header advert
Results 1 - 47 of 47
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 62-B, Issue 4 | Pages 492 - 496
1 Nov 1980
Landi A Copeland S Parry C Jones S

In 15 patients who underwent open exploration of the brachial plexus, the somatosensory evoked potentials and nerve action potentials recorded at the time of operation were useful as guides to the most appropriate surgical procedure, and also in predicting the outcome in certain lesions. In three patients the apparent normality of the upper trunk of the plexus was concealing a more proximal lesion which was irrecoverable. The presence of a somatosensory evoked potential showed functional continuity in three patients in whom the C7 root was clinically involved and who recovered after operation. In five patients proximal stumps of ruptured C5 roots showed functional central continuity; this indicated their suitability for grafting. These patients recovered except one who suffered from co-existing disease. The electrophysiological studies also confirmed the clinical diagnosis of avulsion of the C8 and T1 roots and therefore prevented unnecessary dissection


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 731 - 735
1 Jul 2000
Macnicol MF Nadeem RD

Somatosensory evoked potentials (SSEPs) measure the conduction pathways from the periphery to the brain and can demonstrate the site of neurological impairment in a variety of locomotor conditions. SSEPs were studied in 44 children (64 feet) with surgically corrected club feet. Four children had unreproducible responses, 18 showed abnormal recordings and 22 showed normal responses. In a further 31 feet (21 children) subjected to motor electrophysiological tests, 16 (52%) were abnormal. Overall, 44 of 95 feet (46%) showed abnormal SSEPs or motor electrophysiological tests. Neurological abnormality was related both to the severity of the deformity and the surgical outcome. It was seen in 38% of feet with grade-2 and in 53% of feet with grade-3 deformity. A fair surgical result was obtained in 36% of feet with a conduction deficit and in only 6% with no abnormality. These results suggest an association between neurological abnormality as demonstrated by SSEPs or motor electrophysiological studies and the severity of deformity in club foot and its response to surgical treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 761 - 766
1 Jul 2002
Ochi M Iwasa J Uchio Y Adachi N Kawasaki K

We have determined whether somatosensory evoked potentials (SEPs) were detectable after direct mechanical stimulation of normal, injured and reconstructed anterior cruciate ligaments (ACLs) during arthroscopy. We investigated the position sense of the knee before and after reconstruction, and correlated the SEP with instability. Reproducible SEPs were detected in all 19 normal ACLs and in 36 of 38 ACLs reconstructed during a period of 13 months. Of the 45 injured ACLs, reproducible SEPs were detected in 26. The mean difference in anterior displacement in the SEP-positive group of the injured ACL group was significantly lower than that in the SEP-negative group. In the reconstructed group, the postoperative position sense was significantly better than the preoperative position sense. Our results indicate not only that sensory reinnervation occurs in the reconstructed ACL, but also that the response to mechanical loads can be restored, and is strongly related to improvement in position sense


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1421 - 1426
1 Oct 2012
Makarov MR Samchukov ML Birch JG Cherkashin AM Sparagana SP Delgado MR

We undertook a retrospective analysis of 306 procedures on 233 patients, with a mean age of 12 years (1 to 21), in order to evaluate the use of somatosensory evoked potential (SSEP) monitoring for the early detection of nerve compromise during external fixation procedures for limb lengthening and correction of deformity. Significant SSEP changes were identified during 58 procedures (19%). In 32 instances (10.5%) the changes were transient, and resolved once the surgical cause had been removed. The remaining 26 (8.5%) were analysed in two groups, depending on whether or not corrective action had been performed in response to critical changes in the SSEP recordings. In 16 cases in which no corrective action was taken, 13 (81.2%, 4.2% overall) developed a post-operative neurological deficit, six of which were permanent and seven temporary, persisting for five to 18 months. In the ten procedures in which corrective action was taken, four patients (40%, 1.3% overall) had a temporary (one to eight months) post-operative neuropathy and six had no deficit. After appropriate intervention in response to SSEP changes, the incidence and severity of neurological deficits were significantly reduced, with no cases of permanent neuropathy. SSEP monitoring showed 100% sensitivity and 91% specificity for the detection of nerve injury during external fixation. It is an excellent diagnostic technique for identifying nerve lesions when they are still highly reversible.


Introduction. Somatosensory evoked potential (SSEP) monitoring allows for assessment of the spinal cord and susceptible structures during complex spinal surgery. It is well validated for the detection of potential neurological injury but little is known of surgeon's responses to an abnormal trace and its effect on neurological outcome. We aimed to investigate this in spinal deformity patients who are particularly vulnerable during their corrective surgery. Methods. Our institutional neurophysiology database was analysed between 1. st. October 2005 and 31. st. March 2010. Monitoring was performed by a team of trained neurophysiology technicians who were separate from the surgical team. A significant trace was defined as a 50% reduction in trace amplitude or a 10% increase in signal latency. Patients suffering a significant trace event were examined post-operatively by a Consultant Neurologist who was separate from the surgical team. Results. 2386 consecutive operations (F:1719, M:667 median age 16 yrs) were performed in the time period and 72 operations reported a significant trace event (‘red alert’). From these cases 47 (65%) had a clearly documented intervention by the surgeon and 7 patients overall suffered a lasting neurological deficit (0.3%). The most common timing events were during instrumentation (50%) and during correction/distraction (16%). Most common responses were optimisation of patient/monitoring set-up (23%) and adjustment of metalwork (22%). There were 18 wake-up tests performed. We found SSEP monitoring to have a sensitivity of 100%, specificity 97.4%, positive predictive value 14% and negative predictive value 100%. A Chi-square test (p=0.016) was significant suggesting intervention had a beneficial effect on neurological outcome. Conclusion. We would advocate the use of SSEP monitoring in all patients undergoing spinal deformity surgery. These patients tend to be young, neurologically intact pre-operatively and are particularly vulnerable to the large corrective forces their surgery requires


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 106 - 106
1 Sep 2012
Vanhegan I Cannon G Kabir S Cowan J Casey A
Full Access

Introduction. Evidence suggests that intra-operative spinal cord monitoring is sensitive and specific for detecting potential neurological injury. However, little is known about surgeons' responses to trace changes and the resultant neurological outcome. Objective. To examine the role of intra-operative somatosensory evoked potential (SSEP) monitoring in the prevention of neurological injury, specifically sensitivity and specificity, and whether the abnormalities were reversible. Methods. 2953 consecutive complex spine operations (male 36% female 64%, median age 25yrs) prospectively performed using spinal cord monitoring at a single institution (2005–2009). All traces and neurophysiological events were prospectively recorded by the neurophysiology technician. All patients with a significant neurophysiology event were examined clinically by a neurologist, separate from the spinal surgery team. Significant trace abnormality was defined as a decrease in signal amplitude of 50% or a 10% increase in latency. Timing of trace abnormality, surgeon's response and prospective neurological outcome were recorded. Sensitivity, specificity, positive/negative predictive value were calculated. A Chi-squared test was performed to assess the impact of intervention on neurological outcome (p < 0.05). Results. 2953 operations involving SSEP monitoring were performed and 106 recorded a significant trace abnormality. This most often occurred during instrumentation and the most common reaction was adjustment of metalwork. SSEP monitoring had a sensitivity of 100%, specificity 97.3%, PPV 24%, NPV 100%. There were 79 false positives and no false negatives in this series. Chi-squared test was not significant (p=0.18) suggesting that intervention might not affect neurological outcome in this cohort. Conclusions. Triggering events are uncommon and the development of a persistent neurological deficit is rare with an incidence of 0.85% in this series of 2953 operations. In the majority of cases detection of a monitoring abnormality prompts a corrective reaction by the surgeon. Of those with an abnormal trace 76% were neurologically normal at follow up


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims

Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy.

