fibrin (FBR) hydrogels. Materials and Methods. MSC were isolated from acetabular bone marrow of patients undergoing hip arthroplasty. PRP was collected from pooled apheresis thrombocyte concentrates. The phenotype of MSC was analyzed after encapsulation in hydrogels or exposure with platelet-derived factors with regards to gene expression changes, cell viability, extracellular vesicle (EV) release and immunomodulatory effects utilizing cellular and molecular, flow cytometry, RT-PCR, western blot and immunofluorescence stainings. Results. Our results showed that encapsulation of MSC in PRP induced changes in cell metabolism increasing lactate production and reducing mitochondria membrane potential. This was followed by significantly decreased mTOR phosphorylation and differential gene regulation. While PRP-released factors could support EV-biogenesis and immunoregulation-related gene expression, FBR hydrogel reduced CD63+ and CD81+ EV release by MSC. In co-cultures with mitogen stimulated PBMC, pre-exposure of MSC with PRP reduced the proliferation rate and frequency of peripheral blood CD4. +. and favored the persistence of FOXP3. +. regulatory T lymphocytes (32±4.7% compared to 9±2.3% in control co-cultures where MSC were exposed to FBR). Conclusions. Our data indicate that exposure of MSC with a hematoma environment causes metabolic adaptation of MSC followed by increased immune regulatory functions, which in turn might contribute to resolution of inflammation required for successful bone healing


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 34 - 34
1 Feb 2018
Richardson S Hodgkinson T Hoyland J
Full Access

Background. Currently, there is a focus on the development of cell based therapies to treat intervertebral disc (IVD) degeneration, particularly for regenerating/repairing the central region, the nucleus pulposus (NP). Recently, we demonstrated that GDF6 promotes NP-like differentiation in mesenchymal stem cells (MSCs). However, bone marrow- (BM-MSCs) and adipose- (Ad-MSCs) showed differential responses to GDF6, with Ad-MSCs adopting a more NP-like phenotype. Here, we investigated GDF6 signalling in BM-MSCs and Ad-MSCs, with the aim to improve future IVD stem cell therapies. Methods. GDF6 receptor expression in patient-matched BM-MSCs and Ad-MSCs (N=6) was profiled through western blot and immunocytochemistry (ICC). GDF6 signal transduction was investigated through stimulation with 100 ng ml. −1. GDF6 for defined time periods. Subsequently smad1/5/9 phosphorylation and alternative non-smad pathway activation (phospho-p38; phospho-Erk1/2) was analysed (western blot, ELISA). Their role in inducing NP-like gene expression in Ad-MSCs was examined through pathway specific inhibitors. Results. Western blot and ICC established that BMPR profiles differed between MSC populations; specifically, BMPR2 (a GDF6 receptor) expression, was significantly higher in Ad-MSCs (p<0.05). ELISA and western blot analysis showed that smad1/5/9 phosphorylation was significantly higher in Ad-MSCs following GDF6 stimulation (p<0.05). GDF6 stimulation also phosphorylated p38 and Erk1/2 pathways. Blocking of both smad and non-smad pathways resulted in variation of GDF6 induced NP-like gene expression. Conclusions. The upregulation of BMPR2 in Ad-MSCs and corresponding differences in smad1/5/9 and non-smad pathway phosphorylation in response to GDF6 indicates an enhanced discogenic potential in Ad-MSCs, suggesting they may be more suitable for GDF6 mediated cellular IVD regeneration. Conflicts of interest. No conflicts of interest. Sources of funding. We would like to acknowledge UKRMP Acellular Hub, MRC, NIHR Musculoskeletal BRU and The Rosetrees Trust for funding this research


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 41 - 41
1 Nov 2021
Hammersen T Zietzschmann S Richter W
Full Access

Introduction and Objective. Current cartilage repair strategies lack adequate tissue integration capacity and often present mechanical failure at the graft-to-host tissue junction. The design of multilayered osteochondral tissue engineering (TE) constructs is an attractive approach to overcome these problems. However, calcium ion-release from resorbable bone-replacement materials was suggested to compromise chondrogenic differentiation of adjacent cartilage tissue and it is unclear whether articular chondrocytes (AC) or mesenchymal stroma cells (MSC) are more sensitive to such conditions. Aim of the study was to compare how elevated calcium levels affect cartilage matrix production during re-differentiation of AC versus chondrogenic differentiation of MSC. The results of this study will help to identify the ideal cell source for growth of neocartilage adjacent to a calcified bone replacement material for design of multilayered osteochondral TE approaches. Materials and Methods. Expanded human AC and MSC (6–12 donors per group) were seeded in collagen type I/III scaffolds and cultured under standard chondrogenic conditions at control (1.8mM) or elevated (8.0mM) CaCl2 for 35 days. Proteoglycan and collagen production were assessed via radiolabel-incorporation, ELISA, qPCR and Western blotting. Differences between groups or cell types were calculated using the non-parametric Wilcoxon or Mann-Whitney U test, respectively, with p < 0.05 considered significant. Results. Elevated calcium significantly reduced GAG synthesis (63% of control, p=0.04) and chondrogenic marker expression of AC, lowering the GAG/DNA content (47% of control, p=0.004) and collagen type II deposition (24% of control, p=0.05) of neocartilage compared to control conditions. Opposite, at elevated calcium levels MSC-derived chondrocytes significantly increased GAG synthesis (130% of control, p=0.02) and collagen type II content (160% of control, p=0.03) of cartilage compared to control tissue. Chondrogenic and hypertrophic marker expression was insensitive to calcium levels in MSC-derived chondrocytes. As a result, maturation under elevated calcium allowed for a significantly higher GAG/DNA content in MSC-derived samples compared to AC constructs, although under control conditions both groups developed similarly. Conclusions. AC and MSC showed an opposite reaction to elevation of calcium levels regarding cartilage matrix production and we propose MSC as a preferred cell source to grow chondrocytes in vicinity to calcified bone replacement materials. Since MSC remained prone to hypertrophy under elevated calcium, trizonal cartilage TE constructs, where an AC-layer is separated from the bone replacement phase by an intermediate layer of MSC appear as an ideal design for multilayered osteochondral TE with respect to calcium sensitivity of cells and protection of the upper cartilage layer from hypertrophy


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives. The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy. Methods. Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation. Results. After IL-1β administration, cell viability and migration were suppressed while apoptosis was enhanced. Expression of IL-6, IL-8, and TNF-α were all increased, and miR-126 was upregulated. In IL-1β-administrated CHON-001 cells, miR-126 inhibitor suppressed the effect of IL-1β on cell viability, migration, apoptosis, and inflammatory response. Bcl-2 expression was negatively regulated with miR-126 in IL-1β-administrated cells, and thus affected expressions of phosphorylated MAPK and JNK. Conclusion. IL-1β-induced inflammatory markers and miR-126 was upregulated. Inhibition of miR-126 decreased IL-1β-induced inflammation and cell apoptosis, and upregulated Bcl-2 expression via inactivating the MAKP/JNK signalling pathway. Cite this article: C. D. Yu, W. H. Miao, Y. Y. Zhang, M. J. Zou, X. F. Yan. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018;7:414–421. DOI: 10.1302/2046-3758.76.BJR-2017-0138.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 38 - 38
1 Nov 2018
Yin H Popov C Schieker M Nerlich M Docheva D
Full Access

