Advertisement for orthosearch.org.uk
Results 1 - 100 of 318
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 32 - 32
7 Aug 2024
Raftery K Tavana S Newell N
Full Access

Introduction. Vertebral compression fractures are the most common type of osteoporotic fracture. Though 89% of clinical fractures occur anteriorly, it is challenging to replicate these ex vivo with the underlying intervertebral discs (IVDs) present. Furthermore, the role of disc degeneration in this mechanism is poorly understood. Understanding how disc morphology alters vertebral strain distributions may lead to the utilisation of IVD metrics in fracture prediction, or inform surgical decision-making regarding instrumentation type and placement. Aim. To determine the effect of disc degeneration on the vertebral trabecular bone strain distributions in axial compression and flexion loading. Methods. Eight cadaveric thoracolumbar segments (T11-L3) were prepared (N=4 axial compression, N=4 flexion). µCT-based digital volume correlation was used to quantify trabecular strains. A bespoke loading device fixed specimens at the resultant displacement when loaded to 50N and 800N. Flexion was achieved by adding 6° wedges. Disc degeneration was quantified with Pfirrmann grading and T2 relaxation times. Results. Anterior axial strains were 80.9±39% higher than the posterior region in flexion (p<0.01), the ratio of which was correlated with T2 relaxation time (R. 2. =0.80, p<0.05). In flexion, the central-to-peripheral axial strain ratio in the endplate region was significantly higher when the underlying IVDs were non-degenerated relative to degenerated (+38.1±12%, p<0.05). No significant differences were observed in axial compression. Conclusion. Disc degeneration is a stronger determinant of the trabecular strain distribution when flexion is applied. Load transfer through non-degenerate IVDs under flexion appears to be more centralised, suggesting that disc degeneration predisposes flexion-type compression fractures by shifting high strains anteriorly. Conflicts of interest. The authors declare none. Sources of funding. This work was funded by the Engineering & Physical Sciences Research Council (EP/V029452/1), and Back-to-Back


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 18 - 18
1 Oct 2019
Smit T Paul K Vergroesen P Emanuel K
Full Access

Purpose of study and background. Degeneration of the intervertebral disc is a strong contributor of low back pain. Studies have shown that both, mechanical unloading and overloading, lead to disc degeneration. This is intuitively clear if one considers that an intervertebral disc essentially is a poro-elastic material embedded with cells, which depend on fluid flow for the transport of nutrients and waste products. As such, mechanical loading is also required for regeneration. It is unclear, however, how much loading is beneficial or detrimental for the healthy or degenerated disc. Methods and Results. We developed a loaded disc culture system for the long-term study of disc physiology. This way we could control both the mechanical and biochemical conditions. If no loading was applied, about half of the cells died within a week. Cells died under a low dynamic loading regime after three weeks. A diurnal loading regime rescued cell viability, gene expression profile and mechanical behavior of the discs. Both static and dynamic overloading induced damage to the discs and led to catabolic and inflammatory gene expressions. Conclusion. Intervertebral discs need a certain dosage of mechanical loading to remain viable. Under overloading, cells deform, change gene expression and become degenerative. The matrix is also remodeled, thereby further decreasing the hydrostatic pressure on the cells and increasing their deformation. This induces a vicious circle of disc degeneration, which needs to be reversed in order to repair the disc. The loaded disc culture system also allows evaluating new therapies for disc degeneration. There are no conflicts of interest. Funded by ZonMW program “Alternatives for live animal testing”, grant #11400090;. BioMedical Materials Program, grant # P2.01 IDiDas; Dutch Arthritis Funds, personal grant KSE


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 15 - 15
1 Oct 2022
Compte R Freidin M Williams F
Full Access

Background

Intervertebral disc degeneration (DD) is a complex age-related condition that constitutes the main risk factor for disabling back pain. DD is assessed using different traits extracted from MR imaging (MRI), normally combined to give summary measures (e.g. Pfirmann score). The aetiology of DD is poorly understood and despite its high heritability (75%), the precise genetic predisposition is yet to be defined. Genome wide association study (GWAS) is used to discover genetic variants associated with a disease or phenotype. It tests variants across the whole genome. It requires large samples to provide adequate but unfortunately there is poor availability of spine imaging data due to the high cost of MRI. We have adopted new methods to examine different MRI traits independently and use the information of those traits to boost GWAS power using specialized statistical software for jointly analyse correlated traits.

Methods/Results

We examined DD MRI features disc narrowing, disc bulge, disc signal intensity and osteophyte formation in the TwinsUK cohort who had undergone T2-weighted sagittal spine MRI. GWAS were performed on the four traits. MTAG software was used to boost single trait GWAS power using the information in the other trait GWAS. 9 different loci were identified.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 2 - 2
1 Jan 2013
Adams M Dolan P
Full Access

Introduction. Risk factors for disc degeneration depend on how the condition is defined, i.e. on the specific disc degeneration “phenotype”. We present evidence that there are two major and largely-distinct types of disc degeneration. Methods. The relevant research literature was reviewed and re-interpreted. Evidence. In the . upper. lumbar and thoracic spine, disc degeneration is closely associated with endplate defects and with inflammatory changes in the vertebral bodies. It has a relatively high heritability (i.e. a strong genetic influence), and its incidence does not increase markedly with age. In the . lower. lumbar spine, disc degeneration is closely associated with radial fissures and nucleus herniation. Here it has a relatively low heritability, and a correspondingly stronger association with mechanical loading, and its incidence increases steadily throughout life. Mechanical experiments on cadaveric spines show that endplate fracture and nucleus herniation can be caused by compressive loading, and by bending combined with compression, respectively. Both lesions cause an immediate decompression of the nucleus, so that it becomes difficult to create subsequently the other lesion in the same disc. This suggests distinct phenotypes. Interpretation. The two types of disc degeneration are not entirely distinct, because disc herniation sometimes occurs at upper lumbar levels. Nevertheless, it may be useful to recognise two phenotypes when it comes to explaining and treating discogenic pain. Some other common disc changes (such as water loss and bulging) are attributable to ageing rather than degeneration, whereas disc narrowing probably represents a final common pathway for both types of disc degeneration. Conflicts of Interest. None. Source of Funding. None. This abstract has not been previously published in whole or in part; nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 3 - 3
1 Jan 2013
Stefanakis M Luo J Truss A Finan C Dolan P Adams M
Full Access

Introduction. Delamination of the annulus fibrosus is an early feature of disc degeneration, and it allows individual lamellae to collapse into the nucleus, or to bulge radially outwards. We . hypothesise. that delamination is driven by high gradients of compressive stress in the annulus. Methods. 102 thoracolumbar motion segments (T8-9 to L5-S1) were dissected from 42 cadavers aged 19–92 yrs. Each specimen was subjected to 1 kN compression, while intradiscal compressive stresses were measured by pulling a pressure transducer along the disc's mid-sagittal diameter. Stress gradients were measured, in the anterior and posterior annulus, as the average rate of increase in compressive stress (MPa/mm) between the nucleus and the region of maximum stress in the annulus. Average nucleus pressure was also recorded. Disc degeneration was assessed macroscopically on a scale of 1–4. Results. Compared to grade 2 discs, moderately degenerated grade 3 discs showed increased stress gradients in the annulus, especially in the posterior annulus where they increased by an average 106%. Nucleus pressure showed minimal changes. However, comparing grade 3 discs with severely degenerated grade 4 discs showed that nucleus pressure fell by 47%, while stress gradients showed little or no further change. Discussion. The results support our hypothesis. In early disc degeneration, a minor reduction in nucleus pressure is sufficient to generate high stress gradients in the annulus. These shear adjacent lamellae, causing delamination and allowing internal displacement of nucleus. As disc degeneration progresses, nucleus migration causes severe decompression, and compressive loading is transferred increasingly to the neural arch. Conflicts of Interest. None. Source of Funding. None. This abstract has not been previously published in whole or in part; nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 216 - 216
1 Jul 2014
Melnyk A Wen T Chak J Kelly A Cripton P Fisher C Dvorak M Oxland T
Full Access

Summary Statement. Spinal flexibility in bending and axial torque has been shown to exhibit very modest changes with advancing disc degeneration. This study is the first to address the possible relationship in pure anterior shear and no clear relationship was observed. Introduction. Disc degeneration (DD) is a risk factor for low back pain. Stable or unstable spine segments may be treated with an isolated decompression or instrumented stabilization, respectively. The effect of DD on spinal flexibility has been addressed by several groups in bending but not in shear; a highly relevant load direction in the lumbar spine is anterior shear. The objective of our study was to determine the effect of DD on anterior translation and specimen stiffness under shear loading in an in vitro model of degenerative spondylolisthesis. Methods. Magnetic resonance images were obtained for human cadaveric lumbar FSUs (N=30). Disc degeneration was assessed with the Pfirrmann five-point grading scale. Three surgeons independently graded the discs and the grade common to at least two of the surgeons was assigned to that specimen. Each specimen was then tested in three sequential states: intact, facet destabilization, and disc destabilization, with the latter two states representing the clinical scenario of degenerative lumbar spondylolisthesis. The specimens were loaded with a constant 300 N axial compressive force, representing body weight, combined with a cyclic anterior shear force (5–250 N). Vertebral translation was tracked with an optoelectronic motion capture system. Kruskal-Wallis ANOVA and multiple comparison Dunn's tests were performed to determine the effect of DD on anterior translation and specimen stiffness. Results. There was only one specimen with disc grade V, and it was grouped with specimens with disc grade IV for the statistical analyses. DD had no effect on anterior translation or specimen stiffness for the intact and disc destabilization conditions. In the facet destabilization condition, specimens with disc grade II translated more than those with disc grades IV and V (p=0.03). Stiffness increased with DD in the facet destabilization condition (ANOVA p=0.04; Dunn's test was not significant). However, we re-analyzed the data with each surgeon's disc grades and found no significant differences in any of the specimen conditions for all three surgeons. Discussion. In the original data analysis, the translation results showed a trend to reduced anterior translation in shear with advancing degeneration only in the facet destabilization condition. These results suggest that shear stiffness of an intact specimen is not affected by overall degeneration, except in the case where the facets are not competent to resist load. In the subsequent data analyses, no significant effects were found. These findings indicate the sensitivity of the analyses to the assignment of disc grade. There are numerous disc grading scales reported in the literature and it is not clear which scale best defines disc degeneration. We are continuing to assess our methods to determine the most appropriate method of defining disc degeneration by disc grade