Methods

We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed.


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 2 | Pages 134 - 139
1 Mar 1983
Jones S Edgar M Ransford A Thomas N

An electrophysiological system for monitoring the spinal cord during operations for scoliosis is described. During the development of the technique the recording of cortical somatosensory evoked potentials from the scalp and spinal somatosensory evoked potentials from the laminae or spines was superseded by the positioning of recording electrodes in the epidural space cephalad to the area to be fused. All recordings were made in response to stimulation of the posterior tibial nerve at the knee. Results in 138 patients are presented and the findings in three patients who exhibited neurological deficits after operation are described. It is concluded that spinal somatosensory evoked potentials are sensitive to minor spinal cord impairment, possible due to ischaemia, and that these changes may be reversed when the cause is quickly remedied. The monitoring system interferes minimally with anaesthetic and surgical procedures and is now performed as a routine


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 199 - 199
1 Mar 2003
Aderinto J EIsebaie H Noordeen M
Full Access

Introduction: Somatosensory evoked potentials are monitored during the surgical treatment of spinal disorders to reduce the risk of cord injury. Whilst studies have examined its role in patients undergoing correction of idiopathic and neuromuscular scoliotic curves, its effectiveness in patients undergoing operative treatment for spinal injury is less certain. Methods and Results: We reviewed the medical records of patients who underwent surgery for spinal trauma. between 1995 and 2000. There were 82 patients with adequate data for analysis who underwent 83 spinal reconstructive procedures. We recorded the age at injury, diagnosis, time of operation, levels instrumented, systolic and diastolic blood pressures and surgical approach. The intraoperative somatosensory evoked potential (SSEP) traces were examined. The SSEP at insertion of electrode was taken as the control level. The highest and lowest intraoperative somatosensory evoked potentials and SSEP at closure were noted and expressed as a percentage of the control value. Forty patients (48%) had a pre-operative neurological deficit. Neurological deterioration occurred postoperatively in three patients. Eighty-three traces from 82 patients were available for analysis. Fifty-seven patients had a fall in trace amplitude by more than 25% of the control, 25 by more than 50% and eight by more than 75%. With an SSEP amplitude loss of 60%, both sensitivity and specificity for the prediction of post-operative neurological injury were optimised at 67 and 81% respectively, with one false negative result. SSEP rise at completion of spinal reconstruction and highest intraoperative SSEP rise was compared with neurological outcome in the 40 patients with abnormal pre-operative neurology. Neurology improved in all patients in this group who had a trace amplitude more than 60% above the control value at end of operation. None had neurological deterioration. There was no correlation between intraoperative SSEP rise and neurological outcome. Conclusion: Loss of trace amplitude more than 50% is common during spinal reconstructive surgery after trauma, however a 60% threshold for SSEP fall improves specificity by reducing the rate of false positive results. A trace amplitude 60% above the control value at completion of operation is specific but not sensitive for postoperative neurological improvement


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 474 - 479
1 Apr 2008
Tsirikos AI Howitt SP McMaster MJ

Segmental vessel ligation during anterior spinal surgery has been associated with paraplegia. However, the incidence and risk factors for this devastating complication are debated. We reviewed 346 consecutive paediatric and adolescent patients ranging in age from three to 18 years who underwent surgery for anterior spinal deformity through a thoracic or thoracoabdominal approach, during which 2651 segmental vessels were ligated. There were 173 patients with idiopathic scoliosis, 80 with congenital scoliosis or kyphosis, 43 with neuromuscular and 31 with syndromic scoliosis, 12 with a scoliosis associated with intraspinal abnormalities, and seven with a kyphosis. There was only one neurological complication, which occurred in a patient with a 127° congenital thoracic scoliosis due to a unilateral unsegmented bar with contralateral hemivertebrae at the same level associated with a thoracic diastematomyelia and tethered cord. This patient was operated upon early in the series, when intra-operative spinal cord monitoring was not available. Intra-operative spinal cord monitoring with the use of somatosensory evoked potentials alone or with motor evoked potentials was performed in 331 patients. This showed no evidence of signal change after ligation of the segmental vessels. In our experience, unilateral segmental vessel ligation carries no risk of neurological damage to the spinal cord unless performed in patients with complex congenital spinal deformities occurring primarily in the thoracic spine and associated with intraspinal anomalies at the same level, where the vascular supply to the cord may be abnormal


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 477 - 483
1 Apr 2006
Iwasa J Ochi M Uchio Y Adachi N Kawasaki K

We have investigated the changes in anterior laxity of the knee in response to direct electrical stimulation of eight normal and 45 reconstructed anterior cruciate ligaments (ACLs). In the latter, the mean time from reconstruction was 26.7 months (24 to 32). The ACL was stimulated electrically using a bipolar electrode probe during arthroscopy. Anterior laxity was examined with the knee flexed at 20° under a force of 134 N applied anteriorly to the tibia using the KT-2000 knee arthrometer before, during and after electrical stimulation. Anterior tibial translation in eight normal and 17 ACL-reconstructed knees was significantly decreased during stimulation, compared with that before stimulation. In 28 knees with reconstruction of the ACL, in 22 of which the grafts were found to have detectable somatosensory evoked potentials during stimulation, anterior tibial translation was not decreased. These findings suggest that the ACL-hamstring reflex arc in normal knees may contribute to the functional stability and that this may not be fully restored after some reconstructions of the ACL


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 5 | Pages 754 - 758
1 Sep 1996
Ochiai N Nagano A Sugioka H Hara T

We have assessed the efficacy of free nerve grafts in 90 cases of brachial plexus injury. Relatively good recovery of the elbow flexor and extensor muscles and of those of the shoulder girdle was found but recovery of the flexors and extensors of the forearm and of the intrinsic muscles of the hand was extremely poor. Poor results were found when spinal nerve roots seemed normal to the touch and appeared intact but had abnormal somatosensory evoked potentials or myelography. Recovery of the deltoid and infraspinatus muscles was better when injury had occurred to the circumflex and suprascapular nerves rather than to the plexus itself, perhaps because these nerves were explored in their entirety to determine the presence of multiple lesions. It is important to visualise the entire nerve thoroughly to assess the overall condition. Thorough exploration of the plexus and the use of intraoperative recording of somatosensory evoked potentials are essential


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1089 - 1095
1 Aug 2005
Birch R Ahad N Kono H Smith S

This is a prospective study of 107 repairs of obstetric brachial plexus palsy carried out between January 1990 and December 1999. The results in 100 children are presented. In partial lesions operation was advised when paralysis of abduction of the shoulder and of flexion of the elbow persisted after the age of three months and neurophysiological investigations predicted a poor prognosis. Operation was carried out earlier at about two months in complete lesions showing no sign of clinical recovery and with unfavourable neurophysiological investigations. Twelve children presented at the age of 12 months or more; in three more repair was undertaken after earlier unsuccessful neurolysis. The median age at operation was four months, the mean seven months and a total of 237 spinal nerves were repaired. The mean duration of follow-up after operation was 85 months (30 to 152). Good results were obtained in 33% of repairs of C5, in 55% of C6, in 24% of C7 and in 57% of operations on C8 and T1. No statistical difference was seen between a repair of C5 by graft or nerve transfer. Posterior dislocation of the shoulder was observed in 30 cases. All were successfully relocated after the age of one year. In these children the results of repairs of C5 were reduced by a mean of 0.8 on the Gilbert score and 1.6 on the Mallett score. Pre-operative electrodiagnosis is a reliable indicator of the depth of the lesion and of the outcome after repair. Intra-operative somatosensory evoked potentials were helpful in the detection of occult intradural (pre-ganglionic) injury