Background: The exact pathways of collagen remodeling in tendon tissue are not well understood. Therefore, we have established a 3D collagen gel system and studied the remodeling capacity of two different TSPC lines: young, Y-TSPC and aged/degenerative, A-TSPC. We specifically investigated the involvement of integrin receptors in the remodeling process. Methods: Y- and A-TSPC were derived from human Achilles tendon. RT-PCR was used to assess the expression of collagen-binding integrins. Integrins a1 and a11 were silenced by lentiviral delivery of shRNA in the Y-TSPC. Control-shRNA, a1-shRNA and a11-shRNA virus was given for 24h and then cells were selected with zeocin for 10 days. The integrin knockdown (KD) efficiency was assessed by quantitative PCR and western blotting. Last, time-lapse recording of gel contraction of Y-TSPC+con, Y-TSPC+a1KD, Y-TSPC+a11KD, and A-TSPC were performed. Results: Integrin a1 and a11 were significantly downregulated in A-TSPC. Therefore, to mimic the A-TSPC we carried out a1 and a11 KD in Y-TSPC. PCR and western blot validated very efficient KD. Analyses of collagen contraction revealed that Y-TSPC+a11KD had significant reduction in collagen contractibility comparable to A-TSPC phenotype. Regarding integrin a1, we found that this receptor had no effect on the contraction rate of TSPC. Thus, to our knowledge we have now identified for the first time a novel role of a11 integrin in tendon matrix remodeling, and a follow up analyses of the exact downstream cascade are on the way


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 31 - 31
1 Nov 2018
Wignall F Hodgkinson T Richardson S Hoyland J
Full Access

Low back pain (LBP), caused by intervertebral disc (IVD) degeneration represents one of the most significant socioeconomic conditions facing Western economies. Novel regenerative therapies, however, have the potential to restore function and relieve pain. We have previously shown that stimulation of adipose-derived stem cells (ASCs) with growth differentiation factor-6 (GDF6) promotes differentiation to nucleus pulposus (NP) cells of the IVD, offering a potential treatment for LBP. The aims of this study were to i) elucidate GDF6 cell surface receptor profile and signalling pathways to better understand mechanism of action; and (ii) develop a microparticle (MP) delivery system for GDF6 stimulation of ASCs. GDF6 receptor expression by ASCs (N=6) was profiled through western blot, immunofluorescence (IF) and flow cytometry. Signal transduction through Smad1/5/9 and non-Smad pathways following GDF6 (100ng/ml) stimulation was assessed using western blotting and confirmed using pathway specific blockers and type II receptor sub-unit knockdown using CRISPR. Release kinetics of GDF6 from MPs was calculated (BCA assay, ELISAs) and ASC differentiation to NP cells was assessed. BMPR profiling revealed high BMPR2 expression on ASCs. GDF6 stimulation of ASCs resulted in significant increases in Smad1/5/9 and Erk phosphorylation, but not p38 signalling. Blocking GDF6 signalling confirmed differentiation to NP cells required Smad phosphorylation, but not Erk. GDF6 release from MPs was controlled over 14days in vitro and demonstrated comparable NP-like differentiation to exogenous GDF6 delivery. This study elucidates the signalling mechanisms responsible for GDF6-induced ASC differentiation to NP cells and also demonstrates an effective and controllable release vehicle for GDF6


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 10 - 10
1 Nov 2021
Jamieson S Tyson-Capper A Hyde P Kirby J
Full Access

Introduction and Objective. Total joint replacement (TJR) is indicated for patients with end-stage osteoarthritis (OA) where conservative treatment has failed. Approximately 1.3 million primary hip replacement surgeries have been recorded in the United Kingdom since 2003 and this number is set to rise due to an increase in obesity as well as an ageing population. Total hip replacement (THR) has a survival rate of 85% at 20 years; the most common reason for failure is aseptic loosening which often occurs secondary to osteolysis caused by immune-mediated inflammation responses to wear debris generated from the materials used in the THR implant. Therefore, by understanding the biological steps by which biomaterials cause immune-mediated reactions it should be possible to prevent them in the future thereby reducing the number of costly revision surgeries required. Materials and Methods. The human osteoblast-like cell line (MG-63) was seeded at a density of 100,000 cell per well of a 6-well plate and treated with and increasing doses (0.5, 5, and 50mm. 3. per cell) of cobalt-chromium (CoCr) particles generated on a six-station pin-on-plate wear generator or commercially available ceramic oxide nanopowders (Al. 2. O. 3. and ZrO. 2. ) for 24 hours. TNF-alpha was used as a positive control and untreated cells as a negative control. Cells were then analysed by transmission electron microscopy (TEM) to determine whether the osteoblasts were capable of phagocytosing these biomaterials. MG-63 cells were used in conjunction with trypan blue and the XTT Cell Proliferation II Kit to assess cytotoxicity of the biomaterials investigated. Cells supernatants were also collected and analysed by enzyme-linked immunosorbant assay (ELISA) to investigate changes in pro-inflammatory protein secretion. Protein extracted from lysed cells was used for western blotting analysis to investigate RANKL protein expression to determine changes to osteolytic activation. Lysed cells were also used for RNA extraction and subsequent cDNA synthesis for real-time quantitative polymerase chain reaction (RT-qPCR) in order to assess changes to pro-inflammatory gene expression. Results. There was no significant change to cellular viability or proliferation in the osteoblasts treated with CoCr, Al. 2. O. 3. or ZrO. 2. when compared to the untreated negative control. TEM images showed clear and distinct intracellular vesicles within the cell cytoplasm which contained CoCr, Al. 2. O. 3. and ZrO. 2. RANKL expression increased at 5 and 50mm. 3. per cell CoCr and 50mm. 3. per cell Al. 2. O. 3. and ZrO. 2. Pro-inflammatory protein secretion of CXCL10, IL-8, and IL-6 all significantly increased at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Similarly to the protein secretion, CXCL10, IL-8, and IL-6 gene expression was significantly upregulated at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Conclusions. Increased in vitro RANKL expression in response to CoCr, Al. 2. O. 3. , and ZrO. 2. may result in disruption of bone metabolism and lead to osteolysis which can contribute to aseptic loosening in vivo. Significant increases in IL-6 are particularly important because as well as being a pro-inflammatory cytokine, IL-6 is also secreted by osteoblasts in order to stimulate mature osteoclast formation to mediate bone breakdown. CXCL10 and IL-8 are chemotactic cytokines and increased secretion in response to implant biomaterials can contribute to ongoing pro-inflammatory responses through the recruitment of monocytes and neutrophils respectively. This is interesting as in vivo data demonstrates increased cellular infiltrate in patients experiencing responses to implant materials. Overall, these findings show clear immune activation as well as altered metabolism of MG-63 osteoblast cells in response to implant wear debris which is in agreement with in vivo clinical reports