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 491 - 491
1 Aug 2008
Niemeläinen R Videman T Battié M
Full Access

Purpose & Relevance: To examine the prevalence of degenerative findings in the thoracic spine in a population sample of adult men. Normative data on thoracic degenerative findings provide an essential reference for related observations in patients. Methods & Results: Qualitative and quantitative assessments of thoracic disc degeneration were obtained from MRI (levels T6-L1) for general population sample of 532 men aged 25–70 years. Qualitative assessments of disc degeneration were performed by an experienced spine surgeon and custom-made software was used to acquire quantitative assessments. Descriptive statistics were acquired using SPSS. Moderate or severe disc bulging was present in at least one disc in 7.9% of subjects, with bulging most common at the two lowest levels. The prevalence of disc herniations was 0.8%. Moderate or severe disc height narrowing was present in 2.7% to 9.7% by disc level with 22.4% of subjects having at least one narrowed disc. Four or more wedged vertebrae (≥ 5°) were present in 68 subjects and 13 (2.4%) had coexisting Schmorl’s nodes. Seven subjects (1.3%) met more stringent criteria for Scheuermann’s disease, with three or more wedged vertebrae, endplate changes, sclerosis and disc height narrowing. Of the variables examined, disc signal intensity correlated highest with age (r= 0.31–0.40, depending on disc level). Conclusion: The prevalence of disc degeneration appears lower in the thoracic spine than previously reported in the lumbar spine. However, one-fifth of the subjects have markedly narrowed discs, which have been associated with symptom history in the lumbar spine. Disc signal intensity is the finding most highly associated with age


Bone & Joint 360
Vol. 3, Issue 2 | Pages 32 - 65
1 Apr 2014
Adams MA

This short contribution aims to explain how intervertebral disc ‘degeneration’ differs from normal ageing, and to suggest how mechanical loading and constitutional factors interact to cause disc degeneration and prolapse. We suggest that disagreement on these matters in medico-legal practice often arises from a misunderstanding of the nature of ‘soft-tissue injuries’


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 139 - 139
1 Jul 2002
Adams M
Full Access

Mechanical function and failure of intervertebral discs. In a healthy disc, the nucleus pulposus acts like a pressurised fluid which is restrained by tensile stress within the annulus. With increasing age, the nucleus becomes more fibrous, and biochemical changes cause the whole disc to become less elastic, and more yellow in colour. Mechanically, the hydrostatic nucleus shrinks with age, and concentrations of compressive stress appear in the posterior annulus. Experiments on cadaveric spines have shown that healthy discs can prolapse when loaded severely or repetitively in bending and compression, and that internal disruption of the disc probably follows damage to the vertebral endplates. However, mechanical loading is not necessarily harmful to living discs: on the contrary, moderate repetitive loading may lead to disc hypertrophy rather than injury. Disc degeneration. Degeneration represents some mechanical or biological “insult” superimposed on normal ageing. A defining feature of “degeneration” should be structural failure of the annulus or endplate, because all degenerated discs exhibit structural failure whereas many old discs do not. Degeneration creates high stress concentrations within the annulus. Paradoxically, severe degeneration can lead to gross disc narrowing and reduced stresses in the annulus, presumably because it is “stress shielded” by the apophyseal joints. Animal experiments show that disc degeneration always follows mechanical disruption. In some cases, it may possibly precede it. Disc degeneration and back pain. Pain-provocation studies have shown that severe and chronic back pain often originates in the posterior annulus fibrosus, and can be elicited by relatively moderate mechanical pressure. Anatomical studies indicate that the outer annulus is supplied with complex and free nerve endings from the mixed sinuvertebral nerve. MRI and discographic studies show that back pain is closely correlated with structural features of disc degeneration such as radial fissures and prolapse, although age-related changes in composition are clinically irrelevant. The stress-shielding of severely degenerated discs (see above) suggests that discogenic pain may be most closely associated with intermediate stages of degeneration. The localised stress concentrations found in degenerated cadaveric discs have been directly linked to low back pain in living people. Medico-legal implications. The widely-held belief that a disc will not prolapse unless it is degenerated is no longer compatible with the scientific evidence. Severe loading, which in life usually arises from vigorous muscle contractions, can injure normal discs. On the contrary, it seems likely that severely degenerated discs are too fibrous to prolapse, and that many of the cell-mediated changes associated with disc prolapse occur after prolapse, rather than before. However, genetic inheritance is important in disc degeneration and prolapse, suggesting that some discs are more vulnerable than others to mechanical loading. The nature of this vulnerability is largely unknown, but is likely to involve genetic weaknesses in composition, and previous fatigue damage. It would be desirable to distinguish between these last two factors, but this is likely to prove difficult in practice


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 461 - 462
1 Apr 2004
Rahmat R Matsacos D Oakes B Fraser R Moore R
Full Access

Introduction: Disc degeneration is consistent with advancing age and in many cases is associated with back pain and restricted mobility. The traditional surgical treatment for chronic back pain has been spinal fusion to immobilize the painful level. Long-term studies, however, suggest that fusion actually promotes degeneration at adjacent levels. One of the hallmarks of disc degeneration is aggregation of chondrocytes in the nucleus of chondrones, and more recently apoptosis has been implicated as a factor controlling the longevity of the cells. Recent research suggests that it may be possible to restore normal function to degenerate discs by introducing a fresh population of cells. This study investigated the potential for autologous costal chondrocyte implantation to prevent lumbar disc degeneration after annular injury in the sheep. Methods: the lumbar spines of eight adult sheep were exposed. In four animals, full thickness annular incisions were made in three alternate discs. No annular incisions were made in the other four sheep. A minimum of 500 mg of cartilaginous tissue was harvested from the twelfth rib of all animals. Tissue was cultured in vitro and the chondrocytes were labelled with a fluorescent marker for retrospective identification. After six weeks the chondrocytes were injected into the lower two alternate discs of all animals, leaving the uppermost discs and those untouched as internal controls. The animals were killed at intervals from three to twenty-four weeks and MRI, plain x-ray, histology and immunocytochemistry were evaluated. Results: MRI at twelve and twenty-four weeks showed apparent preservation of all incised discs that had been transplanted with autologous chondrocytes. Histology revealed clusters of viable chondrocytes of normal appearance within the nucleus. These cells stained positive for the fluorescent label. The same cells and the surrounding matrix were also positive for collagen type II. Serial X-ray measurements suggested that progressive disc degeneration was arrested in the discs that received autologous costal chondrocytes. Discussion: This pilot study showed evidence that cultured autologous costal chondrocytes remained viable and produced extracellular matrix following transplantation into normal and degenerate discs. In contrast to other studies that have used mesenchymal stem cells or chondrocytes harvested directly from discs, this study demonstrated success with cells from a source other than the disc. Costal cartilage is a convenient source of cells for transplantation and this technique warrants further investigation as a potential treatment for degenerative disc disease


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 453 - 453
1 Aug 2008
Harding I Charosky S Ockendon M Vialle R Chopin D
Full Access

Purpose: To evaluate the long term clinical outcomes as well as radiological changes in distal unfused mobile segments and to evaluate factors that may predispose to distal disc degeneration and/or poor outcome. Method: 151 mobile segments in 85 patients (65 female), mean age 43.2 (range 21–68), were studied. Curve type, number of fused levels and pelvic incidence were recorded. Clinical outcome was measured using the Whitecloud function scale and disc degeneration using the UCLA disc degeneration score. Spinal balance, local segmental angulations and lumbar lordosis were measured pre- and post-operatively as well as at the most recent follow up – mean 9.3 years (range 7–19). Results: 62% of patients had a good or excellent outcome. 11 had a poor outcome of which 10 underwent extension of fusion – 5 for pain alone, 3 pain with stenosis and 2 pseudarthroses. Pre-operative disc degeneration was often asymmetric and was slightly greater in older patients. Overall, there was a significant deterioration in disc degeneration (p< 0.0001) that did not correlate with clinical outcome. Disc degeneration correlated with the recent sagittal balance (Anova F=14.285, p< 0.001) and the most recent lordosis (Anova F=4.057, p=0.048). The post-operative sagittal balance and local L5-S1 sagittal angulation correlated to L4 and L5 degeneration respectively. There was no correlation between degeneration and age, pre-operative degenerative score, pelvic incidence, sacral slope, number of fused levels or distal level of fusion. Conclusion: Disc degeneration does occur below an arthrodesis for scoliosis in adults which does not correlate with clinical outcome. The correlation of loss of sagittal balance with disc degeneration may be as a result of degeneration causing the loss of balance or vice versa i.e. sagittal imbalance causing degeneration. Immediate post-operative imbalance correlates with degeneration of the L4/5 disc, which may imply the latter


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages 95 - 95
1 Mar 2002
Pollintine P Dolan P Tobias J Adams M
Full Access