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XX | Pages 6 - 6
1 May 2012
Adams CI McAree C Henderson L Glasby M
Full Access

Purpose. To compare the incidence and nature of ‘neurophysiological events’ identified, post hoc, by a consultant neurophysiologist with those identified intra-operatively by clinical physiologists, before and after intervention(s). Methods. The IOM wave-recordings, event-logs and reports of all spinal deformity cases conducted by a team of clinical physiologists from April to June 2009 (Group 1) were reviewed retrospectively by the same, experienced clinical neurophysiologist, (MG). Interventions were then agreed. The first was to alter the IOM report document to drop down menus. The second was to arrange a series of teaching sessions for the clinical physiologists on a variety of aspects of IOM. Finally during these teaching sessions recent cases were brought to review in an informal setting to discuss. Following implementation of the interventions a further review from April to June 2010 (Group 2) was carried out in the same manner. The clinical physiologists did not know the time periods over which the review would be taking place. Results. From April to June 2009 (Group 1) thirty two patients were studied and from April to June 2010 (Group 2) thirty four patients were studies. Group 1. Twenty seven of these had been monitored using ‘multimodal’ IOM consisting of cortical (CSEP) and spinal (SSEP) somatosensory evoked potentials and motor (MEP/CMAP) evoked potentials. Two patients were inappropriate for MEP recording and two were monitored using epidural SSEP recording. During 10 operations (31%) the surgeons were notified of an ‘intra-operative neurological event’ judged by the clinical neurophysiologist as potentially requiring a surgical response. When the results were audited, only 2 (6%) of these ‘events’ were considered by the consultant clinical neurophysiologist to represent ‘true positive’ intra-operative neurophysiological findings. Group 2. Twenty six of these had been monitored using ‘multimodal’ IOM consisting of cortical (CSEP) and spinal (SSEP) somatosensory evoked potentials and motor (MEP/CMAP) evoked potentials. Four patients were inappropriate for MEP recording and had a combination of SSEP and CSEP. The remainder had IOM with unimodal. No epidural IOM was used during this period. During 4 operations (12%) the surgeons were notified of an ‘intra-operative neurological event’ judged by the clinical neurophysiologist as potentially requiring a surgical response. Post-operative examination of all the patients in both groups revealed that no ‘false negative’ conclusions had been reached. Conclusion. In this series clinical physiologists were found to alert the surgeons 5 times more frequently than was likely to have been the case with an experienced consultant clinical neurophysiologist (31% and 6% respectively). However the increased reporting of intra-operative events did not result in any alteration of the ultimate surgical strategy in any operation although tactical changes were sometimes necessary during the operation in order to test the reversibility of the flagged event. The implementation of two simple interventions resulted in the clinical physiologists alerting the surgeons only 1/3 of that previously (12%) of cases. The log indicated that on all occasions appropriate surgical action had been taken with no residual neurological deficit. This study, owing to its size, cannot answer the key question of safety. Further work to estimate the statistical power required of such a study is being sought. In the interim proving a track record of successful cases provides evidence of efficacy. Ethics Approval: None. Interest Statement: None


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 444 - 444
1 Aug 2008
Juliusz H Piotr R
Full Access

Radiological diagnosis is not the only tool in detection, monitoring of progress and making easy to undertake a decision about the surgical scoliosis correction. The below presented algorithm of scoliosis monitoring with complex and repetitive (comparative) neurophysiological examinations facilitates the doctor’s decision about method of the conservative treatment or just the moment of surgical intervention [3, 14]. Neurogenic changes in muscles can be found in early stages of the spine deformation – usually when the Cobb’s angle is over 100 [1]. Vertebral rotation and curvature progression follow simultaneously leading to deformation of the spinal cord together with the local ventral roots compression and sometimes inflammation of them. The structure of the grey matter especially in the ventral horn changes its form more on the convex side of scoliosis. Cell bodies together with the axonal hillocks in the motoneuronal pools show deformations comparing to the analogical area of the concave side. This produce discrete unilateral axonopathy in both efferent fibers of peroneal and tibial nerves in scoliotic patients at the age of about 10. This can be found in electroneurographical (ENG) recordings of M and F potentials even at the angle of scoliosis of 100 [10, 14]. Both parameters of the amplitudes and conduction velocities in M-wave studies are decreased and the frequency of F wave recording is diminished what suggests pathological asymmetrical changes just at the level of the ventral root. That is why electromyographical (EMG) recordings show asymmetrical, according to the ventral root somatotopical innervation, selective (found only in some muscles) deficits in frequency and amplitude of motor units action potentials, predominantly in girls. These girls have scoliosis accelerating the most with angle changes of 50 per year [2] that rapidly deepens the neurogenic changes. Other significant evaluation of the scoliosis acceleration is using the somatosensory evoked potentials (SEPs) for recording progression of pathology in the afferent transmission within the long ascending spinal cord pathways running in dorsal, dorsolateral and lateral funiculi [4, 5]. Changes in parameters more amplitude than conduction velocity from SEPs studies recorded at the cervical level are more visible on the concave than convex side of scoliosis. These changes are correlated with increasing the Cobb’s angle at the apical thoracic vertebrae (Th7–8) while peripheral sensory transmission remains only slightly disturbed [6, 7]. These changes were found to be twice greater when recording of SEPs was performed over cranially on the contralateral side of the scalp to the stimulation site at the ankle (tibial nerve than peroneal nerve fibers excitation) both in mothers and their daughters [4]. This points at the strong inhibition of the afferent transmission at the level of the brain stem (probably thalamus or medial lemniscus). During the comparative SEPs recordings at the cervical level, when parameters of waves change dramatically (or even they disappear), this may suggest that the lateral angle of scoliosis exceeded 450 with great acceleration of the torsion [9]. Somatosensory evoked potential recordings during the surgical correction of scoliosis showed only rarely the immediate improvement of the afferent transmission [7, 8, 11]. However, they make sure a surgeon about lack of blockade within the spinal pathways which comes from derotation and distraction procedures performed on the spine during implantation of the corrective instrumentation. First visible results of improvement in the SEPs parameters recorded postoperatively are usually seen a week after the surgery [14]. The above analogical phenomena but referring to the efferent transmission were shown in motor evoked potentials studies which were induced with the magnetic field (MEP) in areas of motor cortex and recorded from centres of cervical and lumbosacral spinal cord as well as from nerves and muscles of upper and lower extremities [12,13, 15]. Usually when AIS reaches the Cobb’s angle of 200 at the age of 25 and does not progress more it can be assumed, that its development is finished. In these patients the signs of neurogenic changes found in EMG examinations performed in lower extremities, paravertebral and gluteal muscles do not progress, too [14]


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 97 - 97
1 Dec 2016
Mortimer J Norton J Dzus A Allen L
Full Access

To examine the effect of lateral spine curvature on somatosensory evoked potentials (SSEP) in patients with adolescent idiopathic scoliosis (AIS) compared to normal controls. We hypothesise that patients with AIS will show increased latency in their SSEPs when bending into their curve suggesting that their spinal cord is more sensitive to this increased lateral curvature. Patients were recruited from the paediatric scoliosis clinic in a single centre. Inclusion criteria were: diagnosis of AIS, age 10–18 years, major thoracic curve measuring greater than 10 degrees on Cobb measurement, and undergoing nonoperative management. Exclusion criteria were: any detectable neurologic deficit, and previous surgery on the brain or spine. SSEP recordings were obtained via stimulation of the posterior tibial nerve with surface electrode and measurement of the cortical response over the scalp. All recordings were performed three times: with the patient in neutral standing and maximum right and left side bending. SSEP recordings show that when AIS subjects bend into their curve, latency slows by an average of 0.5ms. However there was a bimodal distribution with most subjects showing minimal change (3ms). This subset was statistically different from both a control group, and the larger AIS group. There appears to be a subset of patients with AIS who have subclinical spinal cord dysfunction demonstrated by abnormal SSEPs. This may place these patients at slightly higher risk of neurologic injury at the time of surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 6 | Pages 870 - 872
1 Nov 1992
Williamson J Galasko C