Introduction and Objective. Achilles tendon defect is difficult problem for orthopedic surgeon, and therefore the development of new treatments is desirable. Platelet-rich fibrin (PRF), dense fibrin scaffold composed of a fibrin matrix containing many growth factors, is recently used as regenerative medicine preparation. However, few data are available on the usefulness of PRF on Achilles tendon healing after injury. The objective of this study is to examine whether PRF promotes the healing of Achilles tendon defect in vivo and evaluated the effects of PRF on tenocytes in vitro. Materials and Methods. PRF were prepared from rats according to international guidelines on the literature. To create rat model for Achilles tendon defect, a 4-mm portion of the right Achilles tendon was completely resected, and PRF was placed into the gap in PRF group before sewing the gap with nylon sutures. To assess the histological healing of Achilles tendon defect, Bonar score was calculated using HE, Alcian-blue, and Picosirius-red staining section. Basso, Beattie, Bresnahan (BBB) score was used for the evaluation of motor functional recovery. Biomechanical properties including failure tensile load, ultimate tensile stress, breaking elongation, and elastic modulus were measured. We examined the effects of PRF on tenocytes isolated from rat Achilles tendon in vitro. The number of viable cells were measured by MTS assay, and immunostaining of ki-67 was used for detection of proliferative cells. Migration of tenocytes was evaluated by wound closure assay. Protein or gene expression level of extracellular matrix protein, such as collagen, were evaluated by immunoblotting, immunofluorescence, or PCR. Phosphorylation level of AKT, FGF receptor, or SMAD3 was determined by western blotting. Inhibitory experiments were performed using MK-2206 (AKT inhibitor), FIIN-2 (FGFR inhibitor), SB-431542 (TGF-B receptor inhibitor), or SIS3 (SMAD3 inhibitor). All p values presented are two-sided and p values < 0.05 were considered statistically significant. Results. In rat Achilles tendon defects, Bonar score was significantly improved in PRF group compared to control group. Collagen deposition at the site of Achilles tendon defect was observed earlier in PRF group. Consistent with the histological findings, BBB score was significantly improved in PRF group. PRF also significantly improved the biomechanical properties of injured Achilles tendon. Furthermore, proliferating tenocytes, labelled by ki-67 were significantly increased in PRF group. These data suggested PRF prompted the healing of Achilles tendon defect. Thus, we further examined the effects of PRF on tenocytes in vitro. PRF significantly increased the number of viable cells, the proliferative cells labelled by ki-67, and migratory ability. Furthermore, PRF significantly increased the protein expression levels of collagen-I, collagen-III, α-SMA, and tenascin-C in tenocytes. Next, we examined the signalling pathway associated with PRF-induced proliferation of tenocytes. PRF increased the phosphorylation level and induced nuclear translocation of AKT, known as key regulator of cell survival. PRF also induced the phosphorylation of FGF receptor. Inhibition of AKT or FGF-receptor completely suppressed the positive effects of PRF on tenocytes. Furthermore, we found that inhibition of FGF receptor partially suppressed the phosphorylation of AKT by PRF. Thus, PRF induced the proliferation of tenocytes via FGFR/AKT axis. We further evaluated the signalling pathway associated with PRF-induced expression of extracellular matrix. PRF increased the phosphorylation levels of SMAD3 and induced nuclear translocation of SMAD3. Furthermore, inhibition of TGF-B receptor or SMAD3 suppressed increased expression level of extracellular matrix by PRF. Thus, PRF increased expression level of extracellular matrix protein via TGF-BR/SMAD3 axis. Conclusions. PRF promotes tendon healing of the Achilles tendon defect and recovery of exercise performance and biomechanical properties. PRF increases the proliferation ability or protein expression level of extracellular matrix protein in tenocytes via FGFR/AKT or TGF-βR/SMAD3 axis, respectively


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 73 - 73
1 Mar 2021
Lazarides A Somarelli J Altunel E Rao S Hoskinson S Cheng S Eward C Hsu D Eward W
Full Access

Osteosarcoma (OSA) is a rare, but disproportionately lethal cancer that predominantly affects children. Sadly, discovery of new therapies for OSA has largely been unsuccessful in the past 30 years; there is an urgent need to identify new treatments for OSA. Pet dogs with naturally-occurring OSA represent a unique comparative “model” to discover new treatments for OSA. Unlike humans, in which fewer than 1,000 cases of OSA occur each year, there are nearly 50,000 new cases each year of OSA in dogs. In addition, dogs have an intact immune system, a shared environment with humans, and more rapid progression of disease. Together these factors make dogs an important comparative model for new therapies for OSA. The purpose of this study was: 1) to validate this mouse-dog-human pipeline for drug discovery and 2) to validate CRM1 as a novel target for ostesoarcoma treatment. We developed patient-derived cell lines and xenografts of OSA from both dogs and humans and applied these models to identify new therapies for OSA using high-throughput drug screens in vitro followed by in vivo validation. Whole exome sequencing was performed on the patient-derived models and original tumors to identify potential driver mutations. A high-throughput screen in both dog and human OSA identified CRM1 inhibitors as effective at killing dog and human OSA patient-derived cell lines in vitro. In vivo, CRM1 inhibition led to significant tumor growth inhibition in patient-derived xenografts from dogs and humans. Western blotting demonstrated increased levels of CRM1 protein expression across nine different dog and human OSA cell lines compared to non-transformed human osteoblasts. CRM1 upregulation in OSA cells was further verified by immunofluorescence staining. Increased CRM1 expression was prognostic for poorer metastasis-free survival and poorer overall survival. Our cross-species personalized medicine pipeline identified CRM1 as a potential therapeutic target to treat OSA in both dogs and humans. Future studies are focused on testing CRM1 inhibitors in canine clinical trials


Objectives. The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Methods. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored. Results. The CBA group showed similar results to the autologous group in biomechanical properties, Moran’s criteria, histological tests and Wakitani histological scoring. Conclusions. These results suggest that tissue-engineered cartilage constructed using the CBA technique could be used effectively to repair cartilage defects in the weight-bearing area of joints. Cite this article: H. Lin, J. Zhou, L. Cao, H. R. Wang, J. Dong, Z. R. Chen. Tissue-engineered cartilage constructed by a biotin-conjugated anti-CD44 avidin binding technique for the repairing of cartilage defects in the weight-bearing area of knee joints in pigs. Bone Joint Res 2017;6:–295. DOI: 10.1302/2046-3758.65.BJR-2016-0277


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 65 - 65
1 Nov 2016
Grant M Bokhari R Epure L Antoniou J Mwale F
Full Access