Osteoporotic fractures are associated with bone loss following hormonal changes and reduced physical activity in middle age. But these systemic changes do not explain why the anterior vertebral body should be such a common site of fracture. We hypothesise that age-related degenerative changes in the intervertebral discs can lead to abnormal load-bearing by the anterior vertebral body. Cadaveric lumbar motion segments (mean age 50 ± 19 yrs, n = 33) were subjected to 2 kN of compressive loading while the distribution of compressive stress was measured along the antero-posterior diameter of the intervertebral disc, using a miniature pressure-transducer. “Stress profiles” were obtained with each motion segment positioned to simulate a) the erect standing posture, and b) a forward stooping posture. Stress measurements were effectively integrated over area in order to calculate the force acting on the anterior and posterior halves of the disc ( . 1. ). These two forces were subtracted from the applied 2 kN to determine the compressive force resisted by the neural arch. Discs were sectioned and their degree of disc degeneration assessed visually on a scale of 1–4. In motion segments with non-degenerated (grade 1) discs, less than 5% of the compressive force was resisted by the neural arch, and forces on the disc were distributed evenly in both postures. However, in the presence of severe disc degeneration, neural arch load-bearing increased to 40% in the erect posture, and the compressive force exerted by the disc on the vertebral body was concentrated anteriorly in flexion, and posteriorly in erect posture. In severely degenerated discs, the proportion of the 2 kN resisted by the anterior disc increased from 18% in the erect posture to 58% in the forward stooped posture. Disc degeneration causes the disc to lose height, so that in erect postures, substantial compressive force is transferred to the neural arch. In addition, the disc loses its ability to distribute stress evenly on the vertebral body, so that the anterior vertebral body is heavily loaded in flexion. These two effects combine to ensure that the anterior vertebral body is stress-shielded in erect postures, and yet severely loaded in flexed postures. This could explain why anterior vertebral body fractures are so common in elderly people with degenerated discs, and why forward bending movements often precipitate the injury


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 19 - 19
1 Feb 2018
Owen S Thompson C McGlashan S Knight M Ockendon M Roberts S
Full Access

Introduction. Primary cilia are singular structures containing a microtubule-based axoneme which are believed to not only be mechanosensitive but also to co-ordinate many cell functions via signalling pathways including Hedgehog and Wnt. Primary cilia have previously been described on cells of mouse intervertebral discs (IVDs), but not in bovine or human IVDs. Our aim was to examine primary cilia in these species. Methods. Nucleus pulposus cells were obtained from cows with no overt disc degeneration and patients following spine surgery (for herniations and/or degenerative disc disease) and cultured until confluent before maintaining with or without serum for 24h. Primary cilia were visualised with antibodies to the axoneme (acetylated α-tubulin and Arl13b) and/or the basal body (pericentrin) using fluorescent secondary antibodies and ≥200 cells per sample were counted. Results. Primary cilia were detected in the majority of disc cells (81.2±4.1% and 54.8±28.7% with and without serum depletion, respectively, in bovine and 78.9±0.3% and 89.8±7.4% in human cells). Some cilia demonstrated abnormalities, such as bulbous tips or breaks in the axonome. Conclusion. This is the first report of primary cilia being present on human and bovine IVD cells. There remain many other aspects to be investigated, for example, their length has been shown to alter in osteoarthritic chondrocytes. If this, or the incidence of abnormalities, differs in cells from normal and abnormal discs, it could suggest new pathways of disc degeneration, as these organelles are key to so many cell functions. Conflicts of interest: None. Supported by the Orthopaedic Institute Ltd


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 17 - 17
1 Jul 2014
Nasto L Wang D Rasile Robinson A Ngo K Pola E Sowa G Robbins P Kang J Niedernhofer L Vo N
Full Access

Summary Statement. DNA damage induced by systemic drugs or local γ-irradiation drives disc degeneration and DNA repair ability is extremely important to help prevent bad effects of genotoxins (DNA damage inducing agents) on disc. Introduction. DNA damage (genotoxic stress) and deficiency of intracellular DNA repair mechanisms strongly contribute to biological aging. Moreover, aging is a primary risk factor for loss of disc matrix proteoglycan (PG) and intervertebral disc degeneration (IDD). Indeed, our previous evidences in DNA repair deficient Ercc1−/Δ mouse model strongly suggest that systemic aging and IDD correlate with nuclear DNA damage. Thus the aim of the current study was to test whether systemic or local (spine) genotoxic stress can induce disc degeneration and how DNA repair ability could help prevent negative effects of DNA damage on IDD. To test this hypothesis a total of twelve Ercc1−/Δ mice (DNA repair deficient) and twelve wild-type mice (DNA repair competent) were challenged with two separate genotoxins to induce DNA damage, i.e. chemotherapeutic crosslinking agent mechlorethamine (MEC) and whole-body gamma irradiation. Local effects of gamma irradiation were also tested in six wild-type mice. Methods. Ercc1. −/Δ. mice (n=6) and their wild-type littermates were chronically exposed to genotoxic stress beginning at 8 wks of age by subcutaneous administration of a subtoxic dose of MEC (8 μg/kg once per week for 6 weeks). Similarly, six Ercc1. −/Δ. mice and their wild-type littermates were exposed to genotoxic stress by whole-body administration of ∼10% radiotherapeutic dose of ionizing radiation (0.5 Gy 1x per week for 10 weeks). A third set of wild-type mice (n=6) were exposed to one shot local spine irradiation at 0, 6, and 10 Gy at 22 weeks old and sacrificed 10 weeks later. Histological staining for proteoglycan (Safranin O) and collagen (Masson's Trichrome), PG synthesis (. 35. S-sulfate incorporation) and GAG content (DMMB assay), disc ADAMTS4, aggrecan and its fragments terminating in NITEGE-. 373. (immunohistochemistry (IHC)) were analyzed. Cellular senescence markers (p16) and apoptosis (TUNEL assay) were also measured. Results. Histological staining revealed substantial reduction in matrix collagen, proteoglycan, and endplate cellularity in the discs of MEC-exposed and irradiated mice. IHC analysis showed decreased aggrecan and increased levels of ADAMTS4 and NITEGE-. 373. containing aggrecan proteolytic fragments. Disc PG synthesis was reduced 2–3 folds in MEC-treated mice and irradiated mice. Locally irradiated mice showed similar effects on disc matrix. Expression of p16 as well as apoptosis significantly increased in MEC-treated and irradiated mice. The overall effect of the treatments on disc matrix and endplate cartilage was more severe in Ercc1−/Δ mice than wild-type mice. Discussion/Conclusion. MEC and IR treatment resulted in loss of disc matrix proteoglycan and collagen in adult wild-type and Ercc1−/Δ mice. The finding that loss of matrix proteoglycan was greater in the DNA repair deficient mice strongly supports the conclusion that DNA damage can drive disc degeneration and DNA repair ability is extremely important to help prevent these effects. Results of this work suggest that patients treated with genotoxic drugs (i.e. long-term cancer survivors) may be at increased risk of IDD


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 407 - 407
1 Sep 2005
Williamson O
Full Access

Introduction Disc replacement surgery is being investigated as an alternative to spinal fusion surgery in the hope that maintaining segment spinal motion will not only relieve pain, but also prevent or reduce the likelihood of symptomatic adjacent segment degeneration that is believed to be a consequence of fusion surgery. The aim of this study was to identify evidence in the medical literature that indicates whether or not spinal fusion surgery increases the likelihood of symptomatic adjacent segment degeneration compared to disc replacement surgery or natural history. Methods A search of the Cochrane Controlled Trials Register, Medline and reference lists of retrieved articles was performed. Search terms included arthroplasty replacement, spinal fusion, prognosis, controlled clinical trials and cohort studies, Studies were included if abstracts were available electronically, were published in the English language before1/3/2005 and involved humans. Levels of evidence were determined using the Oxford Centre for Evidence-Based Medicine criteria (. http://www.cebm.net/levels of evidence.asp. ). Discussion The majority of identified studies were case series of patients presenting with adjacent level disc degeneration following spinal fusion surgery (Level 4) and whilst indicating patients can develop adjacent level disc degeneration following fusion surgery, do not indicate the likelihood of doing so. Uncontrolled prospective cohort studies (Level 4) provide conflicting evidence. One retrospective cohort (Level 2b) studying comparing the incidence of adjacent disc degeneration following spinal fusion and discectomy or decompressive surgery alone found that the incidence of degeneration in the superior adjacent disc was increased in the fusion group, but was not associated with differences in functional outcome. No systematic reviews of inception cohort studies (Level 1) were identified. Conclusions Only poor quality evidence has been published to support the proposition that spinal fusion surgery is associated with an increased likelihood of developing symptomatic adjacent level disc degeneration. Long term follow-up of patients enrolled in prospective randomised controlled trials comparing outcomes of spinal fusion and disc replacement surgery is necessary to determine whether or not disc replacement surgery decreases the likelihood of any symptomatic adjacent level disc degeneration that can be attributed to spinal fusion surgery


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 234 - 234
1 Sep 2005
Omlor G Lorenz H Carstens C Kroeber M Guehring T
Full Access

Study Design: Experimental in vivo study on New Zealand White Rabbits. Summary of Background Data: We have developed an in-vivo rabbit model of lumbar disc degeneration. This model provides a defined loading of one single disc. However, the molecular mechanism that leads to mechanically-induced disc degeneration remains unclear. Objective: To investigate the process of mechanically induced disc degeneration in New Zealand White Rabbits with respect to remodeling on the gene and the level of protein expression. Subjects: Seven animals were treated with an external compression-device applying 200N on segment L3/4. Eight animals underwent sham surgery. Outcome Measures: After 28 days discs were harvested and cut into two pieces in a sagittal plain. One piece was used for protein analysis utilizing immunohistochemical protocols for collagen I, II and aggrecan. The other half of the disc was used for quantitative real-time RT-PCR to determine gene expression of selected matrix genes. Results: In the compression group matrix genes were upregulated: collagen I (6.46x; p=0,018), collagen II (2.14x), biglycan (2.97x; p=0,049), decorin (4.64x; p=0,043), aggrecan (1.2x), osteonectin (2.03x), fibronectin (3.48x), fibromodulin (2.6x; p=0,037). The MMP-13 gene could only be detected in compressed discs. Gene transcripts of the metalloproteinase-inhibitor TIMP-1 were 4.5 times upregulated (p=0,007). Immunohistochemical analysis revealed a decrease of aggrecan and collagen I. Conclusions: In our animal model mechanical loading caused degradation of the matrix proteins collagen I and aggrecan. Metalloproteinases like MMP-13 trigger this degenerative process. The elevated expression of matrix genes and TIMP-1 transcripts may characterize a mechanism of compensation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 20 - 20
1 May 2017
Awuzudike V Fabiane S Freidin M Williams F
Full Access