We report our experience of the monitoring of spinal somatosensory evoked potentials in 60 patients with neuromuscular scoliosis. In 15 cases a significant change occurred in the trace when a sublaminar wire was tightened. There were no postoperative neurological deficits attributable to the surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 4 | Pages 670 - 674
1 Jul 1997
Sayegh FE Kapetanos GA Symeonides PP Anogiannakis G Madentzidis M

Spinal nerve roots often sustain compression injuries. We used a Wistar rat model of the cauda equina syndrome to investigate such injuries. Rapid transient compression of the cauda equina was produced using a balloon catheter. The results were assessed by daily neurological examination and somatosensory evoked potential (SEP) recording before surgery and ten weeks after decompression. Compression of the spinal nerves induced changes in the SEP which persisted for up to ten weeks after decompression, but it had no effect on the final neurological outcome. Our study shows the importance of early surgical decompression for cauda equina syndrome


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 46 - 46
1 Apr 2018
Niedzielak T Palmer J Stark M Malloy J
Full Access

Introduction. The rate of total hip arthroplasty (THA) surgery continues to dramatically rise in the United States, with over 300,000 procedures performed in 2010. Although a relatively safe procedure, THA is not without complications. These complications include acetabular fracture, heterotopic ossification, implant failure, and nerve palsy to name a few. The rates of neurologic injury for a primary THA are reported as 0.7–3.5%. These rates increase to 7.6% for revision THA. The direct anterior total hip arthroplasty (DATHA) is gaining popularity amongst orthopedic surgeons. Many of these surgeons elect to use the Hana® table during this procedure for optimal positioning capability. Although intraoperative mobility and positioning of the hip joint during DATHA improves operative access, select positions of the limb put certain neurologic structures at risk. The most commonly reported neurologic injuries in this regard are to the sciatic and femoral nerves. To our knowledge, the use of neuromonitoring during DATHA, especially those using the Hana® table, has not been described in the literature. Methods. The patient was a 60-year-old male with long standing osteoarthritis of the right hip and prior left THA. Somatosensory evoked potential (SSEP) leads were placed bilaterally into the hand (ulnar nerve) as well as the popliteal fossae (posterior tibial nerve). Unilateral electromyography leads were placed into the vastus medialis obliquus, biceps femoris, gastrocnemius, tibialis anterior, and abductor hallucis of the operative limb (Fig. 1). Once the patient was sterilely draped, a direct anterior Smith-Peterson approach to the hip was used. Results. After the patient completed standard pre-operative protocol, neuromonitoring leads were placed as described above. There were no complications, neuromonitoring remained stable from baseline, and the patient tolerated the procedure well. Moreover, the senior author routinely uses a prophylactic cable around the calcar, particularly in patients with osteoporotic bone, as was the case with this patient. The patient's post-operative course has been without complications as well. Conclusion. There are a few studies that have examined the pressure changes around the femoral nerve during a DATHA and found that the nerve was at most danger with misplacement of a retractor near the anterior lip of the acetabulum. Furthermore, the popularity of DATHA and the Hana® table make neuromonitoring more amenable for use since the whole limb does not need to be sterilely prepped as with other approaches to the hip. The reported rates of neurologic injury during any THA along with those developed from passage of prophylactic cerclage cables and the goals of reducing surgical complications make this novel technique intriguing. It allows the surgeon yet another safe and effective tool to decrease the likelihood of neurologic injury during DATHA. For any figures or tables, please contact the authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 5 | Pages 775 - 781
1 Sep 1993
Murase T Kawai H Masatomi T Kawabata H Ono K

We used evoked spinal cord potentials (ESCP) for intraoperative diagnosis in 17 cases of traumatic brachial plexus palsy. Forty spinal nerves were directly stimulated during exploration of the brachial plexus and ESCP recorded from the cervical epidural space were compared with simultaneously observed somatosensory evoked potentials (SEP) and myelographic findings. Both SEP and ESCP could be evoked in 21 spinal nerves but ESCP were always more distinct and five to ten times greater in amplitude than SEP. In four nerves, ESCP but no SEP were produced, suggesting that there was continuity from the nerves to the spinal cord. ESCP were obtained from two spinal nerves which appeared to be abnormal on the myelogram. The results show that intraoperative electrodiagnosis by epidural ESCP recordings can provide useful information on the lesions of traumatic brachial plexus palsy


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 902 - 906
1 Sep 1999
Ochi M Iwasa J Uchio Y Adachi N Sumen Y

We examined whether somatosensory evoked potentials (SEPs) were detectable after direct electrical stimulation of injured, reconstructed and normal anterior cruciate ligaments (ACL) during arthroscopy under general anaesthesia. We investigated the position sense of the knee before and after reconstruction and the correlation between the SEP and instability. We found detectable SEPs in all ligaments which had been reconstructed with autogenous semitendinosus and gracilis tendons over the past 18 months as well as in all cases of the normal group. The SEP was detectable in only 15 out of 32 cases in the injured group, although the voltages in the injured group were significantly lower than those of the controls. This was not the case in the reconstructed group. The postoperative position sense in 17 knees improved significantly, but there was no correlation between it and the voltage. The voltage of stable knees was significantly higher than that of the unstable joints. Our findings showed that sensory reinnervation occurred in the reconstructed human ACL and was closely related to the function of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 3 | Pages 487 - 491
1 May 1991
Forbes H Allen P Waller C Jones S Edgar M Webb P Ransford A

Since 1981, during operations for spinal deformity, we have routinely used electrophysiological monitoring of the spinal cord by the epidural measurement of somatosensory evoked potentials (SEPs) in response to stimulation of the posterior tibial nerve. We present the results in 1168 consecutive cases. Decreases in SEP amplitude of more than 50% occurred in 119 patients, of whom 32 had clinically detectable neurological changes postoperatively. In 35 cases the SEP amplitude was rapidly restored, either spontaneously or by repositioning of the recording electrode; they had no postoperative neurological changes. One patient had delayed onset of postoperative symptoms referrable to nerve root lesions without evidence of spinal cord involvement, but there were no false negative cases of intra-operative spinal cord damage. In 52 patients persistent, significant, SEP changes were noted without clinically detectable neurological sequelae. None of the many cases which showed falls in SEP amplitude of less than 50% experienced neurological problems. Neuromuscular scoliosis, the use of sublaminar wires, the magnitude of SEP decrement, and a limited or absent intra-operative recovery of SEP amplitude were identified as factors which increased the risk of postoperative neurological deficit


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 221 - 221
1 Mar 2003
Katonis P Muffoletto A Papadopoulos C Thalassinos I Hohlidakis S Hadjipavlou A
Full Access

Aim: Of Calveston (USA) and Crete (HELLAS). We studied immediate and long-term outcome of 50 patients who underwent subaxial lateral mass fixation of the cervical spine between January 1997 and March 2001. Patients and Methods: Intraopeartive fluoroscopy and somatosensory evoked potential monitoring were employed in all patients. Immediate postoperative CT scans were performed to determine screw trajectory and placement. Follow up ranged from 1 to 5 years. Results: Postoperative CT scans showed that 113 of 210 screws (54%) had unicorticate and 46% had bicorticate purchase. Forty-five screws (31 %) had suboptimal trajectory, but only 7 of these screws minimally penetrated the foramen transversarium without resultant vascular or neurological sequelae. The overall fusion success rate in our series was 90%, while pseudoarthrosis occurred in 5 patients (10%), with screw breakage in 1 patient (2%). Two of these patients had bone graft supplementation and in other 2 patients was done anterior fusion. Conclusions: Results of this study show that the recommended drilling technique and trajectory (15–25 degrees postal to the sagital plane, 20–30 degrees lateral I the axial plane), supplemented bone grafting and intraoperative SEP monitoring are all associated to good screw placement, fusion and neurological outcome and are recommended for all lateral mass fusion procedures


