Advertisement for orthosearch.org.uk
Results 1 - 38 of 38
Results per page:
Bone & Joint Research
Vol. 5, Issue 7 | Pages 314 - 319
1 Jul 2016
Xiao X Hao J Wen Y Wang W Guo X Zhang F

Objectives. The molecular mechanism of rheumatoid arthritis (RA) remains elusive. We conducted a protein-protein interaction network-based integrative analysis of genome-wide association studies (GWAS) and gene expression profiles of RA. Methods. We first performed a dense search of RA-associated gene modules by integrating a large GWAS meta-analysis dataset (containing 5539 RA patients and 20 169 healthy controls), protein interaction network and gene expression profiles of RA synovium and peripheral blood mononuclear cells (PBMCs). Gene ontology (GO) enrichment analysis was conducted by DAVID. The protein association networks of gene modules were generated by STRING. Results. For RA synovium, the top-ranked gene module is HLA-A, containing TAP2, HLA-A, HLA-C, TAPBP and LILRB1 genes. For RA PBMCs, the top-ranked gene module is GRB7, consisting of HLA-DRB5, HLA-DRA, GRB7, CD63 and KIT genes. Functional enrichment analysis identified three significant GO terms for RA synovium, including antigen processing and presentation of peptide antigen via major histocompatibility complex class I (false discovery rate (FDR) = 4.86 × 10 – 4), antigen processing and presentation of peptide antigen (FDR = 2.33 × 10 – 3) and eukaryotic translation initiation factor 4F complex (FDR = 2.52 × 10 – 2). Conclusion. This study reported several RA-associated gene modules and their functional association networks. Cite this article: X. Xiao, J. Hao, Y. Wen, W. Wang, X. Guo, F. Zhang. Genome-wide association studies and gene expression profiles of rheumatoid arthritis: an analysis. Bone Joint Res 2016;5:314–319. DOI: 10.1302/2046-3758.57.2000502


Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims. Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. Methods. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects. Results. Through discovery and replication integrative analysis for BMD GWAS and rSNP annotation database, we identified 36 common BMD-associated genes for BMD irrespective of regulatory elements, such as FAM3C (p. discovery GWAS. = 1.21 × 10. -25. , p. replication GWAS. = 1.80 × 10. -12. ), CCDC170 (p. discovery GWAS. = 1.23 × 10. -11. , p. replication GWAS. = 3.22 × 10. -9. ), and SOX6 (p. discovery GWAS. = 4.41 × 10. -15. , p. replication GWAS. = 6.57 × 10. -14. ). Then, for the 36 common target genes, multiple gene ontology (GO) terms were detected for BMD such as positive regulation of cartilage development (p = 9.27 × 10. -3. ) and positive regulation of chondrocyte differentiation (p = 9.27 × 10. -3. ). Conclusion. We explored the potential roles of rSNP in the genetic mechanisms of BMD and identified multiple candidate genes. Our study results support the implication of regulatory genetic variants in the development of OP. Cite this article: Bone Joint Res 2023;12(2):147–154


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 50 - 50
1 Aug 2018
Yamamoto T Sakamoto Y Nakashima Y Ikegawa S
Full Access

Osteonecrosis of the femoral head (ONFH) is an ischemic disorder that causes bone and bone marrow necrosis. In spite of many studies, the primary cause of ischemia is still unknown. The purpose of this study is to identify the susceptibility genes in ONFH. We performed a genome-wide association study (GWAS) in 1,602 ONFH cases and 60,000 controls. Stratified GWASs based on the 3 subgroups of ONFH (corticosteroids, alcohol, idiopathic) were also performed. We then evaluated the candidate gene in silico using public databases. Two loci in 12q24.11–12 and 20q12 showed significant association with ONFH. A stratified analysis suggested that the 12q24 locus was associated with ONFH through the drinking capacity. In the 20q12 locus, LINC01370 was the only gene, which functions were related to the plausible biological pathway for the development of ONFH. A novel ONFH locus was identified at chromosome 20q12, and LINC01370 was the best candidate gene in this locus


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 14 - 14
1 Dec 2022
Werdyani S Liu M Furey A Gao Z Rahman P Zhai G
Full Access