Calcification of the intervertebral disc (IVD) has been correlated with degenerative disc disease (DDD), a common cause of low back pain. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. The role of IVD calcification in the development DDD is unknown. Our preliminary data suggest that ionic calcium content and expression of the extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor (GPCR) and regulator of calcium homeostasis, are increased in the degenerated discs. However, its role in DDD remains unclear. IVD Cells: Bovine and normal human IVD cells were incubated in PrimeGrowth culture medium (Wisent Bioproducts, Canada; Cat# 319–510-CL, −S1, and S2) and supplemented with various concentrations of calcium (1.0, 1.5, 2.5, 5.0 mM), a CaSR agonist [5 µM], or IL-1β [10 ng/ml] for 7 days. Accumulated matrix protein was quantitated for aggrecan and type II collagen (Col II) by Western blotting. Conditioned medium was also collected from cells treated for 24h and measured for the synthesis and release of total proteoglycan using the DMMB assay and Western blotting for Col II content. IVD Cultures: Caudal IVDs from tails of 20–24 month old steers were isolated with the PrimeGrowth Isolation kit (Wisent Bioproducts, Canada). IVDs were cultured for 4 weeks in PrimeGrowth culture medium supplemented with calcium (1.0, 2.5, or 5.0 mM), or a CaSR agonist [5 µM]. Cell viability was measured in NP and AF tissue using Live/Dead Imaging kit (ThermoFisher, Waltham, MA), to determine if Ca2+ effects cell viability end the expression of aggrecan and Col II was evaluated in the IVD tissue by Western blotting. Histological sections were prepared to determine total proteoglycan content, alkaline phosphatase expression and degree of mineralisation by von Kossa staining. The accumulation of aggrecan and Col II decreased dose-dependently in IVD cells following supplementation with calcium or the CaSR agonist. Conditioned medium also demonstrated decreases in the synthesis and release of proteoglycan and collagen with increasing Ca2+ dose or direct activation of the CaSR with agonist. A similar phenomenon was observed for total proteoglycan and aggrecan and Col II in IVDs following calcium supplementation or the CaSR agonist. In addition to decreases in Col II and aggrecan, increases in alkaline phosphatase expression and mineralisation was observed in IVDs cultured in elevated Ca2+ concentrations without affecting cell viability. Our results suggest that changes in the local concentrations of calcium are not benign, and that activation of the CaSR may be a contributing factor in IVD degeneration. Determining ways to minimise Ca2+ infiltration into the disc may mitigate disc degeneration


Bone & Joint Research
Vol. 6, Issue 3 | Pages 186 - 193
1 Mar 2017
Choi YJ Lee YS Lee HW Shim DM Seo SW

Objectives. Eukaryotic translation initiation factor 3 (eIF3) is a multi-subunit complex that plays a critical role in translation initiation. Expression levels of eIF3 subunits are elevated or decreased in various cancers, suggesting a role for eIF3 in tumorigenesis. Recent studies have shown that the expression of the eIF3b subunit is elevated in bladder and prostate cancer, and eIF3b silencing inhibited glioblastoma growth and induced cellular apoptosis. In this study, we investigated the role of eIF3b in the survival of osteosarcoma cells. Methods. To investigate the effect of eIF3b on cell viability and apoptosis in osteosarcoma cells, we first examined the silencing effect of eIF3b in U2OS cells. Cell viability and apoptosis were examined by the Cell Counting Kit-8 (CCK-8) assay and Western blot, respectively. We also performed gene profiling to identify genes affected by eIF3b silencing. Finally, the effect of eIF3b on cell viability and apoptosis was confirmed in multiple osteosarcoma cell lines. Results. eIF3b silencing decreased cell viability and induced apoptosis in U2OS cells, and by using gene profiling we discovered that eIF3b silencing also resulted in the upregulation of tumour necrosis factor receptor superfamily member 21 (TNFRSF21). We found that TNFRSF21 overexpression induced cell death in U2OS cells, and we confirmed that eIF3b silencing completely suppressed cell growth in multiple osteosarcoma cell lines. However, eIF3b silencing failed to suppress cell growth completely in normal fibroblast cells. Conclusion. Our data led us to conclude that eIF3b may be required for osteosarcoma cell proliferation by regulating TNFRSF21 expression. Cite this article: Y. J. Choi, Y. S. Lee, H. W. Lee, D. M. Shim, S. W. Seo. Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells. Bone Joint Res 2017;6:186–193. DOI: 10.1302/2046-3758.63.BJR-2016-0151.R2


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 83 - 83
1 Apr 2018
Hameister R Dheen ST Lohmann CH Kaur C Singh G
Full Access

Background. Mechanisms underlying implant failure remain incompletely described, though the presence of macrophage-mediated inflammatory reactions is well documented. Hypoxia has a critical role in many diseases and is known to be interdependent with inflammation. Metals used for joint replacements have also been reported to provoke hypoxia-like conditions. In view of this, we aim to investigate hypoxia-associated factors in aseptic loosening and osteoarthritis with a focus on macrophages. Methods. Western blotting, calorimetric assay, haematoxylin-eosin staining, immunohistochemistry, double-immunofluorescence and transmission electron microscopy were performed on capsular tissue obtained from patients undergoing primary implantation of a total hip replacement for osteoarthritis and from patients undergoing revision surgery for aseptic loosening to investigate the presence of hypoxia-associated factors. Results. Tissues from patients with osteoarthritis and aseptic loosening showed the presence of inflammatory cells, many of which were macrophages as confirmed with CD68 immunostaining. In aseptic loosening, macrophages containing metal particles were present in clusters. This was observed both at the light and electron microscopic levels. Under the electron microscope, endothelial cells appeared to be hypertrophied and some showed signs of degeneration. The presence of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and nitric oxide was demonstrated by western blotting and colorimetric assay. Macrophages were the predominant cell type to release HIF-1α, VEGF, inducible nitric oxide synthase (iNOS). This was confirmed by double-immunofluorescence showing co-localization of HIF-1α, VEGF, iNOS with the macrophage marker CD68. Endothelial cells were stained for endothelial nitric oxide synthase as assessed by immunohistochemistry. Conclusion. This study demonstrates the release of hypoxia-associated factors by macrophages. The presence of hypoxia-associated factors in both, osteoarthritis and aseptic loosening suggest that hypoxia may be a factor underlying both pathologic conditions. This study was supported by research grant (NMRC/CNIG/1147/2016) from National Medical Research Council (NMRC), Singapore


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 117 - 117
1 Mar 2021
van Vijven M Kimenai J van Groningen B van der Steen M Janssen R Ito K Foolen J
Full Access

