Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims. Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. Methods. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference. Results. FA showed significantly lower rates of medial and lateral SPI (2.9% and 2.2%) compared to KA (45.3%; p < 0.001, and 25.5%; p < 0.001) and compared to MA (52.6%; p < 0.001 and 29.9%; p < 0.001). There was no difference in medial and lateral SPI between KA and MA (p = 0.228 and p = 0.417, respectively). FA showed significantly lower rates of severe medial and lateral SPI (0 and 0%) compared to KA (8.0%; p < 0.001 and 7.3%; p = 0.001) and compared to MA (10.2%; p < 0.001 and 4.4%; p = 0.013). There was no difference in severe medial and lateral SPI between KA and MA (p = 0.527 and p = 0.307, respectively). MA resulted in thinner resections than KA in medial extension (mean difference (MD) 1.4 mm, SD 1.9; p < 0.001), medial flexion (MD 1.5 mm, SD 1.8; p < 0.001), and lateral extension (MD 1.1 mm, SD 1.9; p < 0.001). FA resulted in thinner resections than KA in medial extension (MD 1.6 mm, SD 1.4; p < 0.001) and lateral extension (MD 2.0 mm, SD 1.6; p < 0.001), but in thicker medial flexion resections (MD 0.8 mm, SD 1.4; p < 0.001). Conclusion. Mechanical and kinematic alignment (measured resection techniques) result in high rates of SPI. Pre-resection angular and translational adjustments with functional alignment, with typically smaller distal than posterior femoral resection, address this issue. Cite this article: Bone Jt Open 2024;5(8):681–687


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 19 - 19
1 Apr 2012
Aylott C Puna R Walker C Robertson P
Full Access

There is evidence that various anatomical structures have altered morphology with ageing, and anecdotal evidence of changing lumbar spinous process (LSP) morphology with age. This study aims to clarify the influence of age on LSP morphology, and on lumbar spine alignment. 200 CT scans of the abdomen were reformatted with bone windows allowing precise measurement of LSP dimensions and lumbar lordosis. Observers were blinded to patient demographics. Inter-observer reliability was confirmed. The smallest LSP is at L5. The male LSP is on average 2-3mm higher and 1mm wider than the female LSP. LSP height increases significantly with age at every level in the lumbar spine (P<10. -5. at L2). The LSPs increase in height by 2-5mm between 20-85 years of age (P<10. -6. ), which was as much as 31% at L5 (P<10. -8. ). Width increases proportionally more, by 3-4mm or greater than 50% at each lumbar level (P<10. -11. ). Lumbar lordosis decreases in relation to increasing LSP height (P<10. -4. ) but is independent of increasing LSP width (P=0.2). The height and width of the spinous processes increases with age. Increases in spinous process height are related to a loss of lumbar lordosis and may contribute to sagittal plane imbalance


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 488 - 488
1 Nov 2011
Aylott C Puna R Walker C Robertson P
Full Access

Background: The Lumbar Spinous Processes (LSP) have an important anatomical and biomechanical function. They also influence access to the spinal canal for neural decompressive surgical procedures. There is evidence that various anatomical structures have altered morphology with ageing, and there is anecdotal evidence of changing LSP morphology with age. This study aims to clarify the influence of age on LSP morphology, and on lumbar spine alignment. Method: 200 CT scans of the abdomen were reformatted with bone windows allowing precise measurement of LSP dimensions, and Lumbar Lordosis. Observers were blinded to patient demographics. Inter-observer reliability was confirmed. Results: The smallest LSP is at L5. The male LSP is on average 2–3mm higher and 1mm wider than the female LSP. LSP height increases significantly with age at every level in the lumbar spine (P< 10-5 at L2). The LSPs increase in height by 2–5mm between 20–85 years of age (P< 10-6), which was as much as 31% at L5 (P< 10-8). Width increases proportionally more, by 3–4mm or greater than 50% at each lumbar level (P< 10-11). Lumbar lordosis decreases in relation to increasing LSP height (P< 10-4) but is independent of increasing LSP width (P=0.2). Conclusions: The height and width of the spinous processes increases with age. Increases in spinous process height are related to a loss of lumbar lordosis and may contribute to sagittal plane imbalance. Conflicts of Interest: None. Source of Funding: None


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 150 - 150
1 Mar 2008
Swarmy G Boyd E Berven S Deviren V Hu S Bardford D
Full Access