Objectives. A single degenerate intervertebral disc is suggested to promote rapid degeneration in its adjacent discs. We validated this hypothesis using discordant co-twin case-control design. Methods. 185 pairs of twins were selected from the TwinsUK database having cervical MRI scans at baseline and at follow-up, after 10 years. Isolated disc degeneration (IDD) was diagnosed in subjects having severe loss in disc height (graded 3/3) in a single disc, whilst discs immediately adjacent manifested little or no degeneration (graded 0 or 1). The controls' ‘adjacent discs’ were considered at the same levels as their affected co-twins. Results. Eight twin pairs fulfilled case/control criteria. At follow-up, no significant difference in adjacent disc degeneration between IDD cases and controls remained (p=0.69). Conclusions. Using a highly matched case-control design we did not find evidence that lone IDD has an adverse effect on the natural rate of adjacent disc degeneration in the cervical spine. No conflicts of interest. Acknowledgements. This study was supported by a grant from Globus Inc. Arthritis Research UK supported the imaging costs. TwinsUK. The study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007–2013). The study also receives support from the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 290 - 291
1 Sep 2005
Malek S Kamath R Chandran P Mohsen A
Full Access

Introduction and Aims: Lower back and/or leg pain is a symptom of a number of pathological conditions involving lumbosacral nerve roots. Disc herniation is one of the most common causes of LBP (after mechanical back pain). There is controversy regarding the progression of disc degeneration and/or lower back pain to symptomatic disc prolapse over time. Method: The aim of the study was to determine the natural progression of patients with lower back pain/disc degeneration established clinically and on MRI to symptomatic disc herniation over three to six years. Total of 970 patients who had an MRI scan between January 1998 and September 2000 were included in the study. Information about disc pathology, level and number of discs involved were recorded from MRI scan reports. A short questionnaire was sent to all patients. It contained 10 questions regarding current status of pain and neurology, any treatment in form of back injection and operation, current occupation and smoking status. Results: The collected data was analysed using standard statistics software (SPSS). The results will be discussed. Conclusion: The information provided by this study will be useful in judging the natural progression of lower back pain and/or disc degeneration to a symptomatic prolapse intervertebral disc. It will also be useful in medico-legal cases where patients had pre-existing disc degeneration and subsequently developed disc herniation over time


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 88 - 88
1 Jan 2004
Rahmat R Moore RJ Nikoloff S Matsacos D Oakes BW Fraser RD
Full Access

Introduction: The development of laboratory techniques in the last ten years has enabled the successful harvest, in vitro selection, culture and transplant of chondrocytes. The study proposes that transplantation of autologous chondrocytes prevents degeneration of the intervertebral disc following outer annular injury in an ovine model. Methods: Eight sheep were anaesthetised and five contiguous lumbar discs were exposed via a left-sided posterolateral approach. Four of the animals were given full thickness annular incisions in three alternate discs. No annular incisions were made in the other 4 sheep. Costal cartilage was harvested from the left twelfth rib of all animals. Tissue was cultured and the chondrocytes were labelled in vitro with CFSE for verification following transplantation. Six weeks later autologous cultured chondrocytes were injected into the lower two alternate discs of all animals, leaving the uppermost discs and those untouched in between as internal controls. Animals were sacrificed after three, six, twelve and twenty-four weeks. Results were based on X rays, histological, and immunocytochemical assessments. Results: Preliminary histological results up to three months showed viability of cultured chondrocytes and matrix production post transplantation. Serial X rays suggested that progressive disc degeneration was arrested in the treated discs. Discussion: In this pilot study we have shown that cultured autologous chondrocytes can remain viable long term in vivo. These preliminary results suggest that these transplanted chondrocytes have the ability to retard and possibly prevent disc degeneration following annular incision. Previous similar studies have reported the use of chondrocytes cultured from disc, whilst this study showed that chondrocytes from a source foreign to the disc can exert positive effects. The encouraging result from this pilot study needs to be further validated to realise its potential as a treatment for degenerative disc disease


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 283 - 283
1 Mar 2003
Rahmat R Moore R Nikoloff S Matsacos D Oakes B Fraser R
Full Access

INTRODUCTION: The development of laboratory techniques in the last ten years has enabled the successful harvest, in vitro selection, culture and transplant of chondrocytes. The study proposes that transplantation of autologous chondrocytes prevents degeneration of the intervertebral disc following outer annular injury in an ovine model. METHODS: Eight sheep were anaesthetised and five contiguous lumbar discs were exposed via a left-sided posterolateral approach. Four of the animals were given full thickness annular incisions in three alternate discs. No annular incisions were made in the other four sheep. Costal cartilage was harvested from the left twelfth rib of all animals. Tissue was cultured and the chondrocytes were labelled in vitro with CFSE for verification following transplantation. Six weeks later autologous cultured chondrocytes were injected into the lower two alternate discs of all animals, leaving the uppermost discs and those untouched in between as internal controls. Animals were sacrificed after three, six, twelve and twenty-four weeks. Results were based on X-rays, histological, and immunocytochemical assessments. RESULTS: Preliminary histological results up to three months showed viability of cultured chondrocytes and matrix production post transplantation. Serial X-rays suggested that progressive disc degeneration was arrested in the treated discs. DISCUSSION: In this pilot study we have shown that cultured autologous chondrocytes can remain viable long term in vivo. These preliminary results suggest that these transplanted chondrocytes have the ability to retard and possibly prevent disc degeneration following annular incision. Previous similar studies have reported the use of chondrocytes cultured from disc, whilst this study showed that chondrocytes from a source foreign to the disc can exert positive effects. The encouraging result from this pilot study needs to be further validated to realise its potential as a treatment for degenerative disc disease


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 193 - 193
1 May 2011
Blondel B Tropiano P Marnay T
Full Access

Study Design and Objectives: The aim of this study is to analyse clinical results of total lumbar disc arthroplasty according to the type of disc degeneration. Summary of Background Data: Lumbar disc degeneration can be associated with different causes of disc disease. Therapeutical management of such pathologies is still controversial between spinal fusion and arthroplasty. Non fusion techniques have been developed to allow a treatment of disc degeneration with a preserved intervertebral mobility. Materials and Methods: 221 patients with a mean age of 42 years were included in this study with a prospective data collection. 54 patients were classified as H0 (primary disc degeneration without previous surgery), 98 were classified as H1 (disc degeneration with associated herniation, without previous surgery), 36 were as H2 (disc degeneration with recurrence of disc herniation, with previous surgery) and 33 patients were H3 (post-discectomy syndrome with previous surgery). Clinical evaluation was based on Oswestry Disability Index (ODI), Lumbar and Radicular Visual Analogic Scale (VAS), each measurement was performed preoperatively, and at 3, 6, 12 and 24 months postoperatively. Results: Mean follow-up of the series was 30 months [24–72 months]. A significant (p< 0.05) clinical improvement was found between preoperative and the last follow-up evaluation for each group. On a multivariate analysis between different groups, a significantly higher ODI was found in the group classified as H3 (post-discectomy syndrome) at the final follow-up. Conclusion: Total lumbar disc arthroplasty provides a significant clinical improvement for patients with disc degenerative disease, with a 2 year minimal follow-up. The poorest results were found in patients with previous surgical procedure on the concerned level (post-discectomy syndrome). These results can be helpful for selection of total disc arthroplasty indications and for the information that a surgeon must give to his or her own patient on the expected result after disc replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 3 | Pages 369 - 373
1 May 1986
Gibson M Buckley J Mawhinney R Mulholland R Worthington B

The lumbar spines of 22 patients were examined for disc degeneration by magnetic resonance imaging (MRI) and by discography. The results from 50 intervertebral discs visualised by both techniques were independently assessed and graded on a five-point scale from normality to gross degeneration and then compared. In 44 discs the results agreed. Of the six discs which gave differing results, four discrepancies were due to observer error and two to incorrect placement of the discographic needle. MRI was shown to be more accurate than discography in the diagnosis of disc degeneration. It has several major advantages, which should make it the investigation of choice


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 140 - 141
1 Jul 2002
Sahlman J Hyttinen M Inkinen R Helminen H Puustjärvi K
Full Access