After anterior cruciate ligament (ACL) rupture, reconstructive surgery with a hamstring tendon autograft is often performed. Despite overall good results, ACL re-rupture occurs in up to 10% of the patient population, increasing to 30% of the cases for patients aged under 20 years. This can be related to tissue remodelling in the first months to years after surgery, which compromises the graft's mechanical strength. Resident graft fibroblasts secrete matrix metalloproteinases (MMPs), which break down the collagen I extracellular matrix. After necrosis of these fibroblasts, myofibroblasts repopulate the graft, and deposit more collagen III rather than collagen I. Eventually, the cellular and matrix properties converge towards those of the native ACL, but full restoration of the ACL properties is not achieved. It is unknown how inter-patient differences in tissue remodelling capacity contribute to ACL graft rupture risk. This research measured patient-specific tissue remodelling-related properties of human hamstring tendon-derived cells in an in vitro micro-tissue platform, in order to identify potential biological predictors for graft rupture. Human hamstring tendon-derived cells were obtained from remnant autograft tissue after ACL reconstructions. These cells were seeded in collagen I gels on a micro-tissue platform to assess inter-patient cellular differences in tissue remodelling capacity. Remodelling was induced by removing the outermost micro-posts, and micro-tissue compaction over time was assessed using transmitted light microscopy. Protein expression of tendon marker tenomodulin and myofibroblast marker α-smooth muscle actin (αSMA) were measured using Western blot. Expression and activity of remodelling marker MMP2 were determined using gelatin zymography. Cells were obtained from 12 patients (aged 12–51 years). Patient-specific variations in micro-tissue compaction speed or magnitude were observed. Up to 50-fold differences in αSMA expression were found between patients, although these did not correlate with faster or stronger compaction. Surprisingly, tenomodulin was only detected in samples obtained from two patients. Total MMP2 expression varied between patients, but no large differences in active fractions were found. No correlation of patient age with any of the remodelling-related factors was detected. Remodelling-related biological differences between patient tendon-derived cells could be assessed with the presented micro-tissue platform, and did not correlate with age. This demonstrates the need to compare this biological variation in vitro - especially cells with extreme properties - to clinical outcome. Sample size is currently increased, and patient outcome will be determined. Combined with results obtained from the in vitro platform, this could lead to a predictive tool to identify patients at risk for graft rupture


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 1 - 1
1 Jul 2020
Xiong L Hu Y Ding F Shao Z Wang W Liu G Cai X
Full Access

The purpose of this study was to evaluate whether AGEs induce annulus fibrosus (AF) cell apoptosis and to further explore the mechanism by which this process occurs. AF cells were treated with various concentrations of AGEs for 3 days. Cell proliferation was measured by the Cell Counting Kit-8 (CCK-8) and EdU incorporation assays. Cell apoptosis was examined by the Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3 and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by RT-PCR. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production of AF cell were examined by JC-1 staining and DCFH-DA fluorescent probes, respectively. Our results indicated that AGEs had inhibitory effects on AF cell proliferation and induced AF cell apoptosis. The molecular data showed that AGEs significantly up-regulated Bax expression and inhibited Bcl-2 expression. In addition, AGEs increased the release of cytochrome c into the cytosol and enhanced caspase-9 and caspase-3 activation. Moreover, treatment with AGEs resulted in a decrease in MMP and the accumulation of intracellular ROS in AF cells. The antioxidant N-acetyl-L-cysteine significantly reversed AGE-induced MMP decrease and AF cell apoptosis. These results suggest that AGEs induce rabbit AF cell apoptosis and mitochondrial pathways may be involved in AGE-mediated cell apoptosis, which may provide a theoretical basis for diabetic IVD degeneration


Bone & Joint Research
Vol. 6, Issue 8 | Pages 464 - 471
1 Aug 2017
Li QS Meng FY Zhao YH Jin CL Tian J Yi XJ

Objectives. This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Methods. Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Results. Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p < 0.05 or p < 0.01). Inhibition of miR-214-5p increased the viability of MC3T3-E1 cells and the expressions of COL1A1 and COL-X, but decreased the apoptotic rate and COL-II expression (p < 0.05 or p < 0.01). COL4A1 was a target of miR-214-5p, and was negatively regulated by miR-214-5p (p < 0.05 or p < 0.01). Overexpression of COL4A1 showed a similar impact on cell viability, apoptotic rate, and COL1A1, COL-II, and COL-X expressions inhibiting miR-214-5p (p < 0.01). Conclusion. Inhibition of miR-214-5p promotes cell survival and extracellular matrix (ECM) formation of osteoblastic MC3T3-E1 cells by targeting COL4A1. Cite this article: Q. S. Li, F. Y. Meng, Y. H. Zhao, C. L. Jin, J. Tian, X. J. Yi. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017;6:464–471. DOI: 10.1302/2046-3758.68.BJR-2016-0208.R2


Bone & Joint Research
Vol. 12, Issue 2 | Pages 121 - 132
1 Feb 2023
Mo H Wang Z He Z Wan J Lu R Wang C Chen A Cheng P

Aims

Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA.

Methods

After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims

Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear.

Methods

In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 154 - 161
1 Mar 2017
Liu J Li X Zhang H Gu R Wang Z Gao Z Xing L

Objectives. Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. Methods. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay. Results. The expression levels of WW Domain Containing E3 Ubiquitin Protein Ligase 1 (Wwp1), SMAD Specific E3 Ubiquitin Protein Ligase 1 (Smurf1), SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and Itch were all significantly increased in the fracture callus of WT mice, which was associated with elevated expression of NF-κB members and total ubiquitinated proteins. Callus tissue isolated from Itch KO mice expressed higher levels of osteoblast-associated genes, including Runx2, a positive regulator of osteoblast differentiation, but osteoclast-associated genes were not increased. Both NF-κB RelA and RelB proteins were found to bind to the NF-κB binding site in the mouse Itch promoter. Conclusions. Our findings indicate that Itch depletion may have a strong positive effect on osteoblast differentiation in fracture callus. Thus, ubiquitin E3 ligase Itch could be a potential target for enhancing bone fracture healing. Cite this article: J. Liu, X. Li, H. Zhang, R. Gu, Z. Wang, Z. Gao, L. Xing. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res 2017;6:154–161. DOI: 10.1302/2046-3758.63.BJR-2016-0237.R1


Bone & Joint Research
Vol. 6, Issue 7 | Pages 399 - 404
1 Jul 2017
Sun X Liu W Cheng G Qu X Bi H Cao Z Yu Q

Objectives. The injured anterior cruciate ligament (ACL) is thought to exhibit an impaired healing response, and attempts at surgical repair have not been successful. Connective tissue growth factor (CTGF) is reported to be associated with wound healing, probably through transforming growth factor beta 1 (TGF-β1). Methods. A rabbit ACL injury model was used to study the effect of CTGF on ligament recovery. Quantitative real-time PCR (qRT-PCR) was performed for detection of changes in RNA levels of TGF-β1, type 1 collagen (COL1), type 2 collagen (COL2), SRY-related high mobility group-box gene9 (SOX9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase 13 (MMP-13). Expression of related proteins was detected by Western blotting. Results. The current study showed that CTGF could promote the recovery of an injured anterior cruciate ligament. It can upregulate mRNA and expression of TGF-β1, COL1, COL2, SOX9, and tissue inhibitor of TIMP-1, and downregulate mRNA and expression of MMP-13, suggesting that the curative effect of CTGF on injured rabbit ligaments is through regulation of these cellular factors. Conclusions. This finding revealed the healing role of CTGF in injured tissues and provides new possibilities of treating injured tissues and wound healing by using CTGF. Cite this article: X. Sun, W. Liu, G. Cheng, X. Qu, H. Bi, Z. Cao, Q. Yu. The influence of connective tissue growth factor on rabbit ligament injury repair. Bone Joint Res 2017;6:399–404. DOI: 10.1302/2046-3758.67.BJR.2016-0255.R1


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims

Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis.

Methods

Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results. The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions. BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye, B. Ju, H. Wang, K-B. Lee. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration. Bone Joint Res 2016;5:412–418. DOI: 10.1302/2046-3758.59.BJR-2016-0032.R1


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims

Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis.