Osteoarthritis (OA) is the most common form of arthritis and one of the ten most disabling diseases in developed countries. Total joint replacement (TJR) is considered by far as the most effective treatment for end-stage OA patients. The majority of patients achieve symptomatic improvement following TJR. However, about 22% of the TJR patients either do not improve or deteriorate after surgery. Several potential non-genetic predictors for the TJR outcome have been investigated. However, the results were either inconclusive or had very limited predictive power. The aim of this study was to identify genetic variants for the poor outcome of TJR in primary OA patients by a genome-wide association study (GWAS). Study participants were total knee or hip replacement patients due to primary OA who were recruited to the Newfoundland Osteoarthritis Study (NFOAS) before 2017. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was used to assess pain and functional impairment pre- and 3.99±1.38 years post-surgery. Two non-responder classification criteria were used in our study. One was defined by an absolute WOMAC change score. Participants with a change score less than 7/20 points for pain were considered as pain non-responders; and those with less than 22/68 points for function were classified as function non-responders. The second one was the Outcome Measures in Arthritis Clinical Trials and the Osteoarthritis Research Society International (OMERACT-OARSI) criteria. Blood DNA samples were genotyped using the Illumina GWAS microarrays genotyping platform. The quality control (QC) filtering was performed on GWAS data before the association of the genetic variants with non-responders to TJR was tested using the GenABEL package in R with adjustment for the relatedness of the study population and using the commonly accepted GWAS significance threshold p < 5*10. −8. to control multiple testing. In total, 316 knee and 122 hip OA patients (mean age 65.45±7.62 years, and 58% females) passed the QC check. These study participants included 368 responders and 56 non-responders to pain, and 364 responders and 68 non-responders to function based on the absolute WOMAC point score change classification. While 377 responders and 56 non-responders to pain, and 366 responders and 71 non-responders to function were identified by the OMERACT-OARSI classification criteria. Interestingly, the same results were obtained by both classification methods, and we found that the G allele of rs4797006 was significantly associated with pain non-responders with odds ratio (OR) of 5.12 (p<7.27×10. -10. ). This SNP is in intron one of the melanocortin receptor 5 (MC5R) gene on chr18. This gene plays central roles in immune response, pain sensitivity, and negative regulation of inflammatory response to antigenic stimulus. The A allele of rs200752023 was associated with function non-responders with OR of 4.41 (p<3.29×10. -8. ). The SNP is located in intron three of the RNA Binding Fox-1 Homolog 3 (RBFOX3) gene on chr17 which has been associated with numerous neurological disorders. Our data suggested that two chromosomal regions are associated with TJR poor outcomes and could be the novel targets for developing strategies to improve the outcome of the TJR


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 11 - 11
1 Nov 2015
MacInnes S Wilkinson J
Full Access

Introduction. Aseptic loosening, the clinical endpoint of osteolysis, remains the leading cause of total hip arthroplasty (THA) failure, and is caused by a host response to wear debris that varies between individuals. Although several candidate gene studies have identified loci associated with osteolysis susceptibility, there have been no systematic studies at genome-wide level. We aimed to identify risk loci associated with osteolysis by conducting a genome-wide association study. Methods. 3,706 Caucasian European patients following THA were studied. The discovery cohort comprising 894 patients (317 with osteolysis) were genotyped using the Illumina-610 beadchip followed by 1000 Genome-based imputation covering 10 million single nucleotide polymorphisms (SNPs). Phenotypes were transformed to normality where required, regressed on important covariates and z-standardised. Following quality control, osteolysis case-control analysis and a quantitative trait association analysis for time to prosthesis failure were undertaken. Index SNPs p<9×10. −4. were taken forward for replication in a second cohort comprising 2,812 subjects (834 osteolysis cases) recruited from the Norwegian arthroplasty registry. Genotyping was undertaken using Sequenom MassARRAY iPLEX Gold assay and association analyses undertaken using logistic and linear regression. Summary statistics were combined in a fixed-effects meta-analysis framework. Results. The strongest signal associated with time to prosthesis failure lay within DEFB129 gene. The signal index SNP, rs6105394, approached genome wide significance at p=5.75×10. −7. Two signals in the susceptibility analysis also approached genome-wide significance, 1 within CAMK4 (rs306105, OR 0.41, p=6.54×10. −7. ) and 1 upstream of PLNXA2 (rs11119057, OR 0.96, p=6.44×10. −7. ). Following meta-analysis, the strongest signal in the susceptibility analysis remained that within CAMK4 (rs306105, p=3.79×10. −4. ). The strongest signal associated with time to failure was just upstream of CNTN3 (rs1374879, p=2.15×10. −5. ). Discussion. We have identified promising loci associated with osteolysis and time to prosthesis failure although not at genome-wide significance (p<5×10. −8. ). In order to further validate these loci, larger genome wide association analysis is required


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 46 - 46
1 Jan 2019
Clark MJ Hatzikotoulas K Macinnes SJ Zeggini E Wilkinson JM
Full Access

Heterotopic ossification (HO) is lamellar bone formation that occurs within tissues that do not normally have properties of ossification. The pathoaetiology of HO is poorly understood. We conducted a genome wide association study to better understand the genetic architecture of HO.

891 patients of European descent (410 HO cases) following THA for primary osteoarthritis were recruited from the UK. HO was assessed from plain AP radiographs of the pelvis. Genomic DNA was extracted, genotyped using the Illumina 610 beadchip and referenced using the 1000 Genome Project panel. HO susceptibility case-control analysis and an evaluation of disease severity in those with HO was undertaken using SNPTESTv2.3.0 on>10 million variants. We tested variants most strongly associated with HO in an independent UK THA replication cohort comprising 209 cases and 211 controls. The datasets were meta-analysed using PLINK.