Introduction: The evidence of genetic background as an important causative factor in disc degeneration and osteoporosis is increasing. Defects in the COL2A1 gene coding for type II collagen are known to lead to disturbed chondrogenesis and ossification. Retardation of growth, abnormal shape of vertebral bodies and intervertebral discs and occult spina bifida have been described in young mice with the defect. How the gene defect is manifested later in life has not been described. Purpose of the study: The purpose of this study was to describe, at the microscopic level, the structure of intervertebral discs of transgenic Del1 mice carrying a deletion mutation in the Col2a1 gene, and the effect of the gene defect on the structural properties of bone. In addition, we wanted to see how the gene defect manifests in disc tissue and skeletal bone later in life and if there were differences between sexes. Materials and methods: The study material consisted of transgenic male (n=27) and female (n=21) mice and their age-matched littermate controls (n=22 and 21, respectively). The transgenic mice were offspring of the transgenic founder mouse Del1 harbouring six copies of a mouse type II collagen transgene with a 150-bp deletion. The mice were divided into two age groups, the younger group being 3 to 13 months and the older 15 to 21 months of age. The two major macromolecules of the intervertebral discs, proteoglycans (PGs) and collagen, were studied. The PG concentration of the intervertebral discs’ nucleus pulposus, annulus fibrosus, and the vertebral bodies and end plates was measured from Safranin-O-stained sections using digital densitometry. Collagen orientation of these structures was evaluated using quantitative polarised light microscopy. Bone mineral density (BMD) was measured with dual energy x ray absorptiometry (DXA), and the breaking force of the femoral bone with three point bending test only for nine 14-month-old females (four control mice and five with gene defect) and fourteen 14-month-old male mice (six control mice and eight with gene defect). Results: In the young mice, there were no changes in the measured parameters in the intervertebral discs due to the gene defect. However, Safranin-O density and thus PG concentration of the vertebral trabecular bone was 47 % lower in the young transgenic female mice than in the controls (p< 0.001). Ageing had a significant effect on the measured parameters. The Safranin-O density in the nucleus pulposus of the old transgenic male mice was 35 % higher than in the age-matched controls (p< 0.05). In the females, however, Safranin-O density in the nucleus pulposus was 53 % (p< 0.01) and in the vertebral bone 68 % (p< 0.01) lower in the transgenic mice than in the controls. The Safranin-O density in the annulus fibrosus of the transgenic female mice was not changed as compared to the controls. The collagen orientation in the nucleus pulposus of old transgenic male mice was 27 % higher than in the age-matched controls (p< 0.05). In the old females there was no difference in the collagen orientation of the nucleus pulposus between the transgenic mice and controls but in the annulus fibrosus the orientation was 41 % (p< 0.01) and in the vertebral bone 70 % (p< 0.05) lower in the transgenic mice than in the controls. There was no difference in the BMD and the breaking force of the femurs of 14-month-old male mice as compared with the age-matched controls. However, in the old transgenic female mice, the femoral BMD was 14 % (p=0.05) and the breaking force 27 % (p=0.09) lower than in the controls. Conclusions: The transgene of the Col2a1 gene caused a decrease in the nucleus pulposus PG concentration and in the annulus fibrosus collagen orientation in the old female mice. These features can compromise the structural and load-bearing properties of the discs and thus predispose to disc degeneration. Interestingly enough, the male mice seemed to benefit from the genetic defect in this respect. In addition, in the old transgenic female mice, the PG concentration and the collagen orientation of the vertebral trabecular bone were decreased which contributed to the loss of BMD and breaking force of bone seen in these mice. The fact, that these differences in the bone were not seen in the male mice suggests that this animal model could possibly be used in studies of postmenopausal osteoporosis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 27 - 27
1 Sep 2019
van den Berg R Enthoven W de Schepper E Luijsterburg P Oei E Bierma-Zeinstra S Koes B
Full Access

Background. The majority of adults will experience an episode of low back pain during their life. Patients with non-specific low back pain and lumbar disc degeneration (LDD) may experience spinal pain and morning stiffness because of a comparable inflammatory process as in patients with osteoarthritis of the knee and/or hip. Therefore, this study assessed the association between spinal morning stiffness, LDD and systemic inflammation in middle aged and elderly patients with low back pain. Methods. This cross-sectional study used the baseline data of the BACE study, including patients aged ≥55 years visiting a general practitioner with a new episode of back pain. The association between spinal morning stiffness, the radiographic features of lumbar disc degeneration and systemic inflammation measured with serum C-reactive protein was assessed with multivariable logistic regression models. Results. At baseline, a total of 661 back pain patients were included. Mean age was 66 years (SD 8), 416 (63%) reported spinal morning stiffness and 108 (16%) showed signs of systemic inflammation measured with CRP. Both LDD definitions were significantly associated with spinal morning stiffness (osteophytes OR=1.5 95% CI 1.1–2.1, narrowing OR=1.7 95% CI 1.2–2.4) and spinal morning stiffness >30 minutes (osteophytes OR=1.9 95% CI 1.2–3.0, narrowing OR=3.0 95% CI 1.7–5.2) For severity of disc space narrowing we found a clear dose response relationship with spinal morning stiffness. We found no associations between spinal morning stiffness and the features of LDD with systemic inflammation. Conclusions. This study demonstrated an association between the presence and duration of spinal morning stiffness and radiographic LDD features. No conflicts of interest. No funding obtained


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 490 - 491
1 Apr 2004
Moore R
Full Access

Introduction The annulus fibrosus of the intervertebral disc is composed of a series of concentric collagenous lamellae that constrain the highly pressurised fluid of the nucleus pulposus. With advancing age and even after physical injury in youth the disc almost invariably becomes progressively degenerate due to the combined effects of dehydration of the nucleus and disruption of the annulus. There is conjecture however, about which of the two compartments shows degenerate changes first. Methods A histological and biochemical review is presented, based on a review of the literature and work carried out in our laboratories. Results Three distinct types of annulus tears are seen histologically. Rim tears are formed by detachment of the peripheral annular fibres from the vertebral rim. Autopsy studies show that these lesions are rare in subjects younger than 30 years but the incidence increases significantly with advancing age. Although granulation tissue grows into the outer layers of the annulus in a normal healing response, these lesions frequently extend deeper into the disc. Radiating tears course radially across several lamellae, most often extending from the vertebral rim across the nucleus to involve the posterior side of the disc. These lesions are seen mostly between the ages of 30 and 50 years. Concentric tears are characterised by separation of adjacent lamellae and may appear as early as the second decade of life. In advanced degeneration nuclear changes may be seen with any combination of annular lesions. Biochemical changes, including dehydration and reduced proteoglycan content of the nucleus, parallel the morphologic changes to the disc. Altered biochemistry is further reflected by MRI studies in which some scanning sequences can detect even modest loss of fluid from the nucleus as early as three months after experimental annular incision. Annular lesions also compromise the biomechanical properties of the disc. While internal fixation that aims to immobilise the injured disc may promote some recovery of the mechanical integrity, degeneration nevertheless advances in the long term. Attempts to seal peripheral annular defects in experimental studies using biocompatible glue have also failed to promote healing and to prevent progression of even minor structural defects. Conclusions Technological developments such as gene transfer into disc cells and direct implantation of either stem cells or more mature cells are emerging as potential candidates for the treatment of disc degeneration


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 19 - 19
1 May 2017
Deane J Joyce L Wang C Wiles C Lim A Strutton P McGregor A
Full Access

Introduction. The usefulness of markers of non-specific low back pain (NSLBP), including MRI derived measurements of cross-sectional area (CSA) and functional CSA (FCSA, fat free muscle area) of the lumbar musculature, is in doubt. To our knowledge, such markers remain unexplored in Lumbar Disc Degeneration (LDD), which is significantly associated with NSLBP, Modic change and symptom recurrence. This exploratory 3.0-T MRI study addresses this shortfall by comparing asymmetry and composition in asymptomatic older adults with and without Modic change. Methods. A sample of 21 healthy, asymptomatic subjects participated (mean age 56.9 years). T2-weighted axial lumbar images were obtained (L3/L4 to L5/S1), with slices oriented through the centre of each disc. Scans were examined by a Consultant MRI specialist and divided into 2 groups dependent on Modic presence (M) or absence (NM). Bilateral measurements of the CSA and FCSA of the erector spinae, multifidus, psoas major and quadratus lumborum were made using Image-J software. Muscle composition was determined using the equation [(FCSA/CSA)*100] and asymmetry using the equation [(Largest FCSA-smallest FCSA)/largest FCSA*100]. Data were analysed using Mann-Whitney U tests (p value set at). Intrarater reliability was examined using Intraclass Correlations (ICCs). Results. ICCs ranged between 0.74 and 0.96 for all area measurements, indicating excellent reliability. There was no significant difference in TCSA and FCSA asymmetry (P=0.1–1.0) and muscle composition (P=0.1–1.0) between M and NM groups. Conclusion. Modic change in the absence of pain does not appear to influence cross-sectional asymmetry or composition of the lumbar musculature. CSA remains a controversial marker. No conflicts of interest. Funding: This work is funded by an Allied Health Professional Doctoral Fellowship awarded to Janet Deane by Arthritis Research U.K


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 2 | Pages 236 - 240
1 May 1977
Green P

Thirty-three patients who had undergone anterior cervical fusion for degenerative disc disease were reviewed to determine the efficacy of the procedure. Only patients who were available for examination and who had undergone operation at least one year previously were included in the review. Nearly all had had arm pain and three-quarters neck pain. Diminished neck movement and neurological abnormalities in the arms had been frequent findings. Diagnosis from the clinical features and plain radiographs is described. Myelography was not used routinely and discography was not used at all. Indications for operation and surgical technique are described. Results show that pain in the neck and arm was relieved in a high proportion of cases and that the neurological abnormalities often recovered. It is concluded that this operation is safe and has a definite place in the relief of pain from cervical disc degeneration resistant to conservative treatment


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 235 - 235
1 Sep 2005
Anand A Akmal M Wiseman M Goodship A
Full Access

Study Design: Experimental study to assess tissue engineered solutions to disc degeneration. Objectives: To investigate the use of a novel biodegradable hydrogel which is capable of minimally invasive introduction into an intervertebral disc (IVD) and support of cultured nucleus pulposus (NP) cells for the purpose of developing a tissue-engineered solution to retard progression of IVD degeneration. There were 3 objectives: (1) To introduce a slowly polymerising alginate hydrogel into the NP cavity of a bovine vertebral disc model. (2) To demonstrate the viability and metabolic activity of cultured NP cells in the hydrogel in vitro. (3) To determine the effect of Synvisc (hylan G-F 20) on NP cell proliferation and extracellular matrix (ECM) production. Summary of Background Data: The cause of intervertebral disc degeneration (IVDD) is multifactorial. One proposed mechanism is that IVDD originates in the NP and progresses radially to the annulus fibrosis (AF). There is a growing interest in tissue-engineered solutions where a biological repair is induced. By preventing the abnormality at the NP it may be possible to halt progression of IVDD. Injection of NP cells into an early degenerative IVD, where the AF is still intact, may retard the degenerative process. Subjects/Methods: CaSO. 4. and CaCO. 3. alginates were injected into the NP cavity of a bovine tail. After 90 minutes the tail was dissected to reveal the gel. NP cells released from pooled bovine NP tissue were dispersed into the CaSO. 4. and CaCO. 3. alginate gels (10x10. 6. cells.mL. −1. ) with and without Synvisc and cultured for 21 days. Results: Injectable alginate suspensions formed solid viscoelastic gels, filling the exact shape of the NP cavity. NP DNA and ECM synthesis was significantly greater in the CaCO. 3. alginate gel than in the CaSO. 4. alginate gel (p< 0.05). Synvisc significantly increased sulphated GAG (p< 0.01) and collagen (p< 0.05) production. These effects were supported histologically and immunohistologically where cells in the CaCO. 3. and Synvisc gels stained more intensely for proteoglycan and collagen type II. Conclusions: Both CaCO. 3. alginate gel and CaSO. 4. alginate gel are injectable and are capable of sustaining NP cells in-vitro. Cells remain viable, maintain their phenotype, proliferate and produce ECM during the culture period. The CaCO. 3. alginate gel provides a three-dimensional matrix more favourable to NP cellular activity than the CaSO. 4. alginate gel. Synvisc behaves as a chondro-stimulant significantly enhancing NP cell metabolic activity