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 330 - 330
1 Nov 2002
Leung YL Grevitt MP Henderson. LM
Full Access

Objective: Determine the incidence of abnormal somatosensory evoked potentials (SSEP) in patients with ‘at risk’ spinal cords undergoing anterior spinal deformity surgery. Design: A retrospective chart and SSEP trace review of cases between 1982–2001. Subjects: Patients undergoing elective anterior spinal deformity surgery were included. Excluded were those with inadequate SSEP monitoring or no pre-operative MRI scan. Outcome measures: Paraparesis due to cord ischaemia based on an abnormal SSEP trace, i. e. > 50% decrease in SSEP baseline amplitude +/− > 10% increase in latency. 1. . Results: Partial data was available for 1982–1990, thus analysis was based on cases between 1990–2001.871 patients underwent elective anterior spinal deformity surgery, 11% were ‘at risk cords’; 2% demonstrated intraoperative SSEP changes. Post operative paraparesis ws found in 0.6%. Intra-operative changes were significantly more common in ‘at risk cords’ (chi-squared test = 30.3, df = 2; p< 0.005). No statistical difference in the incidence of paraparesis in normal cords vs ‘at risk’ cords. Conclusions: Post operative neurological deficit is rare in anterior spinal deformity surgery. Significant SSEP changes do occur with ligation of segmental vessels, implying cord ischaemia. Therefore, for the ‘at risk cord’, these patients should be considered for spinal cord monitoring and temporary clamping of segmental vessels prior to their division


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 40 - 40
1 Mar 2010
Vitale MG Moore DW Emerson RG Matsumoto H Gomez JA Hyman JE Roye DP
Full Access

Purpose: Despite advances in surgical technique, neurological injury remains a potentially devastating complication of spinal deformity correction surgery. The purpose of the study is to describe surgical and patient factors associated with “electrophysiologic (EP) events” and neurogenic deficits. Method: A retrospective chart review, looking at “EP events” during surgery, was conducted on 162 patients who received surgical treatment of their pediatric spine deformity from 1999 to 2004. Results: Ninety three percent of cases (n=151) were successfully monitored by either somatosensory evoked potential (SEP) or motor evoked potential (MEP) monitoring. All three neurologic deficits that occurred in this study cases were successfully detected by EP monitoring (0.02%, p=.002). In those 151 cases that were successfully monitored, “EP events” were occured in twenty (13.2%) cases. The most common cause was systemic change (45%) and curve correction (40%). In those 20 cases, when corrective actions were made (n=15) “EP events” reversed to baseline values in all cases. When no corrective actions were taken (N=5) there was no reversals of “EP events” to baseline. Patients with kyphosis had a trend toward significantly higher rates of “EP events” (p=.174) and patients who had cardiopulmonary comorbidities had significantly higher rates of “EP events” (p=.007). Conclusion: Consistent with existing literature, the EP monitoring was successful in the vast majority of deformity surgeries. “EP events” were able to be reversed with corrective action and to predict neurologic deficits. Our study found that patients with kyphosis and/or cardiopulmonary comorbidities have higher risk of significant “EP events” during the surgeries


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 286 - 287
1 Mar 2004
Hadjipavlou A Nader R Crow W VanSonnenberg E Nauta H
Full Access

Aims:This study: a)revisits the effectiveness of preoperative embolization alone for hypervascular lesions of the thoracolumbar spine and b) compares its action with intraoperative cryotherapy alone or in conjunction with embolization. Methods:14 patients underwent 15 surgeries for hypervascular spinal tumors. Ten of the surgeries were augmented by preoperative embolization alone. Four surgeries involved intraoperative cryocoagulation, and one surgery used a combination of preoperative embolization and intraoperative cryocoagulation for tumor resection. When cryocoagulation was used, its extend was controlled by intraoperative ultrasound or by establishing physical separation of the spinal cord from the tumor. Results:Among cases treated with embolization alone, 50% still had intraoperative blood-loss in excess of 3 liters. Mean blood-loss was of 2.8 liters/patient. One patient bled excessively (over 8000ml) terminating the surgery prematurely and resulted in suboptimal tumor resection. All procedures using cryo-coagulation achieved adequate hemostasis with average blood-loss of only 500 ml/patient by far better than embolization (P< 000.1). Conclusions:Preoperative embolization alone may not always be satisfactory for surgery of hypervascular tumors of the thoracolumbar spine. Although experience with cryocoagulation is limited, its use, with or without embolization, suggests its effectiveness in limiting blood-loss. Cryocoagulation may also assist resection by preventing tumor spillage, facilitating more radical excision of the tumor and enabling spinal reconstruction that eventually may contribute to improve survival. The extent of cryocoagulation could be controlled adequately with ultrasound. Somatosensory evoked potentials may provide early warning of cord cooling. No new neurological deþcits were attributable to the use of cryocoagulation


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 332 - 332
1 Nov 2002
Sengupta DK Grevitt MP Freeman BJ Mehdian SH Webb JK Lamb J
Full Access

Objective: To demonstrate possible advantages of combined (motor and sensory) versus single modality (either motor or sensory) intraoperative spinal cord monitoring. Design: Retrospective and prospective clinical study. Materials and Methods: One hundred and twenty-six consecutive operations in 97 patients had peroperative monitoring the lower limb motor evoked potentials (MEPs) to multi- pulse transcranial electrical stimulation (TES), and tibial nerve somatosensory evoked potentials (SEPs). Seventy-nine patients had spinal deformity surgery, and eighteen had surgery for trauma, tumor or disc herniation. Results: Combined motor and sensory monitoring was successfully achieved in 104 of 126 (82%) operations. Monitoring was limited to MEPs alone in two, and SEPs alone in eighteen cases. Neither MEPs nor SEPs were obtainable in two cases with Friedreich’s ataxia. Significant evoked potentials (EP) changes occurred in one or both modalities in 16 patients, in association with instrumentation (10) or systemic changes (6). After appropriate remedial measures, SEPs recovered either fully or partially in all cases (8/8) and MEPs in 10/15. New neurodeficits developed post-operatively in six of the sixteen patients with abnormal EPs, including two in whom SEPs had either not changed or recovered fully after remedial measures. One patient developed S3–5 sensory loss despite full recovery of both SEPs and MEPs. Two patients without neurological consequences had persistent MEP changes. Normal MEPs (but not SEPs) at the end of the operation correctly predicted the absence of new motor deficits. There were no false negative MEP changes. Conclusion: MEPs are more sensitive than SEPs, but may rarely raise false positive alarm. SEPs are unaffected by anaesthetics and can be monitored more frequently. Combined monitoring is safe, complimentary to each other, and increases sensitivity and predictivity of adverse neorological consequences. True incidence of false positive MEP or SEP changes are difficult to define. Remedial measures after monitoring changes may help cord ischaemia to recover and absence of neurological deficit, therefore, may not indicate a false positive monitoring change


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 443 - 444
1 Aug 2008
Piotr R Juliusz H Ukasz K
Full Access