In the discovery cohort 70 signals with an index variant at p<9×10–5 were suggestively associated with HO susceptibility. The strongest signal lay just downstream of the gene ARHGAP18 (rs59084763, effect allele frequency (EAF) 0.19, OR1.87 [1.48–2.38], p=2.48×10–8), the second strongest signal lay within the long non-coding (LNC) RNA gene CASC20 (rs11699612, EAF 0.25, OR1.73 [1.1.40–2.16, p=9.3×10–8). In the discovery cohort 73 signals with an index variant at p<9×10–5 were associated with HO severity. At replication, 12 of the leading 14 susceptibility signals showed a concordant direction of allelic effect and 5 replicated at nominal significance. Following meta-analysis, the lead replicating susceptibility signal was the CASC20 variant rs11699612 (p=2.71×10–11).

We identify consistent replicating association of variation within the LNC RNA CASC20 with HO susceptibility after THA. Although the function of CASC20 is currently unknown, possible mechanisms include transcriptional, post-transcriptional and epigenetic regulation of downstream target genes. The work presented here provides new avenues for the development of novel predictive and therapeutic approaches towards HO.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims. Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Methods. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis. Results. The TWAS detected 420 DCS genes with p < 0.05 in skeletal muscle, such as ribosomal protein S15A (RPS15A) (PTWAS = 0.001), and 110 genes in whole blood, such as selectin L (SELL) (PTWAS = 0.001). Comparison with the DCS RNA expression profile identified 12 common genes, including Apelin Receptor (APLNR) (PTWAS = 0.001, PDEG = 0.025). In total, 148 DCS-enriched Gene Ontology (GO) terms were identified, such as mast cell degranulation (GO:0043303); 15 DCS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, such as the sphingolipid signalling pathway (ko04071). Nine terms, such as degradation of the extracellular matrix (R-HSA-1474228), were common to the TWAS enrichment results and the RNA expression profile. Conclusion. Our results identify putative susceptibility genes; these findings provide new ideas for exploration of the genetic mechanism of DCS development and new targets for preclinical intervention and clinical treatment. Cite this article: Bone Joint Res 2023;12(1):80–90


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims. Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. Methods. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes. Results. TWAS identified 295 genes with permutation p-values < 0.05 for skeletal muscle and 79 genes associated for the whole blood, such as RCHY1 (PTWAS = 0.001). Those genes were enriched in 112 gene ontology (GO) terms and five Kyoto Encyclopedia of Genes and Genomes pathways, such as ‘chemical carcinogenesis - reactive oxygen species’ (LogP value = −2.139). Further comparing the TWAS significant genes with the differentially expressed genes identified by mRNA expression profiles of LSS found 18 overlapped genes, such as interleukin 15 receptor subunit alpha (IL15RA) (PTWAS = 0.040, PmRNA = 0.010). Moreover, 71 common GO terms were detected for the enrichment results of TWAS and mRNA expression profiles, such as negative regulation of cell differentiation (LogP value = −2.811). Conclusion. This study revealed the genetic mechanism behind the pathological changes in LSS, and may provide novel insights for the early diagnosis and intervention of LSS. Cite this article: Bone Joint Res 2023;12(6):387–396


Bone & Joint Research
Vol. 11, Issue 2 | Pages 134 - 142
23 Feb 2022
Luo P Cheng S Zhang F Feng R Xu K Jing W Xu P

Aims. The aim of this study was to explore the genetic correlation and causal relationship between blood plasma proteins and rheumatoid arthritis (RA). Methods. Based on the genome-wide association studies (GWAS) summary statistics of RA from European descent and the GWAS summary datasets of 3,622 plasma proteins, we explored the relationship between RA and plasma proteins from three aspects. First, linkage disequilibrium score regression (LD score regression) was applied to detect the genetic correlation between RA and plasma proteins. Mendelian randomization (MR) analysis was then used to evaluate the causal association between RA and plasma proteins. Finally, GEO2R was used to screen the differentially expressed genes (DEGs) between patients with RA and healthy controls. Results. We found that seven kinds of plasma proteins had genetic correlations with RA, such as Soluble Receptor for Advanced Glycation End Products (sRAGE) (correlation coefficient = 0.2582, p = 0.049), vesicle transport protein USE1 (correlation coefficient = 0.1337, p = 0.018), and spermatogenesis-associated protein 20 (correlation coefficient = 0.3706, p = 0.018). There was a significant causal relationship between sRAGE and RA. By comparing the genes encoding seven plasma proteins, we found that only USE1 was a DEG associated with RA. Conclusion. Our study identified a set of candidate plasma proteins that showed signals correlated with RA. Since the results of this study need further experimental verification, they should be interpreted with caution. However, we hope that this paper will provide new insights for the discovery of pathogenic genes and RA pathogenesis in the future. Cite this article: Bone Joint Res 2022;11(2):134–142


Bone & Joint Research
Vol. 9, Issue 3 | Pages 130 - 138
1 Mar 2020
Qi X Yu F Wen Y Li P Cheng B Ma M Cheng S Zhang L Liang C Liu L Zhang F