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 141 - 142
1 Jul 2002
Roberts S Melrose J Smith . Little . Ghosh . Menage J Evans E Eisenstein S
Full Access

Background: The healthy, adult human disc is innervated but the nerves are restricted to the outer few millimetres of the annulus fibrosus. In degenerate discs with associated back pain, however, the nerves are more numerous and penetrate further in. We have used a sheep model of intervertebral disc degeneration to monitor the presence and organisation of nerves in the disc as degeneration progresses. This model has been used to study morphological and bio-chemical changes of the disc as it degenerates, in addition to associated alterations in end-plate vascularity and vertebral bone remodelling. One aspect of this model which has not been studied to date is how the innervation of the disc may change with the onset of degeneration. This is the object of the present study. Materials and Methods: Four-year old, skeletally mature Merino wether sheep (n=64) were divided randomly into lesion and control groups. A surgical incision was created in the anterolateral annulus in the L1–L2 and L3–L4 discs of the lesion group. The control group received the same retroperitoneal surgical approach but the annulus was not incised. Intact lumbar discs encompassed by adjacent vertebral bodies were removed at 3,6,12 and 26 months post operation. Specimens were fixed, decalcified and paraffin embedded before sectioning (7μ thick, vertical sagittal sections) and stained immunohistochemically with the neuronal marker, PGP9.5, together with standard histological stains. Results: The incised region of the outer annulus underwent collagenous re-organisation, consistent with an active repair process as early as three months post-operatively. However, the inner annular lesion had a poor repair response and propagated with time, sometimes through to the nucleus. In contrast, remodelling of the outer annular lamellae occurred across the cut region. For example, in one sample at two years post injury there were up to six lamellae “bridging the gap”. Nerves were present in all samples but in the sham animals they were very few and confined to the very outer annulus or longitudinal ligament. In the operated animals, nerves were more extensive, occurring in the matrix adjacent to the fissure where there was often blood vessel ingrowth. The maximum number of nerves was seen at 12 months post-operatively, before diminishing in number at 24 months post-op. This paralleled the presence and extent of blood vessel penetration in this experimental model. Conclusions: We have used an animal model to follow longitudinally the penetration of nerves into the ovine intervertebral disc in association with disc degeneration. Whilst we obviously cannot assess back pain in these animals, and not all nerves are nociceptive, nerves nevertheless are a pre-requisite for the perception of pain. Hence the greater numbers, size and penetration of nerves into degenerate discs demonstrated here has important implications not only for the aetiopathogenesis of degenerative disc disease but also for the treatment of its associated symptoms. Further characterisation of this innervation, i.e. whether autonomic or sensory, may provide an indication as to its nociceptive potential


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1261 - 1270
1 Oct 2008
Hadjipavlou AG Tzermiadianos MN Bogduk N Zindrick MR

The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries.

This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 240 - 244
1 Mar 1999
Ishida Y Ohmori K Inoue H Suzuki K

We reviewed the radiographs of 325 unselected patients with defects in the pars interarticularis of L5 to study whether the incidence of vertebral slip in spondylolysis of L5 remained unchanged after the age of 20 years. MRI was also carried out on 111 of the patients to investigate the relationship between the shape of the transverse process of L5 and the degeneration of the discs adjacent to this level. The incidence of spondylolisthesis increased with age from 17% in the second decade to 51% in the sixth. The transverse process was significantly more slender in patients with less degeneration at L4/5 and advanced degeneration at L5/S1 than in patients with advanced degeneration at L4/5 and less degeneration at L5/S1. Vertebral slip secondary to an isthmic defect of L5 after the age of 20 years was confirmed and the adjacent disc degeneration was significantly related to the vertical thickness of the transverse process of L5


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 210 - 211
1 Nov 2002
Osti O
Full Access

Disc degeneration in the human spine is characterised by progressive fraying and dehydration of the nucleus pulposus associated with formation of clefts within the annulus fibrosus. These have been classified on the basis of autopsy studies into radiating, circumferential and peripheral tears (rim lesions). Outer tears allow neovascularisation of the outer third of the annulus fibrosus and ingrowth of nerve fibres. Correlation with discographic findings had suggested the relevance of peripheral defects in the pathogenesis of discogenic pain. Outer annular tears are likely to be linked to tensile strain onto the collagen fibres and, therefore, may have a mechanical aetiology. In the animal model, peripheral tears of the outer annulus were proven to induce degenerative changes within the inner annulus and the nucleus pulposus. The increased understanding of the role of discrete peripheral defects of the annulus in discogenic pain may support the potential therapeutic effects of thermal treatment using radiofrequency waves and specially designed probes. At present, however, no in vivo studies have been able to demonstrate healing of outer annulus defects and reversibility of mechanical lesions to the intervertebral discs by thermal therapy. While it is highly likely that discrete defects of the outer annulus may be responsible for acute episodes of self-limiting low back pain, it is unclear if annular pathology may be as relevant for chronic disabling back pain. Recent studies using discography and other semi-invasive techniques have suggested that the main discriminating factors between benign, self limiting and chronic disabling back pain may not be anatomical but psycho-social. The challenge remains, in the 21st Century as in the past, to devise appropriate strategies that may lessen the socio-economic burden of back pain. Surgery, however, is highly unlikely to play a significant role in the future


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 10 - 10
1 Sep 2019
Deane J Lim A Strutton P McGregor A
Full Access

Introduction. Patients with recurrent low back pain (LBP) exhibit changes in postural control. Stereotypical muscle activations resulting from external perturbations include anticipatory (APAs) and compensatory (CPAs) postural adjustments. This study aimed to determine differences in postural control strategies (APAs and CPAs) between those with and without lumbar disc degeneration (LDD) and LBP. Methods. Ninety-seven subjects participated in the study (mean age 50 years (SD 12)). 3T MRI was used to acquire T2 weighted images (L1-S1). LDD was determined using Pfirrmann grading and LBP using the numerical rating scale (NRS). A bespoke perturbation platform was designed to deliver postural perturbations. Electrical activity was analysed from 16 trunk and lower limb muscles during four typical APA and CPA epochs. A Kruskal-Wallis H test with Bonferroni correction for multiple comparisons was conducted. Results. Four groups were identified; ‘no LDD no pain’ (n = 19), ‘LDD no pain’ (n =38), ‘LDD pain’ (n =35) and ‘no LDD pain’ (n = 5). There was no significant difference in age or gender between groups. Although, increased BMI was associated with LBP it did not correlate with significant findings. Significant differences in APAs and CPAs were observed between ‘LDD pain’ and ‘LDD no pain’ groups during predicted and unpredicted perturbations (p=0.009–0.049, r=0.31–0.43). Significant CPAs correlated with LBP (p=0.001–0.03) but did not correlate with LDD (p=0.22–0.94). Conclusion. Postural control strategies are different between those with LDD and pain and those without. Differences in compensatory strategy are associated with the presence of pain and not LDD. No conflicts of interest. Sources of Funding: Janet Deane is funded by an Allied Health Professional Doctoral Fellowship awarded by Arthritis Research U.K. (ARUK)


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 95 - 95
1 Jan 2004
Smallhorn JP Adam C Pettet G Pearcy MJ
Full Access

Introduction: A computer model of the L4/5 human intervertebral disc is currently under development. An integral aspect of this model is the material properties assigned to its components. Detailed data on the material properties of the anulus fibrosus ground matrix are not available in the existing literature. To determine these properties, mechanical tests were carried out on specimens of anulus fibrosus harvested from sheep spines. The tests included unconfined uniaxial compression, simple shear and biaxial compression. Data on the strain required to cause permanent damage in the anulus ground matrix and data on the mechanical response of the anulus to repeated loading were obtained. Methods: Intervertebral discs were isolated from the lumbar spines of recently sacrificed sheep. These discs were sectioned into test specimens ensuring there were no continuous collagen fibres bearing load. The edge dimensions of the cubic specimens were 3 ± 0.2mm. To ascertain the strain to initiate tissue damage, the specimens underwent successive loadings, which were carried out 1 hour apart to allow recovery. The maximum strain in each test was increased incrementally by 5% until a reduction in stiffness was observed in the following test. Separate tests were carried out to quantify and characterise the response of the anulus ground matrix in the three modes of loading and to strains greater than that which initiates damage. Results: The strains at which permanent tissue damage occurred were between 20 and 27% in uniaxial compression and between 25 and 35% in simple shear. Testing the specimen beyond these strains showed an obvious reduction in stiffness. The biaxial compression tests showed similar changes but did not result in such pronounced losses in stiffness. The material characteristics were reproducible up to 20% strain. Following deformation to higher strains the altered mechanics were also shown to be reproducible indicating that the matrix had been deranged but not failed. Discussion: Average physiological strains in the L4/5 intervertebral disc are in the order of 10–50% based on maximum deformations observed in vivo. The current results demonstrate that this strain will cause some permanent damage to the anulus ground matrix, however, the matrix will still be capable of carrying stress upon repeated loading. Thompson et. al. 1. found that people over the age of 35 all exhibited signs of disc degeneration. We hypothesise that the regenerative ability of the anulus ceases to function effectively as we age and the continual damage caused to the anulus tissue by daily activities may lead to the degenerative changes seen in the anulus. Knowledge of the material characteristics up to 20% strain and following exposure to higher strains will enable a more realistic model of the intervertebral disc and the effects of degeneration to be studied