Purpose: To document clinical and radiographic outcome, and survivorship of long fusion constructs (> T12) stopping at L5. Methods: Retrospective clinical and radiographic analysis of long fusions to L5 in an adult population, with follow-up greater than 5 years. Results: We reviewed a consecutive series of patients with long fusion constructs ending at L5 from 1991–2000. 33 patients were identified with fusions from the thoracic spine to L5. 14 patients were excluded, including 7 deaths, 3 patients lost to follow-up, and 4 patients with incomplete radiographic and clinical data sets. There were 17 females and 2 males, with average age of 50 (range 25–73). 7 patients have since undergone extension of fusion to the sacrum, and comprised Group II; the remaining 13 patients comprised Group I. There was no association between preoperative radiographic characteristics of the deformity and outcome (coronal/ sagittal plane imbalance, curve magnitude). Specifically, the lumbosacral disk space appearance (disk height, lordosis) was similar in both groups preoperatively. Presence of postop degenerative changes at the lumbosacral disk did not correlate with outcome. Patients in group I and II had similar scores in SRS, ODI and SF-12 outcome measures. Some patients reported a change in functional status after revision to sacrum, including change in gait pattern, loss of twisting and bending ability, and more difficulty with perineal care. At least 4 patients in Group I are being considered for revision. Conclusions: In conclusion, long fusions to L5 in an adult deformity population yields unpredictable results more than 5 years after surgery. Although of smaller magnitude than primary fusions to sacrum, stopping at L5 is associated with a significant revision rate. Some patients with long fusions to L5 have good function more than 5 years after surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 20 - 20
1 Jan 2016
Marel E Walter L Solomon M Shimmin A Pierrepont J
Full Access

Malorientation of the acetabular cup in Total Hip replacement (THR) may contribute to premature failure of the joint through instability (impingement, subluxation or dislocation), runaway wear in metal-metal bearings when the edge of the contact patch encroaches on the edge of the bearing surface, squeaking of ceramic-ceramic bearings and excess wear of polyethylene bearing surfaces leading to osteolysis. However as component malorientation often only occurs in functional positions it has been difficult to demonstrate and often is unremarkable on standard (usually supine) pelvic radiographs. The effects of spinal pathology as well as hip pathology can cause large rotations of the pelvis in the sagittal plane, again usually not recognized on standard pelvic views. While Posterior pelvic rotation with sitting increases the functional arc of the hip and is protective of a THR in regards to both edge loading and risk of dislocation, conversely Anterior rotation with sitting is potentially hazardous. We developed a protocol using three functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography. Proprietary software (Optimized Ortho, Sydney) based on Rigid Body Dynamics then modelled the patients’ dynamics through their functional range producing a patient-specific simulation which also calculates the magnitude and direction of the dynamic force at the hip and traces the contact area between prosthetic head/liner onto a polar plot of the articulating surface. Given prosthesis specific information edge-loading can then be predicted based on the measured distance of the edge of the contact patch to the edge of the acetabular bearing. Results and conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. Spinal pathology can be an insidious “driver” of pelvic rotation, in some cases causing sagittal plane spinal imbalance or changes in orientation of previously well oriented acetabular components. Squeaking of ceramic on ceramic bearings appears to be multi factorial, usually involving some damage to the bearing but also usually occurring in the presence of anterior or posterior edge loading. Often these components will appear well oriented on standard views [Fig 1]. Runaway wear in hip resurfacing or large head metal-metal THR may be caused by poor component design or manufacture or component malorientation. Again we have seen multiple cases where no such malorientation can be seen on standard pelvic radiographs but functional studies demonstrate edge loading which is likely to be the cause of failure [Fig 2]. Clinical examples of all of these will be shown


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims

The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA).

Methods

This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1017 - 1023
1 Aug 2015
Phan D Bederman SS Schwarzkopf R

The interaction between the lumbosacral spine and the pelvis is dynamically related to positional change, and may be complicated by co-existing pathology. This review summarises the current literature examining the effect of sagittal spinal deformity on pelvic and acetabular orientation during total hip arthroplasty (THA) and provides recommendations to aid in placement of the acetabular component for patients with co-existing spinal pathology or long spinal fusions. Pre-operatively, patients can be divided into four categories based on the flexibility and sagittal balance of the spine. Using this information as a guide, placement of the acetabular component can be optimal based on the type and significance of co-existing spinal deformity.

Cite this article: Bone Joint J 2015;97-B:1017–23.