Aims. Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear. Methods. Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and annotation analysis of identified genes was performed by the DAVID and FUMAGWAS tools. Results. We detected 33 common genes, eight common gene ontology (GO) terms, and one common pathway for hip OA, such as calcium and integrin-binding protein 1 (CIB1) (PTWAS = 0.025, FCmRNA = -1.575 for skeletal muscle), adrenomedullin (ADM) (PTWAS = 0.022, FCmRNA = -4.644 for blood), Golgi apparatus (PTWAS <0.001, PmRNA = 0.012 for blood), and phosphatidylinositol 3' -kinase-protein kinase B (PI3K-Akt) signalling pathway (PTWAS = 0.033, PmRNA = 0.005 for blood). For knee OA, we detected 24 common genes, eight common GO terms, and two common pathways, such as histocompatibility complex, class II, DR beta 1 (HLA-DRB1) (PTWAS = 0.040, FCmRNA = 4.062 for skeletal muscle), Follistatin-like 1 (FSTL1) (PTWAS = 0.048, FCmRNA = 3.000 for blood), cytoplasm (PTWAS < 0.001, PmRNA = 0.005 for blood), and complement and coagulation cascades (PTWAS = 0.017, PmRNA = 0.001 for skeletal muscle). Conclusion. We identified a group of OA-associated genes and pathways, providing novel clues for understanding the genetic mechanism of OA. Cite this article:Bone Joint Res. 2020;9(3):130–138


Bone & Joint Research
Vol. 6, Issue 10 | Pages 572 - 576
1 Oct 2017
Wang W Huang S Hou W Liu Y Fan Q He A Wen Y Hao J Guo X Zhang F

Objectives. Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data. Method. We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. Results. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10. -4. for LS and 2.7 × 10. -2. for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10. -4. for femoral necks and 2.6 × 10. -2. for lumbar spines BMD in meQTLs-based GSEA). Conclusion. Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article: W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572–576


Bone & Joint Research
Vol. 5, Issue 5 | Pages 169 - 174
1 May 2016
Wang Y Chu M Rong J Xing B Zhu L Zhao Y Zhuang X Jiang L

Objectives. Previous genome-wide association studies (GWAS) have reported significant association of the single nucleotide polymorphism (SNP) rs8044769 in the fat mass and obesity-associated gene (FTO) with osteoarthritis (OA) risk in European populations. However, these findings have not been confirmed in Chinese populations. Methods. We systematically genotyped rs8044769 and evaluated the association between the genetic variants and OA risk in a case-controlled study including 196 OA cases and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform. Results. We found that the variant T allele of rs8044769 showed no significant association of OA risk (p = 0.791), or association with body mass index (BMI) (pmeta = 0.786) in an additive genetic model. However, we detected a significant interaction between rs8044769 genotypes and BMI on OA risk (p = 0.037), as well as a borderline interaction between rs8044769 genotypes and age on OA risk (p = 0.062). Conclusions. Our findings indicate that rs8044769 in the FTO gene may not modify individual susceptibility to OA or increased BMI in the Chinese population. Further studies are warranted to validate and extend our findings. Cite this article: Prof L. Jiang. No association of the single nucleotide polymorphism rs8044769 in the fat mass and obesity-associated gene with knee osteoarthritis risk and body mass index: A population-based study in China. Bone Joint Res 2016;5:169–174. DOI: 10.1302/2046-3758.55.2000589


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 24 - 24
1 Sep 2019
Freidin M Kraatari M Skarp S Määttä J Kettunen J Niinimäki J Karppinen J Männikkö M Williams F
Full Access

Objective. Modic changes (MC), a form of intervertebral disc degeneration visible as subchondral and vertebral bone marrow changes on spine magnetic resonance (MR), are known to be associated with low back pain. This study aimed to identify genes contributing to the development of MC using genome-wide association study. Methods. Presence of MC was evaluated in lumbar MR images in the Northern Finland Birth Cohort 1966 (NFBC1966, N=1182) and TwinsUK (N=647). Genome-wide association analyses were carried out in the cohorts separately using a linear regression model fitted to test for additive effects of SNPs and adjusting for age, sex, BMI, and either family relatedness via a kinship matrix (TwinsUK) or population stratification using principal components (NFBC1966). Meta-analysis of the two studies was carried out using the inverse-variance weighting approach. Results. A locus associated with MC reaching genome-wide significance (p<5e-8) was found on chromosome 9 with the lead SNP rs1934268 in intron 6 of the PTPRD gene. The SNP is located in the region of binding for a number of transcription factors which are involved in the development of the musculoskeletal system and spine cord. Conclusions. The first GWAS of MC has identified a likely functional intronic locus in PTPRD on chromosome 9 implicating musculoskeletal development. This work sheds light on the genesis of MC and paves the way for further studies on the shared genetic factors underlying the various features of spine degeneration. No conflicts of interest. Sources of Funding: The study was supported by EU FP7 project PainOMICs (grant agreement #602736), University of Oulu (grant #24000692), Oulu University Hospital (grant #24301140), and the European Regional Development Fund (grant # 539/2010 A31592). MBF, MK, and SS contributed equally to this study