AIS has different image than paralytic scoliosis or scoliosis accompanying some diseases of the spinal cord in electromyographical and electroneurographical examinations (EMG and ENG). These differences are concerned to different progression, characteristic properties in skeletal system pathology or curves angles at the thoracic and lumbosacral spine. There are always two sites in patients with AIS where changes in transmission from the motor cortex to the motoneuronal centres in lumbosacral region appear. These phenomena were shown in motor evoked potentials studies which were induced with the magnetic field (MEP) in areas of motor cortex and recorded from centres of cervical and lumbosacral spinal cord as well as from muscles of upper and lower extremities. Changes in efferent transmission are greater twice in recordings from muscles of lower extremities and in oververtebral recordings at L5-S1 regions what suggests, that secondary slowing down takes place at the level of the apical thoracic vertebrae of primary curve (mostly at Th7–8), predominantly on the concave than convex side of scoliosis. MEP study confirmed a previous finding with somatosensory evoked potentials (SEPs) similarly about two focuses of disturbances in of afferent transmission on the spinal centres-supraspinal centres pathway. MEP showed changes in the efferent transmission on the supraspinal centres-spinal motor generator pathway. Such changes are not observed in scolioses other than idiopathic. Results of the complex neurophysiological studies suggest that the primary origin of AIS is the brain stem area at the level of thalamus where changes of afferent and efferent transmission are detected. There is a close relationship of this structure with the pineal gland and secretion of neurotransmitters at this level in correlation to disturbances in melatonin secretion and other neurohormones. Disorders in melatonin secretion and other neurohormones may induce a scoliosis what was shown in previous genetic and experimental neurophysiological studies on animals, together with cutting of the pineal stalk. Some aspects of this problem were also mentioned in our previous clinical neurophysiological studies [1–3]. Results of studies suggest that in patients with AIS, there are structural and functional changes in the area of thalamus, which cause disturbances in afferent and efferent transmission at this level. Pathology in the pineal secretion of neurohormones can be one of the factors influencing the formation and progression of AIS, as a disease of probably secondary origin to the functional changes in brain. Results of MEP studies discussed in this report confirm that the primary origin of AIS takes place at the level of the brain stem but not in the spinal cord


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 115 - 116
1 Feb 2004
Leung Y Grevitt M Henderson L Smith N
Full Access

Objective: Recent reports have suggested a low incidence of neurological complications following anterior deformity surgery; however in patients with co-existing intra-spinal anomalies no quantification of this risk has been made. Also, whether SSEP monitoring and soft clamping of segmental vessels prior to their division is necessary for these anterior procedures is controversial. The aims of this study were to determine the incidence of significant SSEP changes in patients undergoing anterior spinal deformity surgery; to ascertain whether the ‘at risk’ cord was more likely to demonstrate significant intraoperative SSEP changes and what proportion of these changes yielded post operative neurological deficit. Design: Retrospective analysis of operative notes and somatosensory evoked potential (SSEP) traces of patients who underwent anterior spinal deformity surgery between 1990–2001. Subjects: All patients who underwent anterior spinal deformity surgery between 1990–2001, who had complete data sets (preoperative MRI scan, patient and procedural documentation and intraoperative SSEP traces) were included in the study. Outcome measures: All post operative neurological deficits and significant SSEP changes were noted, whether or not patients had a ‘cord at risk’. Results: In total, 871 patients had elective anterior spinal deformity surgery. Preoperative MRI revealed 95 patients (11%) demonstrated intraspinal anomalies on MRI but of these only 27 showed abnormal pre-operative SSEP i.e. cord at risk (CAR). Seventeen (2% of total) of this group developed abnormal intraoperative SSEP responses and ten (1.3%) occurred in the normal group. The incidence of post-operative paraparesis for the whole series was 0.6% (n=5): four in the CAR group, one in the normal cord group. Sensitivity of SSEPs in detecting potential neurological deficit was 100%; specificity 98.6%, positive predictive value 29.4% and negative predictive value 100%. Significant intraoperative SSEP changes occurred more frequently in the CAR group and were more likely to have post operative paraparesis. Conclusions: SSEP monitoring is a sensitive and specific test, which in experienced hands yields no false positive results. Spinal cord monitoring and soft clamping of segmental vessels should be performed in patients with CAR undergoing anterior spinal deformity surgery to minimise the risk of post operative paraparesis


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 229 - 229
1 May 2006
Dabke HV Jones A Ahuja S Howes J Davies PR
Full Access

Background: Campbell et al from Texas have pioneered the use of Vertical Expandable Prosthetic Titanium Rib (VEPTR) in congenital scoliosis. Our centre is the first in the UK to use it and we report our experience of 5 cases done in the past 2 years. VEPTR works on the principle of expansion thoracoplasty and thoracic spinal growth of upto 0.8 cms/year has been reported by the developers of this device. Methods: This case series includes one child who had the index surgery in America and is undergoing sequential expansion in Cardiff. All surgeries were done using a standard technique with monitoring of somatosensory evoked potentials. After appropriate soft tissue and bony releases, VEPTR was inserted and expanded by 0.5 cms to maintain tissue tension. Subsequent expansions were done as day case surgeries at 4–6 month intervals through a small incision over the VEPTR. We assessed clinical and radiographic assessment, which included – hemithorax height ratio, Cobb angle, interpedicular line ratio, space available for the lung. Results: There were 3 males and 2 females with mean age of 6.3 years (range 0.9 to 9 years) at the time of index operation. Average follow up is 2 years (0.4 to 5 years). Average hospital stay for the index surgery was 5 days (4–7 days). All patients had mean of 3 expansions (range: 0–6). Mean improvement in the Cobb angle was seen from 48° to 36° at last followup. Space available for lung improved from a mean of 72 % to 86 %. Mean improvement in hemithorax height ratio was from 72.5% to 86%. One child had mild pain due to prominent metalwork; 2 children had transient brachial plexus neurapraxia, one of whom had progression of a secondary cervical curve and is awaiting further surgery for the same. Conclusion: Our early results show good improvement of clinical and radiographic parameters. Transient nerve palsies have been well reported on the concave side and occur due to traction on the nerves as a result of increased height of the thoracic cage. This occurred in one initial case and has not been seen later. These results are encouraging but do indicate a learning curve


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 429 - 429
1 Sep 2009
Chu W Wang D Freeman B Burwell G Paus T Man G Cheng A Yeung H Lee K Cheng J
Full Access

Introduction: Observation of sub-clinical neurological abnormalities has led to the proposal of a neuro-developmental etiologic model for adolescent idiopathic scoliosis (AIS). We have previously demonstrated prolonged latency in somatosensory evoked potentials (SSEP) and impaired balance control in subjects with AIS. Furthermore we have compared regional brain volumes in right thoracic AIS subjects and normal controls. Significant neuro-anatomic regional differences were observed in the corpus callosum, premotor cortex, proprioceptive and visual centers of the AIS subjects compared to control subjects. Most of these regional differences involved the brain unilaterally, indicating there may be abnormal asymmetrical development in the brain of subjects with right thoracic AIS. Methods: Following ethical committee approval a total of 29 subjects with AIS were recruited. Patients with congenital, neuromuscular or syndromic scoliosis were excluded from the study. Twenty-eight age- and sex-matched controls were recruited from local schools. All recruits underwent three-dimensional isotropic magnetization prepared rapid acquisition gradient echo (3D_MPRAGE) magnetic resonance (MR) imaging of the brain. Modern morphometric analyses of the MR images were carried out including classification of tissue into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Tissue densities were compared between AIS subjects and controls. Comparisons were made between those subjects with left thoracic AIS (n=9) and age and sex-matched controls (n=11) and those subjects with right thoracic AIS (n=20) and age and sex-matched controls (n=17). Results: For subjects with left thoracic curves the mean Cobb angle was 19 degrees. For subjects with right thoracic curves the mean Cobb angle was 33.8 degrees There was no significant differences observed between AIS subjects and normal controls when comparing both absolute and relative (i.e. adjusted for brain size) volumes of GM and WM. However voxel-based morphometric analysis identified significant differences in the density of WM in the genu of the corpus callosum, the left internal capsule and WM underlying the left orbitofrontal cortex when comparing those subjects with left thoracic scoliosis to controls. The above differences were not not observed when those subjects with right thoracic scoliosis were compared to controls. Discussion: This controlled study of regional brain tissue density has demonstrated important differences in the corpus callosum, the left internal capsule and the left orbitofrontal cortex when the brain of those subjects with left thoracic scoliosis is compared to age and sex matched controls. In this study significant regional brain differences have not been identified in those subjects with right thoracic scoliosis. Further studies are warranted to ascertain whether these morphologial differences in the brain are linked with the etiopathogenisis of left sided thoracic scoliosis. A larger sample and a longitudinal study are required to establish whether brain abnormalities are predictive of curve progression