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 290 - 291
1 Mar 2003
Smallhorn JP Adam C Pettet G Pearcy M
Full Access

INTRODUCTION: A computer model of the L4/5 human intervertebral disc is currently under development. An integral aspect of this model is the material properties assigned to its components. Detailed data on the material properties of the anulus fibrosus ground matrix are not available in the existing literature. To determine these properties, mechanical tests were carried out on specimens of anulus fibrosus harvested from sheep spines. The tests included unconfined uniaxial compression, simple shear and biaxial compression. Data on the strain required to cause permanent damage in the anulus ground matrix and data on the mechanical response of the anulus to repeated loading were obtained. METHODS: Intervertebral discs were isolated from the lumbar spines of recently sacrificed sheep. These discs were sectioned into test specimens ensuring there were no continuous collagen fibres bearing load. The edge dimensions of the cubic specimens were 3 ± 0.2 mm. To ascertain the strain to initiate tissue damage, the specimens underwent successive loadings, which were carried out one hour apart to allow recovery. The maximum strain in each test was increased incrementally by 5% until a reduction in stiffness was observed in the following test. Separate tests were carried out to quantify and characterise the response of the anulus ground matrix in the three modes of loading and to strains greater than that which initiates damage. RESULTS: The strains at which permanent tissue damage occurred were between 20 and 27% in uniaxial compression and between 25 and 35% in simple shear. Testing the specimen beyond these strains showed an obvious reduction in stiffness. The biaxial compression tests showed similar changes but did not result in such pronounced losses in stiffness. The material characteristics were reproducible up to 20% strain. Following deformation to higher strains the altered mechanics were also shown to be reproducible indicating that the matrix had been deranged but not failed. DISCUSSION: Average physiological strains in the L4/5 intervertebral disc are in the order of 10–50% based on maximum deformations observed in vivo. The current results demonstrate that this strain will cause some permanent damage to the anulus ground matrix, however, the matrix will still be capable of carrying stress upon repeated loading. Thompson et. al. 1. found that people over the age of 35 all exhibited signs of disc degeneration. We hypothesise that the regenerative ability of the anulus ceases to function effectively as we age and the continual damage caused to the anulus tissue by daily activities may lead to the degenerative changes seen in the anulus. Knowledge of the material characteristics up to 20% strain and following exposure to higher strains will enable a more realistic model of the intervertebral disc and the effects of degeneration to be studied


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 439 - 439
1 Aug 2008
Metz-Stavenhagen P Hildebrand R Ferraris L Hempfing A Meier O Krebs S
Full Access

Introduction: There are few long-term studies after Zielke ventral derotation spondylodesis (VDS). We present a minimum 17 year follow-up study to assess factors predicting distal adjacent disc degeneration. Material/Methods: Twenty-eight patients with thora-columbar AIS operated in 1982 have been retrospectively evaluated. Mean age 16,3 years, minimum follow-up 15 years. Anterior fusion was performed with rib graft. Results: Mean pre-op Cobb angle was 65 ± 23°, post-op correction rate was 61,2 ± 12,4%. Mean angulation of end vertebra was 32 ± 10°, post-op corrected to a mean of 8° (correction rate 79%). Mean post-op Th10/L2 kyphosis was 10°. Rod breakage was seen in 17 patients. Conclusion: Thoracolumbar kyphosis was associated both with proximal implant breakage and with segmental lordosis and degeneration of the distal adjacent segment. Disc angulation in the AP plane seems to be good tolerated. Anterior support with iliac bone graft or cages is expected to overcome these complications


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 57 - 57
1 Nov 2021
Sakai D
Full Access

Low back pain is thought to relate to intervertebral disc (IVD) degeneration. Although the mechanisms have not been clearly identified, exhaustion of nucleus pulposus cells and their producing matrix is regarded as one cause. The matrix of the IVD is continuously replenished and remodeled by tissue-specialized cells and are crucial in supporting the IVD function. However, due to aging, trauma, and genetic and lifestyle factors, the cells can lose their potency and viability, thereby limiting their collective matrix production capacity.

We have discovered the link between loss of angiopoietin-1 receptor (Tie2)-positive human NP progenitor cells (NPPC) and IVD degeneration. Tie2+ cells were characterized as undifferentiated cells with multipotency and possessing high self-renewal abilities. Thus we and others have proposed Tie2+ NPPC as a potent cell source for regenerative cell therapies against IVD degeneration. However, their utilization is hindered by low Tie2-expressing cell yields from NP tissue, in particular from commonly available older and degenerated tissue sources. Moreover, NPPC show a rapid Tie2 decrease due to cell differentiation as part of standard culture processes. As such, a need exists to optimize or develop new culture methods that enable the maintenance of Tie2-expressing NPPC. Trials to overcome these difficulties will be shared.


Background: Over several decades, investigators have been trying to identify the painful degenerate disc. Their work included two main methods. The first was to set criteria on the radiological investigations, mainly the MRI scan, to describe the severity of the degenerative disc disease (DDD); and the second was to perform discographies. Neither of these two methods precluded the need for the other. Purpose: Using Pfirrmann’s classification, we correlated static MRI images, for the severity of segmental disc degeneration, with dynamic lumbar discography, with the aim to improve the identification of painful ‘disco-genic’ intervertebral segments. Study design: Prospective cohort study. Inclusion criteria included patients with mechanical low back pain who exhausted the conservative measures and required surgical treatment. Patient Sample and Methods: We investigated 69 patients (45 females, 24 males). The average age was 38.9 years (range 20–56). All patients had degenerative disc disease (DDD) on lumbar MRI scans. Provocative discographies were performed in all cases as a routine investigation to identify painful levels prior to fusion or disc replacement surgery. The severity of DDD was graded using Pfirrmann’s classification. A total of 162 discographies were performed using the ‘miss the facet joint, double needle technique’. Outcome measures: During discography typical or concordant pain only was regarded as positive. Among each of the five Pfirrmann grades, the percentage of positive discographies was calculated. Significance and correlation then were investigated using the Chi-squared and Spearman’s correlation tests. Results: 24 discs were classified as Pfirrmann grade I, 33 grade II, 63 grade III, 27 grade IV and 15 grade V. The percentages of positive provocative discography for concordant pain among these groups were 0%, 9.1%, 71.4%, 100% and 100% respectively. Statistical analysis showed a high correlation between the severity of DDD on MRI scan and the result of the provocative discography (Chi2 = 32.96, P < 0.001 and correlation coefficient = 0.756). Conclusion: The higher the grade of segmental DDD, the more likely it will be painful on discography. All discs showing Pfirmann grade IV and V disease were painful on discography. We strongly recommend the Pfirrmann classification for use in grading the severity of lumbar DDD especially when assessing for its association with discogenic pain as determined by provocative discography


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_2 | Pages 30 - 30
1 Feb 2015
Stone M Osei-Boredom D MacGregor A Williams F
Full Access

Background

The factors influencing normal spine curvature in midlife are unknown. We performed an MR and plain radiograph study on well characterised, unselected twin volunteers from the TwinsUK register (www.twinsuk.ac.uk) to determine the relative contributions of genetic and environmental factors to spine curve.

Methods

T2 weighted MR scans and long spine standing radiographs were obtained at the same morning visit on twin pairs. Midline sagittal MR images were coded for 4 degenerative features. SpineviewTM software was applied plain films and calculated the angles of curvature. A classical twin study was performed. Multivariate regression analysis was used to determine the association between spine curves, LDD and confounders (age, body mass index).


Bone & Joint Research
Vol. 13, Issue 9 | Pages 452 - 461
5 Sep 2024
Lee JY Lee HI Lee S Kim NH

Aims. The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Methods. Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress. Results. A total of 144 discs were categorized as ‘positive’ and 174 discs as ‘negative’ by the results of provocation discography. The presence of defined facet tropism (OR 3.451, 95% CI 1.944 to 6.126) and higher Adams classification (OR 2.172, 95% CI 1.523 to 3.097) were important predictive parameters for discography-‘positive’ discs. FEM simulations showcased uneven stress distribution and significant disc displacement in tropism-affected discs, where loading exacerbated stress on facets with greater angles. During varied positions, notably increased stress and displacement were observed in discs with tropism compared to those with normal facet structure. Conclusion. Our findings indicate that facet tropism can contribute to disc herniation and changes in intradiscal pressure, potentially exacerbating disc degeneration due to altered force distribution and increased mechanical stress. Cite this article: Bone Joint Res 2024;13(9):452–461


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1505 - 1510
2 Nov 2020
Klemt C Limmahakhun S Bounajem G Xiong L Yeo I Kwon Y

Aims

The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients.

Methods

A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system.


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 1 | Pages 36 - 41
1 Jan 1986
Adams M Dolan P Hutton W

One hundred and thirty-nine discs from cadaveric lumbar spines were injected with a mixture of radio-opaque fluid and dye. Discograms were taken and the discs were then sectioned in the sagittal plane. Examination of the sections revealed that injected fluid did not at first mix with the disc matrix but pushed it aside to form pools of injected fluid. The location of these pools, and hence the appearance of a discogram, depended on the stage of degeneration of the disc. It is concluded that useful clinical information can be obtained from discograms.


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 2 | Pages 272 - 277
1 May 1981
Kikuchi S Macnab I Moreau P

There are many difficulties associated with the localisation of the symptomatic segment in patients presenting with cervicobrachial pain with no evidence of impaired conduction in the nerve root. Ancillary radiological investigations such as myelography, epidural phlebography, and epidural myelograms are of unreliable diagnostic value. However, discography can be of value if the technique described here is used. Infiltration of the cervical nerve root with local anaesthetic has also proved useful in the localisation of the symptomatic segment. The techniques used in cervical discography and infiltration of the nerve root are described and their reliability is assessed.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 379 - 379
1 Oct 2006
Anand A Akmal M Wiseman M Goodship A Bentley G
Full Access

Study Purpose: The cause of intervertebral disc degeneration (IVDD) is multifactorial. One proposed mechanism is that IVDD originates in the nucleus pulposus (NP) and progresses radially to the annulus fibrosis (AF). Failure of current treatment modalities in preventing and treating IVDD and thereby low back pain have led to a growing interest in tissue-engineered solutions where a biological repair is induced. By preventing the abnormality at the NP it may be possible to halt further progression of IVDD. Injection of NP cells into an early degenerative IVD, where the AF is still intact, may retard the degenerative process and is presently under investigation. Using a three-dimensional scaffold that could be successfully introduced into the NP cavity through minimally invasive techniques would prevent the loss of chondrocytic phenotype of the cells and be an improvement over the existing technique by which cells are directly injected into the NP cavity.