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 69 - 69
1 Jul 2020
Zhai G Liu M Rahman P Furey A
Full Access

While total joint replacement (TJR) is considered as an effective intervention to relieve pain and restore joint function for end-stage osteoarthritis (OA) patients, a significant proportion of the patients are dissatisfied with their surgery outcomes. The aim of this study was to identify genetic factors that can predict patients who do or do not benefit from these surgical procedures by a genome-wide association study (GWAS). Study participants were derived from the Newfoundland Osteoarthritis Study (NFOAS) which consisted of 1086 TJR patients. Non-responders to TJR was defined as patients who did not reach the minimum clinically important difference (MCID) based on the self administered Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) in terms of pain reduction or function improvment. DNA was extracted from the blood samples of the study participants and genotyped by Illumina GWAS genotyping platform. Over two million single nucleotide polymorphisms (SNPs) across the genome were genotyped and tested for assocition with non-responders. 39 non-responders and 44 age, sex, and BMI matched responders were included in this study. Four chromosome regions on chromosomes 5, 7, 8, and 12 were suggested to be associated with non-responders with p < 1 0–5. The most promising one was on chromosome 5 with the lead SNP rs17118094 (p=1.7×10–6) which can classify 72% of non-responders accurately. The discriminatory power of this SNP alone is very promising as indicated by an area under the curve (AUC) of 0.72 with 95% confidence interval of 0.63 to 0.81, which is much better than any previously studied predictors mentioned above. All the patients who carry two copies of the G allele (minor allele) of rs17118094 were non-responders and 75% of those who carry one copy of the G allele were non-responders. The discriminatory ability of the lead SNPs on chromosomes 7 and 12 were comparable to the one on chromosome 5 with an AUC of 0.74, and 88% of patients who carry two copies of the A allele of rs10244798 on chromosome 7 were non-responders. Similarly, 88% of patients who carry two copies of the C allele of rs10773476 on chromosome 12 were non-responders. While the discriminatory ability of rs9643244 on chromosome 8 was poor with an AUC of 0.26, its strong association with non-responders warrants a further investigation in the region. The study identified four genomic regions harboring genetic factors for non-responders to TJR. The lead SNPs in those regions have great discriminatory ability to predict non-responders and could be used to create a genetic prediction model for clinical unitilty and application


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 26 - 26
1 Sep 2019
Freidin M Aulchenko Y Lauc G Williams F
Full Access

Objective. Low back pain (LBP) is a common debilitating condition with great socioeconomic impact. Identifying individuals at risk of LBP is challenging. We have shown IgG N-glycans are associated with LBP. Herewith, we used polygenic risk scores (PRS) from IgG-glycome to test predictability for LBP. Methods. Clusters of IgG-glycans were identified using weighted correlation network approach in TwinsUK (n = 4246). Genome-wide association studies were carried out for the clusters and top associated SNPs (p<5e-8) were extracted. Weighted PRS was calculated as the sum of the number of copies of effect allele from GWAS multiplied by their effect size using the UK Biobank data (n = 350000). The predictive capacity of the PRS for back pain in UK Biobank was estimated using logistic regression. Results. Multiple SNPs were found to be associated with the glycan clusters near genes known to be involved in glycosylation and the inflammatory response (e.g. ST6GAL1, B4GALT1, FUT8). A total of 175 SNPs was used to calculate weighted PRS. In UK Biobank the PRS was a statically significant, but poor, predictor of the risk of back pain (β = 0.126±0.050, p = 0.015, R. 2. = 2.6e-5). The SNPs on chromosome 14 in regulatory regions of FUT8 gene, one of the key governors of core fucosylation, were found to be significantly associated with back pain in UK Biobank (FDR-adjusted p-value < 0.05). Conclusions. These pilot data suggest that genetic component of glycosylation may be associated with the risk of LBP; however, its predictive ability is poor. Conflict of Interest: YSA is a co-owner of Maatschap PolyOmica. GL is a founder and CEO of Genos Glycoscience Research Laboratory. MBF and FMKW declare no conflict of interests. Sources of Funding: The research has been supported by the EC FP7 project PainOmics (grant agreement #602736) and conducted using the UK Biobank Resource (project # 18219)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 25 - 25
1 Sep 2019
Williams F Palmer M Tsepilov Y Freidin M Boer C Yau M Evans D Gelemanovic A Bartz T Nethander M Arbeeva L Karssen L Neogi T Campbell A Mellstrom D Ohlsson C Marshall L Orwoll E Uitterlinden A Rotter J Lauc G Psaty B Karlsson M Lane N Jarvik G Polasek O Hochberg M Jordan J van Meurs J Jackson R Nielson C Mitchell B Smith B Hayward C Smith N Aulchenko Y Suri P
Full Access