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 53 - 57
1 Jan 1997
Noordeen MHH Lee J Gibbons CER Taylor BA Bentley G

We reviewed retrospectively the role of monitoring of somatosensory spinal evoked potentials (SSEP) in 99 patients with neuromuscular scoliosis who had had operative correction with Luque-Galveston rods and sublaminar wiring. Our findings showed that SSEP monitoring was useful and that a 50% decrease in the amplitude of the trace optimised both sensitivity and specificity. The detection of true-positive results was higher than in cases of idiopathic scoliosis, but the method was less sensitive and specific and there were more false-negative results. In contrast with the findings in idiopathic scoliosis, recovery of the trace was associated with a 50% to 60% risk of neurological impairment. Only one permanent injury occurred during the use of this technique, and any temporary impairment resolved within two months


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 430 - 439
1 Mar 2021
Geary M Gaston RG Loeffler B

Upper limb amputations, ranging from transhumeral to partial hand, can be devastating for patients, their families, and society. Modern paradigm shifts have focused on reconstructive options after upper extremity limb loss, rather than considering the amputation an ablative procedure. Surgical advancements such as targeted muscle reinnervation and regenerative peripheral nerve interface, in combination with technological development of modern prosthetics, have expanded options for patients after amputation. In the near future, advances such as osseointegration, implantable myoelectric sensors, and implantable nerve cuffs may become more widely used and may expand the options for prosthetic integration, myoelectric signal detection, and restoration of sensation. This review summarizes the current advancements in surgical techniques and prosthetics for upper limb amputees.

Cite this article: Bone Joint J 2021;103-B(3):430–439.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 148 - 156
1 Jan 2021
Tsirikos AI Carter TH

Aims

To report the surgical outcome of patients with severe Scheuermann’s kyphosis treated using a consistent technique and perioperative management.

Methods

We reviewed 88 consecutive patients with a severe Scheuermann's kyphosis who had undergone posterior spinal fusion with closing wedge osteotomies and hybrid instrumentation. There were 55 males and 33 females with a mean age of 15.9 years (12.0 to 24.7) at the time of surgery. We recorded their demographics, spinopelvic parameters, surgical correction, and perioperative data, and assessed the impact of surgical complications on outcome using the Scoliosis Research Society (SRS)-22 questionnaire.


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1438 - 1446
1 Nov 2019
Kong X Chai W Chen J Yan C Shi L Wang Y

Aims

This study aimed to explore whether intraoperative nerve monitoring can identify risk factors and reduce the incidence of nerve injury in patients with high-riding developmental dysplasia.

Patients and Methods

We conducted a historical controlled study of patients with unilateral Crowe IV developmental dysplasia of the hip (DDH). Between October 2016 and October 2017, intraoperative nerve monitoring of the femoral and sciatic nerves was applied in total hip arthroplasty (THA). A neuromonitoring technician was employed to monitor nerve function and inform the surgeon of ongoing changes in a timely manner. Patients who did not have intraoperative nerve monitoring between September 2015 and October 2016 were selected as the control group. All the surgeries were performed by one surgeon. Demographics and clinical data were analyzed. A total of 35 patients in the monitoring group (ten male, 25 female; mean age 37.1 years (20 to 46)) and 56 patients in the control group (13 male, 43 female; mean age 37.9 years (23 to 52)) were enrolled. The mean follow-up of all patients was 13.1 months (10 to 15).


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 540 - 544
1 Apr 2010
Dickson JK Biant LC

Restoration of hand function is rarely achieved after a complete closed traction lesion of the supraclavicular brachial plexus. We describe the injury, treatment, rehabilitation and long-term results of two patients who regained good function of the upper limb and useful function in the hand after such an injury. Successful repairs were performed within six days of injury. Tinel’s sign proved accurate in predicting the ruptures and the distribution of pain was accurate in predicting avulsion. The severe pain that began on the day of injury resolved with the onset of muscle function.

Recovery of muscle function preceded recovery of sensation. Recovery of the function of C and Aδ fibres was the slowest of all.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 179 - 184
1 Feb 2012
Sutter M Hersche O Leunig M Guggi T Dvorak J Eggspuehler A

Peripheral nerve injury is an uncommon but serious complication of hip surgery that can adversely affect the outcome. Several studies have described the use of electromyography and intra-operative sensory evoked potentials for early warning of nerve injury. We assessed the results of multimodal intra-operative monitoring during complex hip surgery. We retrospectively analysed data collected between 2001 and 2010 from 69 patients who underwent complex hip surgery by a single surgeon using multimodal intra-operative monitoring from a total pool of 7894 patients who underwent hip surgery during this period. In 24 (35%) procedures the surgeon was alerted to a possible lesion to the sciatic and/or femoral nerve. Alerts were observed most frequently during peri-acetabular osteotomy. The surgeon adapted his approach based on interpretation of the neurophysiological changes. From 69 monitored surgical procedures, there was only one true positive case of post-operative nerve injury. There were no false positives or false negatives, and the remaining 68 cases were all true negative. The sensitivity for predicting post-operative nerve injury was 100% and the specificity 100%. We conclude that it is possible and appropriate to use this method during complex hip surgery and it is effective for alerting the surgeon to the possibility of nerve injury.


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1187 - 1200
1 Sep 2018
Subramanian T Ahmad A Mardare DM Kieser DC Mayers D Nnadi C

Aims

Magnetically controlled growing rod (MCGR) systems use non-invasive spinal lengthening for the surgical treatment of early-onset scoliosis (EOS). The primary aim of this study was to evaluate the performance of these devices in the prevention of progression of the deformity. A secondary aim was to record the rate of complications.

Patients and Methods

An observational study of 31 consecutive children with EOS, of whom 15 were male, who were treated between December 2011 and October 2017 was undertaken. Their mean age was 7.7 years (2 to 14). The mean follow-up was 47 months (24 to 69). Distractions were completed using the tailgating technique. The primary outcome measure was correction of the radiographic deformity. Secondary outcomes were growth, functional outcomes and complication rates.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1080 - 1087
1 Aug 2017
Tsirikos AI Mataliotakis G Bounakis N

Aims

We present the results of correcting a double or triple curve adolescent idiopathic scoliosis using a convex segmental pedicle screw technique.

Patients and Methods

We reviewed 191 patients with a mean age at surgery of 15 years (11 to 23.3). Pedicle screws were placed at the convexity of each curve. Concave screws were inserted at one or two cephalad levels and two caudal levels. The mean operating time was 183 minutes (132 to 276) and the mean blood loss 0.22% of the total blood volume (0.08% to 0.4%). Multimodal monitoring remained stable throughout the operation. The mean hospital stay was 6.8 days (5 to 15).