Methods

Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 486 - 493
4 Aug 2023
Yamanaka Y Tajima T Tsujimura Y Naito T Mano Y Tsukamoto M Zenke Y Sakai A

Aims

Dupuytren’s contracture is characterized by increased fibrosis of the palmar aponeurosis, with eventual replacement of the surrounding fatty tissue with palmar fascial fibromatosis. We hypothesized that adipocytokines produced by adipose tissue in contact with the palmar aponeurosis might promote fibrosis of the palmar aponeurosis.

Methods

We compared the expression of the adipocytokines adiponectin and leptin in the adipose tissue surrounding the palmar aponeurosis of male patients with Dupuytren’s contracture, and of male patients with carpal tunnel syndrome (CTS) as the control group. We also examined the effects of adiponectin on fibrosis-related genes and proteins expressed by fibroblasts in the palmar aponeurosis of patients with Dupuytren’s contracture.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims

This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA).

Methods

Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 196 - 203
1 Apr 2017
Jin Y Chen X Gao ZY Liu K Hou Y Zheng J

Objectives. This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA). Methods. Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired t-test. Results. Expression of miR-320a was elevated in OA cartilage tissues and chondrocytes, and in IL-1β-stimulated C28/I2 cells (p < 0.05 or p < 0.01). MiR-320a overexpression enhanced IL-1β-induced down-regulation of Col2α1 and ACAN and sGAG, and increased the IL-1β-induced overexpression of MMP-13 (p < 0.01). PBX3 was a direct target of miR-320a. PBX3 and MG132 co-transfection attenuated the effects of miR-320a on the expression of Col2α1, ACAN, sGAG and MMP-13(p < 0.01). Conclusion. Overexpression of miR-320a might enhance IL-1β-induced cartilage degradation factors. These effects might be via targeting PBX3 and regulating NF-κB. Cite this article: Y. Jin, X. Chen, Z. Y. Gao, K. Liu, Y. Hou, J. Zheng. The role of miR-320a and IL-1β in human chondrocyte degradation. Bone Joint Res 2017;6:–203. DOI: 10.1302/2046-3758.64.BJR-2016-0224.R1


Bone & Joint Research
Vol. 5, Issue 6 | Pages 218 - 224
1 Jun 2016
Cheng N Guo A Cui Y

Objectives. Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods. Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting. Results. Intra-articular injection of Torin 1 significantly reduced degeneration of the articular cartilage after induction of OA. Autophagosomes andBeclin-1 and LC3 expression were increased in the chondrocytes from Torin 1-treated rabbits. Torin 1 treatment also reduced MMP-13 and VEGF expression at eight weeks after collagenase injection. Conclusion. Our results demonstrate that intra-articular injection of Torin 1 reduces degeneration of articular cartilage in collagenase-induced OA, at least partially by autophagy activation, suggesting a novel therapeutic approach for preventing cartilage degeneration and treating OA. Cite this article: N-T. Cheng, A. Guo, Y-P. Cui. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a rabbit osteoarthritis model. Bone Joint Res 2016;5:218–224. DOI: 10.1302/2046-3758.56.BJR-2015-0001


Bone & Joint Research
Vol. 11, Issue 8 | Pages 594 - 607
17 Aug 2022
Zhou Y Li J Xu F Ji E Wang C Pan Z

Aims

Osteoarthritis (OA) is a common degenerative joint disease characterized by chronic inflammatory articular cartilage degradation. Long noncoding RNAs (lncRNAs) have been previously indicated to play an important role in inflammation-related diseases. Herein, the current study set out to explore the involvement of lncRNA H19 in OA.

Methods

Firstly, OA mouse models and interleukin (IL)-1β-induced mouse chondrocytes were established. Expression patterns of IL-38 were determined in the synovial fluid and cartilage tissues from OA patients. Furthermore, the targeting relationship between lncRNA H19, tumour protein p53 (TP53), and IL-38 was determined by means of dual-luciferase reporter gene, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Subsequent to gain- and loss-of-function assays, the levels of cartilage damage and proinflammatory factors were further detected using safranin O-fast green staining and enzyme-linked immunosorbent assay (ELISA) in vivo, respectively, while chondrocyte apoptosis was measured using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) in vitro.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 15 - 15
1 Jan 2017
Popov C Wu F Docheva D
Full Access

The exact pathways of collagen remodeling in tendon tissue are not well understood. Therefore, we have established an ex vivo 3D collagen gel-based system and we studied the remodeling capacity of two different TSPC lines from young, Y-TSPC and aged/degenerative, A-TSPC donors. Here, we specifically focused on investigating the involvement of integrin receptors in the remodeling process. Integrins are transmembrane receptors consisting of alpha (a) and beta (b) subunits, which form cell-to-matrix bonds, activate various pathways and thereby control cell proliferation, differentiation and survival. Y- and A-TSPC were derived from human Achilles tendons and are fully described in Kohler et al. 2013. RT-PCR was used to assess the expression of collagen-binding integrins in the TSPC cultivated in collagen gels. Next, a1 and a11 integrins were silenced by stable lentiviral delivery of target-specific shRNA in the Y-TSPC. Control (con-shRNA), integrin (a1-shRNA) and integrin a11 (a11-shRNA) virus-containing supernatant was given for 24h and then cells were selected with 50 microg./ml zeocin for 10 days. The integrin knockdown (KD) efficiency was assessed by quantitative PCR and western blotting. Last, functional tests were carried out by time-lapse recording gel contraction of four cell groups (Y-TSPC+con, Y-TSPC+a1KD, Y-TSPC+a11KD, and A-TSPC). Among the screened integrins we found that integrin a1 and a11 were significantly downregulated in A-TSPC with 3.8 and 5.6 folds, correspondingly. Therefore, to mimic the A-TSPC we carried out a gene KD of a1 and a11 in Y-TSPC. PCR and western blot clearly validated the efficient KD. Analyses of collagen contraction, revealed that Y-TSPC+a11KD significantly reduced collagen contractability comparable to A-TSPC. This indicated the indispensable role of this integrin in the signaling pathway of collagen matrix remodeling. In respect to integrin a1, we found that this receptor did not affect the contraction rate of Y-TSPC, which was similar to Y-TSPC+con. To our knowledge we have now identified for the first time the critical role of a11 integrin receptor in tendon collagen remodeling, and a follow up analysis of its exact downstream cascade is on the way. Future efforts in deciphering how tendon matrix makeover is regulated can lead to innovation in preventive strategies for tendon degeneration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 56 - 56
1 Jul 2020
Tsiapalis D De Pieri A Sallent I Galway N Zeugolis D Galway N Korntner S
Full Access