Purpose. Back pain is the primary cause of disability worldwide yet surprisingly little is known of the underlying pathobiology. We conducted a genome-wide association study (GWAS) meta-analysis of chronic back pain (CBP). Adults of European ancestry from 15 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and UK Biobank were studied. Methods. CBP cases were defined as reporting back pain present for ≥3–6 months; non-cases were included as comparisons (“controls”). Each cohort conducted genotyping followed by imputation. GWAS used logistic regression with additive genetic effects adjusting for age, sex, study-specific covariates, and population substructure. Suggestive (p<5×10. –7. ) & genome-wide significant (p<5×10. –8. ) variants were carried forward for replication in an independent sample of UK Biobank participants. Discovery sample n = 158,025 individuals, including 29,531 CBP cases. Results. Genome-wide significant association was found for intron variant rs12310519 in SOX5 (OR=1.08, p=7.2×10. −10. ). This was replicated in the independent sample n = 283,752, comprising 50,915 cases (OR 1.06, p=5.3×10. −11. ); in joint meta-analysis OR=1.07, p=4.5×10. −19. exceeding genome-wide significance. We found three other suggestive associations in discovery, two of which exceeded genome-wide significance in joint meta-analysis: an intergenic variant rs7833174 located between CCDC26 and GSDMC (OR 1.05, p=4.4×10. −13. ), and an intron variant, rs4384683, in DCC (OR 0.97, p=2.4×10. −10. ). Conclusion. We have identified and replicated a genetic locus associated with CBP (SOX5). We also identified 2 other loci that reached genome-wide significance in a 2-stage joint meta-analysis (CCDC26/GSDMC and DCC) which will shed light on the pathogenic mechanisms underlying CBP. Conflicts of interest: YA and LK are owners of Maatschap PolyOmica. This study was supported by the European Community's Seventh Framework Programme funded project PainOmics (Grant agreement n. 602736) and conducted using the UK Biobank Resource (project # 18219). CHARGE and other cohort-specific funding sources to be submitted- see below


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 28 - 28
1 May 2018
Wilkinson J MacInnes S Hatzikotoulas K Fenstad A Shah K Southam L Tachmazidou I Hallan G Dale H Panoutsopoulou K Furnes O Zeggini E
Full Access

Introduction. Periprosthetic osteolysis resulting in aseptic loosening is a leading cause for total hip arthroplasty (THA) failure. Individuals vary in their susceptibility to osteolysis, and it is thought that heritable factors contribute to this variation. We conducted two genome-wide association studies to identify genetic risk loci associated with osteolysis and genetic risk loci associated with time to prosthesis failure due to osteolysis. Patients/Materials & Methods. The Norway cohort comprised 2,624 subjects after THA recruited from the Norwegian Arthroplasty Registry, 779 with revision surgery for osteolysis. The UK cohort comprised 890 subjects recruited from hospitals in the north of England, 317 with radiographic evidence or revision surgery for osteolysis. All subjects had received a fully cemented or hybrid THA using small-diameter metal or ceramic-on-conventional polyethylene bearing. Osteolysis susceptibility case-control analyses and quantitative trait analyses for time to prosthesis failure were undertaken after genome-wide genotyping. Finally, a meta-analysis of the discovery datasets was undertaken. Results. Genome-wide association analysis identified 4 and 11 independent suggestive genetic signals for osteolysis susceptibility at P≤5×10. −6. in the Norwegian and UK cohorts, respectively. Following meta-analysis, 5 independent genetic signals showed suggestive association with osteolysis at P≤5×10. −6. , with the strongest comprising 18 correlated variants on chromosome 7 (lead signal rs850092, Figure 1, p=1.13×10. −6. ). Genome-wide quantitative trait analysis in cases only showed a total of 5 and 9 independent genetic signals for time to prosthesis failure at P≤5×10. −6. , respectively. Following meta-analysis, 11 independent genetic signals showed suggestive evidence of association with time to failure at P≤5×10. −6. , with the largest association block comprising 174 correlated variants in chromosome 15 (lead signal rs10507055, Figure 2, p=1.40×10. −7. ). Discussion. These studies provide the first genome-wide insights into the heritable biology of osteolysis, a major complication of joint replacement surgery. Although there were no dominant signals of genome-wide significance, we find replicating evidence for several independent genetic loci both for osteolysis susceptibility and time to prosthesis failure at P≤5×10. −6. , consistent with the complex aetiology of the disease. Conclusion. The heritable contribution to osteolysis is modest. The identified genetic loci may however provide novel avenues for therapy development in this condition. For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 5 - 5
1 Jun 2016
Wilkinson J Hatzikotoulas K Clark M Shah K Eastwood D Zeggini E
Full Access