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Bone & Joint 360
Vol. 1, Issue 6 | Pages 27 - 29
1 Dec 2012

The December 2012 Children’s orthopaedics Roundup360 looks at: whether arthrodistraction is the answer to Perthes’ disease; deformity correction in tarsal coalitions; ultrasound used to predict pain in Osgood-Schlatter’s disease; acetabular tilt; hip replacement for juvenile arthritis sufferers; whether post-operative radiographs are needed for supracondylar fractures; intra-articular local anaesthetic following supracondylar fracture fixation; and limb deformity.


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1082 - 1089
1 Aug 2014
Roberts SB Tsirikos AI Subramanian AS

Clinical, radiological, and Scoliosis Research Society-22 questionnaire data were reviewed pre-operatively and two years post-operatively for patients with thoracolumbar/lumbar adolescent idiopathic scoliosis treated by posterior spinal fusion using a unilateral convex segmental pedicle screw technique. A total of 72 patients were included (67 female, 5 male; mean age at surgery 16.7 years (13 to 23)) and divided into groups: group 1 included 53 patients who underwent fusion between the vertebrae at the limit of the curve (proximal and distal end vertebrae); group 2 included 19 patients who underwent extension of the fusion distally beyond the caudal end vertebra.

A mean scoliosis correction of 80% (45% to 100%) was achieved. The mean post-operative lowest instrumented vertebra angle, apical vertebra translation and trunk shift were less than in previous studies. A total of five pre-operative radiological parameters differed significantly between the groups and correlated with the extension of the fusion distally: the size of the thoracolumbar/lumbar curve, the lowest instrumented vertebra angle, apical vertebra translation, the Cobb angle on lumbar convex bending and the size of the compensatory thoracic curve. Regression analysis allowed an equation incorporating these parameters to be developed which had a positive predictive value of 81% in determining whether the lowest instrumented vertebra should be at the caudal end vertebra or one or two levels more distal. There were no differences in the Scoliosis Research Society-22 outcome scores between the two groups (p = 0.17).

In conclusion, thoracolumbar/lumbar curves in patients with adolescent idiopathic scoliosis may be effectively treated by posterior spinal fusion using a unilateral segmental pedicle screw technique. Five radiological parameters correlate with the need for distal extension of the fusion, and an equation incorporating these parameters reliably informs selection of the lowest instrumented vertebra.

Cite this article: Bone Joint J 2014;96-B:1082–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 684 - 689
1 May 2012
Tsirikos AI Smith G

We reviewed 31 consecutive patients with Friedreich’s ataxia and scoliosis. There were 24 males and seven females with a mean age at presentation of 15.5 years (8.6 to 30.8) and a mean curve of 51° (13° to 140°). A total of 12 patients had thoracic curvatures, 11 had thoracolumbar and eight had double thoracic/lumbar. Two patients had long thoracolumbar collapsing scoliosis with pelvic obliquity and four had hyperkyphosis. Left-sided thoracic curves in nine patients (45%) and increased thoracic kyphosis differentiated these deformities from adolescent idiopathic scoliosis. There were 17 patients who underwent a posterior instrumented spinal fusion at mean age of 13.35 years, which achieved and maintained good correction of the deformity. Post-operative complications included one death due to cardiorespiratory failure, one revision to address nonunion and four patients with proximal junctional kyphosis who did not need extension of the fusion. There were no neurological complications and no wound infections. The rate of progression of the scoliosis in children kept under simple observation and those treated with bracing was less for lumbar curves during bracing and similar for thoracic curves. The scoliosis progressed in seven of nine children initially treated with a brace who later required surgery. Two patients presented after skeletal maturity with balanced curves not requiring correction. Three patients with severe deformities who would benefit from corrective surgery had significant cardiac co-morbidities.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 253 - 257
1 Feb 2009
Manidakis N Kanakaris NK Nikolaou VS Giannoudis PV

We describe a patient in whom an initially intact sciatic nerve became rapidly encased in heterotopic bone formed in the abductor compartment after reconstruction of the posterior wall of the acetabulum following fracture. Prompt excision and neural release followed by irradiation and administration of indometacin resulted in a full neurological recovery and no recurrence 27 months later.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1548 - 1552
1 Nov 2010
Song K Johnson JS Choi B Wang JC Lee K

We evaluated the efficacy of anterior fusion alone compared with combined anterior and posterior fusion for the treatment of degenerative cervical kyphosis. Anterior fusion alone was undertaken in 15 patients (group A) and combined anterior and posterior fusion was carried out in a further 15 (group B). The degree and maintenance of the angle of correction, the incidence of graft subsidence, degeneration at adjacent levels and the rate of fusion were assessed radiologically and clinically and the rate of complications recorded. The mean angle of correction in group B was significantly higher than in group A (p = 0.0009). The mean visual analogue scale and the neck disability index in group B was better than in group A (p = 0.043, 0.0006). The mean operation time and the blood loss in B were greater than in group A (p < 0.0001, 0.037). Pseudarthrosis, subsidence of the cage, and problems related to the hardware were more prevalent in group A than in group B (p = 0.034, 0.025, 0.013).

Although the combined procedure resulted in a longer operating time and greater blood loss than with anterior fusion alone, our results suggest that for the treatment of degenerative cervical kyphosis the combined approach leads to better maintenance of sagittal alignment, a higher rate of fusion, a lower incidence of complications and a better clinical outcome.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 62 - 67
1 Jan 2011
Camp SJ Birch R

The integrity of the spinal accessory nerve is fundamental to thoracoscapular function and essential for scapulohumeral rhythm. This nerve is vulnerable along its superficial course. This study assessed the delay in diagnosis and referral for management of damage to this nerve, clarified its anatomical course and function, and documented the results of repair. From examination of our records, 111 patients with lesions of the spinal accessory nerve were treated between 1984 and 2007. In 89 patients (80.2%) the damage was iatropathic. Recognition and referral were seldom made by the surgeon responsible for the injury, leading to a marked delay in instituting treatment. Most referrals were made for painful loss of shoulder function. The clinical diagnosis is straightforward. There is a characteristic downward and lateral displacement of the scapula, with narrowing of the inferior scapulohumeral angle and loss of function, with pain commonly present. In all, 80 nerves were explored and 65 were repaired. The course of the spinal accessory nerve in relation to the sternocleidomastoid muscle was constant, with branches from the cervical plexus rarely conveying motor fibres. Damage to the nerve was predominantly posterior to this muscle.

Despite the delay, the results of repair were surprising, with early relief of pain, implying a neuropathic source, which preceded generally good recovery of muscle function.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 857 - 864
1 Jul 2011
Tsirikos AI Jain AK

This review of the literature presents the current understanding of Scheuermann’s kyphosis and investigates the controversies concerning conservative and surgical treatment. There is considerable debate regarding the pathogenesis, natural history and treatment of this condition. A benign prognosis with settling of symptoms and stabilisation of the deformity at skeletal maturity is expected in most patients. Observation and programmes of exercise are appropriate for mild, flexible, non-progressive deformities. Bracing is indicated for a moderate deformity which spans several levels and retains flexibility in motivated patients who have significant remaining spinal growth.

The loss of some correction after the completion of bracing with recurrent anterior vertebral wedging has been reported in approximately one-third of patients. Surgical correction with instrumented spinal fusion is indicated for a severe kyphosis which carries a risk of progression beyond the end of growth causing cosmetic deformity, back pain and neurological complications. There is no consensus on the effectiveness of different techniques and types of instrumentation. Techniques include posterior-only and combined anteroposterior spinal fusion with or without posterior osteotomies across the apex of the deformity. Current instrumented techniques include hybrid and all-pedicle screw constructs.