Cellular therapies play an important role in tendon tissue engineering with tenocytes being described as the most prominent cell population if available in large numbers. However, in vitro expansion of tenocytes in standard culture leads to phenotypic drift and cellular senescence. Recent work suggests that maintenance of tenogenic phenotype in vitro can be achieved by recapitulating different aspects of the native tendon microenvironment. One approach used to modulate the in vitro microenvironment and enhance extracellular matrix (ECM) deposition is macromolecular crowding (MMC). MMC is based on the addition of inert macromolecules to the culture media mimicking the dense extracellular matrix. In addition, as tendon has been described to be a relatively avascular and hypoxic tissue and low oxygen tension can stimulate collagen synthesis and cross-linking, we venture to assess the synergistic effect of MMC and low oxygen tension on human tenocyte phenotype maintenance by enhancing synthesis and deposition of tissue-specific ECM. Human tendons were kindly provided from University Hospital Galway, after obtaining appropriate licenses, ethical approvals and patient consent. Afterwards, tenocytes were extracted using the migration method. Experiments were conducted at passage three. Optimization of MMC conditions was assessed using 50 to 500 μg/ml carrageenan (Sigma Aldrich, UK). For variable oxygen tension cultures, tenocytes were incubated in a Coy Lab (USA) hypoxia chamber. ECM synthesis and deposition were assessed using SDS-PAGE (BioRad, UK) and immunocytochemistry (ABCAM, UK) analysis. Protein analysis for Scleraxis (ABCAM, UK) was performed using western blot. Gene analysis was conducted using a gene array (Roche, Ireland). Cell morphology was assessed using bright-field microscopy. All experiments were performed at least in triplicate. MINITAB (version 16, Minitab, Inc.) was used for statistical analysis. Two-sample t-test for pairwise comparisons and ANOVA for multiple comparisons were conducted. SDS-PAGE and immunocytochemistry analysis demonstrated that human tenocytes treated with the optimal MMC concentration at 2% oxygen tension showed increased synthesis and deposition of collagen type I, the major component of tendon ECM. Moreover, immunocytochemistry for the tendon-specific ECM proteins collagen type III, V, VI and fibronectin illustrated enhanced deposition when cells were treated with MMC at 2% oxygen tension. In addition, protein analysis revealed elevated dexpression of the tendon-specific protein Sclearaxis, while a detailed gene analysis revealed upregulation of tendon-related genes and downregulation of trans-differentiation markers again when cells cultured with MMC at 2% oxygen tension. Finally, low oxygen tension and MMC did not affect the metabolic activity, proliferation and viability of human tenocytes. Collectively, results suggest that the synergistic effect of MMC and low oxygen tension can accelerate the formation of ECM-rich substitutes, which stimulates tenogenic phenotype maintenance. Currently, the addition of substrate aligned topography together with MMC and hypoxia is being investigated in this multifactorial study for the development of an implantable device for tendon regeneration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 54 - 54
1 Jul 2020
Epure LM Grant M Mwale F Antoniou J Bolt A Mann K Chou H
Full Access

Tungsten has been increasing in demand for use in manufacturing and recently, medical devices, as it imparts flexibility, strength, and conductance of metal alloys. Given the surge in tungsten use, our population may be subjected to elevated exposures. For instance, embolism coils made of tungsten have been shown to degrade in some patients. In a cohort of breast cancer patients who received tungsten-based shielding for intraoperative radiotherapy, urinary tungsten levels remained over tenfold higher 20 months post-surgery. In vivo models have demonstrated that tungsten exposure increases tumor metastasis and enhances the adipogenesis of bone marrow-derived mesenchymal stem cells while inhibiting osteogenesis. We recently determined that when mice are exposed to tungsten [15 ppm] in their drinking water, it bioaccumulates in the intervertebral disc tissue and vertebrae. This study was performed to determine the toxicity of tungsten on intervertebral disc. Bovine nucleus pulposus (bNP) and annulus fibrosus (bAF) cells were isolated from bovine caudal tails. Cells were expanded in flasks then prepared for 3D culturing in alginate beads at a density of 1×10. ∧. 6 cells/mL. Beads were cultured in medium supplemented with increasing tungsten concentrations in the form of sodium tungstate [0, 0.5, 5, 15 ug/mL] for 12 days. A modified GAG assay was performed on the beads to determine proteoglycan content and Western blotting for type II collagen (Col II) synthesis. Cell viability was determined by counting live and dead cells in the beads following incubation with the Live/Dead Viability Assay kit (Thermo Fisher Scientific). Cell numbers in beads at the end of the incubation period was determined using Quant-iT dsDNA Assay Kit (Thermo Fisher Scientific). Tungsten dose-dependently decreased the synthesis of proteoglycan in IVD cells, however, the effect was significant at the highest dose of 15 ug/mL. (n=3). Furthermore, although tungsten decreased the synthesis of Col II in IVD cells, it significantly increased the synthesis of Col I. Upregulation of catabolic enzymes ADAMTS4 and −5 were also observed in IVD cells treated with tungsten (n=3). Upon histological examination of spines from mice treated with tungsten [15 ug/mL] in their drinking water for 30 days, disc heights were diminished and Col I upregulation was observed (n=4). Cell viability was not markedly affected by tungsten in both bNP and bAF cells, but proliferation of bNP cells decreased at higher concentration. Surprisingly, histological examination of IVDs and gene expression analysis demonstrated upregulation of NGF expression in both NP and AF cells. In addition, endplate capillaries showed increases in CGRP and PGP9.5 expression as determined on histological sections of mouse IVDs, suggesting the development of sensory neuron invasion of the disc. We provide evidence that prolonged tungsten exposure can induce disc fibrosis and increase the expression of markers associated with pain. Tungsten toxicity may play a role in disc degeneration disease


Full Access

An established rabbit model was used to preliminarily investigate the effect of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets on tendon-bone interface healing. Bone, fibrocartilage and tendon tissue were harvested from the rabbits and sectioned into a book-type scaffold. The scaffolds were decellularized and their characterization was presented. BMSCs were isolated and co-cultured with the scaffolds to verify their cytocompatibility. BMSCs sheets were fabricated and inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS complex. The complex was implated in the right knee of rabbits which operated standard partial patellectomy for TBI regeneration using Imaging, histological and biomechanical examinations. The bone, fibrocartilage and tendon tissue were sectioned into a book-type scaffold before decellularization. Then we decellularized the above tissue and mostly preserved their microstructure and composition of the natural extracellular matrix, including collagen and proteoglycan. After the physicochemical and biological properties of the book-type ATS were evaluated, autologous BMSCs sheets were inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS implants for TBI regeneration. In addition, the ATS has the advantages of non-toxicity, suitable for cell adhesion and growth as well as low immunogenicity while co-cultured with the BMSCs. At the same time, different scaffolds has the ability to induce the osteogenic, chondrogenic and tenogenic differentiation of BMSCs by immunofluorescence, reverse transcription-polymerase chain reaction and western blot analysis. To determine the efficacy of the tissue-engineered implants for TBI regeneration, we transplanted it into a rabbit patella-patellar tendon (PPT) injury model, and the rabbits were sacrificed at postoperative week 8 or 16 for the radiological, histological, and mechanical evaluation. Radiologically, Synchrotron radiation micro-computed tomography (SR-μCT) showed that BMSCs/ATS group significantly increased bone area, BV/TV, trabecular thickness and trabecular number at the healing interface as compared with other groups at postoperative week 8 or 16. Histologically, the BMSCs/ATS group showed more woven bone, and a more robust fibrocartilaginous junction with a characteristic matrix rich in proteoglycans was seen at the PPT healing interface in comparison with other groups after 8 weeks. At week 16, the healing interface in 3 groups displayed better remodeling with respect to postoperative week 8. Healing and remodeling at the PPT junction were almost complete, with a resemblance to a healthy BTI consisting of the characteristic 4 zones in all groups. At last, we used biomechanical test as functional parameters to evaluate the quality of tendon-bone healing. Biomechanical testing indicated that BMSCs/ATS group showed significantly higher failure load and stiffness than other groups at postoperative week 8 and 16. The complex composed of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets can simulate the gradient structure of tendon-bone interface, inducing stem cell directional differentiation, so as to promote patella-patellar tendon interface healing effectively after injury