Introduction. Although DDH is one of the most common skeletal dysplasias (incidence 1.5 cases per 1000 births), it remains slow and costly to recruit large-scale patient cohorts for powerful genetic association studies. In this work we have successfully used the NJR as a platform to generate a DDH biobank of 907 individuals, upon which we have conducted the first ever genome-wide association study (GWAS) for DDH. Methods. 5411 patients recorded as having a hip replacement for ‘hip dysplasia’ between March 2003 and December 2013 were approached to participate in the study. Following filtering by questionnaire for non-DDH cases and non-European Caucasians, 907 patients returned a completed saliva sample. A randomly selected sample of individuals participating on the UK Household Longitudinal Study that had been previously genotyped using the same platform were used as controls at a case:control ratio of 1:4. A further data set consisting of 332 cases, 1375 controls and 26 variants was used to replicate the top signals. Results. Of 256833 variants that passed QC, 11 variants reached genome-wide significance. All these variants came from the same signal, with rs143384 as the index SNP (allele A, allele frequency 0.60, OR [95% CI] 1.58[1.40–1.77], P=1.1×10. −14. ). Twenty-six independent variants were prioritized to follow up through de novo replication. Variant rs143384 was found to be significantly associated with DDH after meta-analysing discovery and replication datasets (allele A, allele frequency 0.60, OR [95% CI] 1.50[1.36–1.66], P=2.81×10. −16. ). Discussion. Using eHR case-ascertainment and distance recruitment strategies we conducted the first GWAS for DDH and confirmed association of the GDF5 variant rs143384 with DDH (P=2.81×10. −16. ). We establish the first genome-wide significant locus for DDH, discovered through linking EHRs with genomics as a proof of principle in enabling powerful genetic association studies of relatively rare but complex diseases


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 39 - 39
1 Jun 2012
Fan Y Cheung KMC Chan D Cheung W Cheah KSE Sham P Luk KDK Song Y
Full Access

Introduction. The cause of adolescent idiopathic scoliosis (AIS) is still not known. Although several candidate gene studies and linkage analyses have been done, no causal relationship has yet been established. To our knowledge, we report the first case-control based genome-wide association study (GWAS) for this trait. Methods. The study was undertaken in a set of 196 cases with a specific AIS phenotype (based on Lenke's classification) in southern China, and in 401 controls without radiological evidence of scoliosis. Results. Two single-nucleotide polymorphisms (SNPs) on one particular chromosome showed marginal significant association (snp1: p=1·32×10–6, odds ratio=0·52; snp2: p=1·23×10–5, odds ratio=0·55). Imputation results suggested that three more SNPs in this region showed significant association (snp3: p=2·47×10–7, odds ratio=0·49; snp4 and snp5: p=1·68×10–6, odds ratio=0·53). Conclusions. Despite the small number of cases and controls, the strength of this study is in the use of a specific phenotype and that all controls were mature individuals with radiological confirmation of straight spines. We believe that these factors have contributed to the success of the GWAS. Our findings offer the potential to explore the pathogenesis of AIS with GWAS


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 46 - 46
1 Jun 2012
Wise C Sharma S Gao X Londono D Mauldin KN Brandon J King V Zhang D Gordon D Herring J
Full Access

Introduction. Adolescent idiopathic scoliosis (AIS) is the most common paediatric spinal deformity, affecting about 3% of school-aged children worldwide. This disorder occurs in otherwise healthy children who bear no obvious deficiencies in the components of the spinal column itself. The cause of AIS is poorly understood, as is implied by the name. Lesions of the bony composition of the vertebrae, the vertebral endplates, the paraspinous muscles, or the neurological system each have been proposed to explain disease pathogenesis. Progress has been hampered by the absence of an obvious AIS animal model. Consequently we have used genetic studies in human populations to identify factors underlying AIS susceptibility. The complex inheritance and population frequency of AIS suggest that many genetic factors are involved in this disease. To search comprehensively for such factors we previously undertook the first genome-wide association study (GWAS) of AIS susceptibility in a cohort of 419 families in Texas, USA. We found that chromosome 3 SNPs in the proximity of the CHL1 gene yielded strongest results, which we replicated in additional cohorts (rs10510181 OR 1·49, 95% CI 1·29–173, p=2·58×10–8). CHL1 is of interest because it encodes an axon guidance protein and is functionally related to the ROBO3 gene that causes hereditary gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Here we expanded the study to 702 Texas families. Methods. We tested more than 327 000 single-nucleotide polymorphisms (SNPs) across all human autosomes for association with disease. Results. Results of the study in 702 Texas families yielded evidence for association with SNPs in a second axon guidance gene, DSCAM, which encodes a protein in the same structural and functional class with Chl1 and Robo3 (rs2222973 combined OR 0·59, 95% CI 0·48–0·74; p=1·46×10–6). We additionally found AIS associations with loci in CNTNAP2, whose protein product interacts directly with L1 and Robo class proteins and participates in axon pathfinding. Conclusions. These data support genetic variation in axon guidance genes as risk factors in AIS. Our results provide new insight into disease pathogenesis and suggest that late-onset scoliosis may be correlated with secondary neurological development


Bone & Joint 360
Vol. 12, Issue 1 | Pages 45 - 47
1 Feb 2023

The February 2023 Research Roundup360 looks at: Clinical and epidemiological features of scaphoid fracture nonunion; Routine sterile glove and instrument change at the time of abdominal wound closure to prevent surgical site infection (ChEETAh); Characterization of genetic risk of end-stage knee osteoarthritis treated with total knee arthroplasty; Platelet-rich plasma or autologous blood injection for plantar fasciitis; Volume and outcomes of joint arthroplasty; The hazards of absolute belief in the p-value laid bare.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 862 - 872
1 Dec 2022
Wang M Tan G Jiang H Liu A Wu R Li J Sun Z Lv Z Sun W Shi D

Aims

Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA.

Methods

We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


Bone & Joint 360
Vol. 11, Issue 3 | Pages 43 - 45
1 Jun 2022


Bone & Joint Research
Vol. 11, Issue 1 | Pages 12 - 22
13 Jan 2022
Zhang F Rao S Baranova A

Aims

Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations.

Methods

Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases.


Bone & Joint Research
Vol. 10, Issue 11 | Pages 734 - 741
1 Nov 2021
Cheng B Wen Y Yang X Cheng S Liu L Chu X Ye J Liang C Yao Y Jia Y Zhang F

Aims

Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD.

Methods

A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 414 - 421
1 Jun 2021
Kim SK Nguyen C Avins AL Abrams GD

Aims

The aim of this study was to screen the entire genome for genetic markers associated with risk for anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) injury.

Methods

Genome-wide association (GWA) analyses were performed using data from the Kaiser Permanente Research Board (KPRB) and the UK Biobank. ACL and PCL injury cases were identified based on electronic health records from KPRB and the UK Biobank. GWA analyses from both cohorts were tested for ACL and PCL injury using a logistic regression model adjusting for sex, height, weight, age at enrolment, and race/ethnicity using allele counts for single nucleotide polymorphisms (SNPs). The data from the two GWA studies were combined in a meta-analysis. Candidate genes previously reported to show an association with ACL injury in athletes were also tested for association from the meta-analysis data from the KPRB and the UK Biobank GWA studies.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 501 - 514
1 Aug 2020
Li X Yang Y Sun G Dai W Jie X Du Y Huang R Zhang J

Aims

Rheumatoid arthritis (RA) is a systematic autoimmune disorder, characterized by synovial inflammation, bone and cartilage destruction, and disease involvement in multiple organs. Although numerous drugs are employed in RA treatment, some respond little and suffer from severe side effects. This study aimed to screen the candidate therapeutic targets and promising drugs in a novel method.

Methods

We developed a module-based and cumulatively scoring approach that is a deeper-layer application of weighted gene co-expression network (WGCNA) and connectivity map (CMap) based on the high-throughput datasets.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 544 - 549
1 Nov 2019
Zheng W Liu C Lei M Han Y Zhou X Li C Sun S Ma X

Objectives

The objective of this study was to investigate the association of four single-nucleotide polymorphisms (SNPs) of the cannabinoid receptor 2 (CNR2) gene, gene-obesity interaction, and haplotype combination with osteoporosis (OP) susceptibility.

Methods

Chinese patients with OP were recruited between March 2011 and December 2015 from our hospital. In this study, a total of 1267 post-menopausal female patients (631 OP patients and 636 control patients) were selected. The mean age of all subjects was 69.2 years (sd 15.8). A generalized multifactor dimensionality reduction (GMDR) model and logistic regression model were used to examine the interaction between SNP and obesity on OP. For OP patient-control haplotype analyses, the SHEsis online haplotype analysis software (http://analysis.bio-x.cn/) was employed.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1179 - 1183
1 Oct 2019
Parsons N Carey-Smith R Dritsaki M Griffin X Metcalfe D Perry D Stengel D Costa M


Bone & Joint 360
Vol. 8, Issue 3 | Pages 23 - 26
1 Jun 2019


Bone & Joint Research
Vol. 5, Issue 12 | Pages 594 - 601
1 Dec 2016
Li JJ Wang BQ Fei Q Yang Y Li D

Objectives

In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis.

Methods

We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs.


Bone & Joint 360
Vol. 6, Issue 4 | Pages 1 - 1
1 Aug 2017
Ollivere B


Bone & Joint 360
Vol. 6, Issue 4 | Pages 34 - 37
1 Aug 2017


Bone & Joint 360
Vol. 1, Issue 3 | Pages 30 - 33
1 Jun 2012

The June 2012 Research Roundup360 looks at: platelet-rich plasma; ageing, bone and mesenchymal stem cells; cytokines and the herniated intervertebral disc; ulcerative colitis, Crohn’s disease and anti-inflammatories; the effect of NSAIDs on bone healing; osteoporosis of the fractured hip; herbal medicine and recovery after acute muscle injury; and ultrasound and the time to fracture union.


Bone & Joint 360
Vol. 1, Issue 5 | Pages 30 - 32
1 Oct 2012

The October 2012 Research Roundup360 looks at: whether you can escape your genes; oral prophylaxis for DVT; non-responders and the internet; metal-on-metal, mice and damaged livers; sleeping on the job; cartilage contact stress in the normal human hip; and a perfect reason to subscribe to 360.