Bone & Joint Research
Vol. 11, Issue 9 | Pages 639 - 651
7 Sep 2022
Zou Y Zhang X Liang J Peng L Qin J Zhou F Liu T Dai L

Aims

To explore the synovial expression of mucin 1 (MUC1) and its role in rheumatoid arthritis (RA), as well as the possible downstream mechanisms.

Methods

Patients with qualified synovium samples were recruited from a RA cohort. Synovium from patients diagnosed as non-inflammatory orthopaedic arthropathies was obtained as control. The expression and localization of MUC1 in synovium and fibroblast-like synoviocytes were assessed by immunohistochemistry and immunofluorescence. Small interfering RNA and MUC1 inhibitor GO-203 were adopted for inhibition of MUC1. Lysophosphatidic acid (LPA) was used as an activator of Rho-associated pathway. Expression of inflammatory cytokines, cell migration, and invasion were evaluated using quantitative real-time polymerase chain reaction (PCR) and Transwell chamber assay.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives. Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Materials and Methods. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. Results. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. Conclusion. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1. Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J. Y. Chen. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation. Bone Joint Res 2016;5:523–530. DOI: 10.1302/2046-3758.510.BJR-2016-0074.R2


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 13 - 13
1 Nov 2016
Nam D Wang Y Whetstone H Alman B
Full Access

The T-lymphocyte secreted pro-inflammatory cytokine, interleukin-17F (IL-17F), was found to be a key mediator in the cellular response of the immune system in the early phase of fracture repair but its intracellular signaling processes are currently not known in osteoblasts. The objective of this study was to identify the signaling proteins and crucial gene targets involved in osteoblast activation via IL-17F. It was hypothesised that IL-17F stimulated osteoblast maturation through a novel GSK3beta / beta-catenin independent pathway. Mouse pre-osteoblast cell line (MC3T3-E1) was used for IL-17F or Wnt3a treatment. Desired proteins were detected using western blot analysis (antibodies: Phospho-GSK-3beta (Tyr 216), Phospho-GSK-3beta (Ser9), Runx2/cbfa1, TRAF6, Act1, p-ERK2, p-JNK and p-MAPK, C/EBP-beta and & delta). Gene-specific siRNAs of mouse IL-17Ra, IL-17Rc and a non-targeting siRNA (control) were utilised. MC3T3-E1 were transfected with IL-17Ra, IL-17Rc or Negative Control and treated with IL-17F. Chromatin Immunoprecipitation (ChIP-qPCR) was used to evaluate the mouse Runx2 P1 promoter region. IL-17F increased expression of Col1, BSP, Runx2/cbfa1 and osteocalcin in MC3T3-E1 cells. Western blot analysis confirmed expression of known Wnt signaling proteins TRAF6, Act1, p-ERK2, p-JNK and p-MAPK in both IL-17F and Wnt3a treated cultures, including up-regulation of Runx2/cbfa1, a key transcription factor associated with osteoblast differentiation. IL-17F up-regulation of Runx2/cbfa1 appears independent of the Wnt/beta-catenin pathway as phosphorylated GSK-3beta at the Ser9 site was not detected with IL-17F treatment. Despite this, IL-17F treatment still increased expression of Runx2/cbfa1 downstream, lending evidence for a GSK3beta/beta-catenin independent manner of IL-17F stimulated osteogenesis. While IL-17F and Wnt3a both induced expression of C/EBP-delta, only IL-17F treatment induced expression of C/EBP-beta, an upstream transcription factor of Runx2/cbfa1. Further, siRNA knock down of the IL-17 receptors directly decreased Act1, C/EBP-beta and Runx2/cfba1 expression. By ChIP analysis, IL-17F was shown to upregulate C/EBP-beta expression and stimulated its binding to the P1 Promoter of the Runx2/cbfa1 gene. The C/EBP-beta transcription factor was shown to be a key regulator of early osteogenesis. C/EBP-beta up-regulates Runx2/cbfa1 expression by directly binding to the Runx2/cbfa1 P1 promoter in osteoblasts. C/EBP-beta was activated in the osteoblast by IL-17F but not by Wnt3a adding further support to a novel GSK3beta/beta-catenin independent pathway. Our data shows that IL-17F, a cytokine secreted by T-lymphocytes, stimulates osteoblast maturation through a novel GSK3beta/beta-catenin independent pathway and reveals a crucial interaction between C/EBP-beta and the Runx2/cbfa1 P1 promoter not previously been shown in osteogenesis signaling further


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1201 - 1209
1 Sep 2011
Peng K Hsu W Shih H Hsieh C Huang T Hsu RW Chang P

In this study of 41 patients, we used proteomic, Western blot and immunohistochemical analyses to show that several reactive oxygen species scavenging enzymes are expressed differentially in patients with primary osteoarthritis and those with non-loosening and aseptic loosening after total hip replacement (THR). The patients were grouped as A (n = 16, primary THR), B (n = 10, fixed THR but requiring revision for polyethylene wear) and C (n = 15, requiring revision due to aseptic loosening) to verify the involvement of the identified targets in aseptic loosening. When compared with Groups A and B, Group C patients exhibited significant up-regulation of transthyretin and superoxide dismutase 3, but down-regulation of glutathione peroxidase 2 in their hip synovial fluids. Also, higher levels of superoxide dismutase 2 and peroxiredoxin 2, but not superoxide dismutase 1, catalase and glutathione perioxidase 1, were consistently detected in the hip capsules of Group C patients. We propose that dysregulated reactive oxygen species-related enzymes may play an important role in the pathogenesis and progression of aseptic loosening after THR


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives. The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity. Methods. A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12. Results. No MMP12 expression was detected in the nucleus pulposus. Expression of MMP12 in the annulus progressively increased from group I to groups II and III, mainly at the concave side. Many growth plate chondrocytes expressed MMP12 in the control group, less in group I and rare in groups II and III. Changes in cell phenotype and reduction of cell number were observed, together with disorganisation of matrix microstructure similar to disc degeneration. ProMMP12 was detected at the area of 54 kDa and active MMP12 at 22 kDa. Conclusions. Expression of MMP12 after application of asymmetric loading in a rat tail increased in the intervertebral disc but decreased in the growth plate and correlated with the degree of the deformity and the side of the wedged disc. Cite this article: Bone Joint Res 2014;3:273–9