Methods: (1) CaSO4 and CaCO3 alginates were injected into the NP cavity of a bovine tail. After 90 minutes the tail was dissected to reveal the gel. (2) NP cells released from pooled bovine NP tissue were dispersed into the CaSO4 and CaCO3 alginate gels (10x106 cells.mL-1) with and without Synvisc® and cultured for 21 days.

Results: (1) Injectable alginate suspensions formed solid viscoelastic gels, filling the exact shape of the NP cavity. (2) NP DNA and ECM synthesis was significantly greater in the CaCO3 alginate gel than in the CaSO4 alginate gel (p< 0.05). (3) Synvisc® significantly increased sulphated GAG (p< 0.01) and collagen (p< 0.05) production. These effects were supported histologically and immunohistologically where cells in the CaCO3 and Synvisc® gels stained more intensely for proteoglycan and collagen type II.

Conclusions: Both CaCO3 alginate gel and CaSO4 alginate gel are injectable and are capable of sustaining NP cells in-vitro. Cells remain viable, maintain their phenotype, proliferate and produce ECM during the culture period. The CaCO3 alginate gel provides a three-dimensional matrix more favourable to NP cellular activity than the CaSO4 alginate gel. Synvisc® behaves as a chondro-stimulant significantly enhancing NP cell metabolic activity. This study demonstrates a successful tissue-engineered approach for replacing the NP and, subject to further studies, may be used for retarding mild-to-moderate IVDD, alleviating lower back pain and restoring a functional NP through a minimally invasive technique.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 147 - 147
1 Mar 2009
Anand A Anand B Wiseman M Goodship A Akmal M
Full Access

Background: The cause of intervertebral disc degeneration (IVDD) is multifactorial. One proposed mechanism is that IVDD originates in the nucleus pulposus (NP) and progresses radially to the annulus fibrosis (AF). Failure of current treatment modalities in preventing and treating IVDD and thereby low back pain have led to a growing interest in tissue-engineered solutions where a biological repair is induced. By preventing the abnormality at the NP it may be possible to halt further progression of IVDD. Injection of NP cells into an early degenerative IVD, where the AF is still intact, may retard the degenerative process and is presently under investigation. Using a 3-dimensional scaffold that could be successfully introduced into the NP cavity through minimally invasive techniques would prevent the loss of chondrocytic phenotype of the cells and be an improvement over the existing technique by which cells are directly injected into the NP cavity.

Methods:

CaSO4 and CaCO3 3% alginate hydrogels were injected into the NP cavity of a bovine tail. After 90 minutes the tail was dissected to reveal the gel.

NP cells released from pooled bovine NP tissue were dispersed into the CaSO4 and CaCO3 alginate gels (10x106 cells.mL-1) with and without hylan (Synvisc®) and cultured for 21 days.

Results:

Injectable alginate suspensions formed solid viscoelastic gels, filling the exact shape of the NP cavity.

NP DNA and ECM synthesis was significantly greater in the CaCO3 alginate gel than in the CaSO4 alginate gel (p< 0.05).

Synvisc® significantly increased sulphated GAG (p< 0.01) and collagen (p< 0.05) production. These effects were supported histologically and immunohistologically where cells in the CaCO3 and Synvisc® gels stained more intensely for proteoglycan and collagen type II.

Discussion: This study demonstrates that slowly polymerising CaCO3 and CaSO4 alginate gels are injectable and capable of sustaining NP cells in-vitro. Cells remain viable, maintain their phenotype, proliferate and produce ECM during the culture period. CaCO3 alginate gel provides a 3-dimensional matrix more favourable to NP cellular activity than the CaSO4 alginate gel. Synvisc® has a chondro-stimulatory effect on NP cells in-vitro. These effects are similar to those observed previously with hyaluronic acid, in that it binds to cell surface CD44 receptors, thereby affecting essential cellular functions and cytoskeleton structure. Synvisc® however has an advantage in that it is highly viscous and can reside longer within an alginate construct thereby having a sustained long-term stimulatory effect. This study demonstrates a successful tissue-engineered approach for replacing the NP and, subject to further studies, may be used for retarding mild-to-moderate IVDD, alleviating lower back pain and restoring a functional NP through a minimally invasive technique.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 207 - 207
1 Nov 2002
Costi J Hearn T Fazzalari N
Full Access

Purpose: The aim of this study was to examine the intervertebral disc (IVD) biomechanics in a sheep model with concentric tears.

Methods: Fifty two adult merino wethers were randomly allocated into two groups with circumferential tears introduced by injection with saline (group 1) or needle stick with no saline (group 2). They were then sacrificed at 0, 1, 3, 6, 12 and 18 months for biomechanical testing. An additional ten sheep were used as an unoperated control at time 0 (Group 0). Biomechanical tests on each functional spinal unit (FSU) and IVD were performed.

Results: The effect of procedure overall was significant for torsion (P< 0.022), axial compression (P< 0.014), extension (P< 0.001) and left lateral bending (P< 0.004) for both the FSU and IVD. In almost every case, both groups 1 and 2 were significantly stiffer than group 0 but no different to each other. The effect of time overall was significant for flexion (P< 0.0028) and right lateral bending (P< 0.022) for both the FSU and IVD. In torsion, twisting to the left was significant for the intact FSU (P=0.008) and twisting to the right for the isolated IVD (P=0.009).

Discussion: The results of this study show that any intervention in the disc alters the biomechanics compared to an unoperated control group. To our knowledge this has not been shown before and these findings may have relevance to any intervention into the disc in the patient.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 5 | Pages 678 - 682
1 Sep 1992
Osti O Vernon-Roberts B Moore R Fraser R

We studied 135 lumbar discs from 27 spines removed post-mortem from subjects of an average age of 31.5 years. Defects of the annulus fibrosus were classified as peripheral, circumferential or radiating; the nucleus pulposus as normal, moderately or severely degenerate. Peripheral tears were more frequent in the anterior annulus, except in the L5-S1 disc. Circumferential tears were equally distributed between the anterior and the posterior annulus. Almost all the radiating tears were in the posterior annulus, and closely related to the presence of severe nuclear degeneration. Histology suggested that peripheral tears were due to trauma rather than biochemical degradation, and that they developed independently of nuclear degeneration. The association of peripheral annular lesions with low back pain is uncertain but our study suggests that they may have a role in the pathogenesis of discogenic pain.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 434 - 435
1 Sep 2009
Vernon-Roberts B Moore R Fraser R
Full Access

Introduction: The age-related reduction of water-trapping proteoglycans needed to maintain optimal disc hydration may be caused by reduced synthetic ability or fewer chondrocytes but there is a paucity of objective quantitative studies of disc cellularity.

Methods: Sagittal sections of L4–5 discs were subdivided into a nucleus zone and 18 annulus zones prior to determining cell density (cells/mm2) in

the mid-sagittal plane of 10 male and 10 female discs aged 13–79 years;

7 parasagittal slices through a single disc;

discs showing various types of tears.

Results:

Most chondrocytes were unicellular but bicellular and multicellular chondrons were common in the margins of large tears and the nucleus in degenerate discs.

Cellularity was highest in the right posterior quadrant, lowest in the left anterior quadrant, about equal in the left posterior and right anterior quadrants, and substantially higher in the right half of the nucleus.

The correlation of increasing age with declining cell density was much stronger for the nucleus than for the annulus.

Nucleus cellularity continued to decline throughout life whereas the annulus ceased its decline after the age of 50.

Cell density was low in the vicinity of tears but elsewhere the disc was unaffected.

Extensive inferior and superior end-plate separations reduced cellularity throughout the disc.

Increased thickness of the cartilage end-plate was associated with higher cellularity in the nucleus.

Discussion: The findings that cell density is higher in the posterior annulus and in the right half of the disc, tends to be increased if the cartilage end-plate is thicker, and is not uniformly diminished by large tears, indicates that disc cellularity is influenced by a complex interplay of factors which needs to be understood before attempts are made to restore the structural and functional integrity of degenerate discs.



Bone & Joint Research
Vol. 2, Issue 8 | Pages 169 - 178
1 Aug 2013
Rodrigues-Pinto R Richardson SM Hoyland JA

Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc.

Cite this article: Bone Joint Res 2013;2:169–78.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 678 - 683
1 May 2012
Matsumoto M Okada E Ichihara D Chiba K Toyama Y Fujiwara H Momoshima S Nishiwaki Y Takahata T

We conducted a prospective follow-up MRI study of originally asymptomatic healthy subjects to clarify the development of Modic changes in the cervical spine over a ten-year period and to identify related factors. Previously, 497 asymptomatic healthy volunteers with no history of cervical trauma or surgery underwent MRI. Of these, 223 underwent a second MRI at a mean follow-up of 11.6 years (10 to 12.7). These 223 subjects comprised 133 men and 100 women with a mean age at second MRI of 50.5 years (23 to 83). Modic changes were classified as not present and types 1 to 3. Changes in Modic types over time and relationships between Modic changes and progression of degeneration of the disc or clinical symptoms were evaluated. A total of 31 subjects (13.9%) showed Modic changes at follow-up: type 1 in nine, type 2 in 18, type 3 in two, and types 1 and 2 in two. Modic changes at follow-up were significantly associated with numbness or pain in the arm, but not with neck pain or shoulder stiffness. Age (≥ 40 years), gender (male), and pre-existing disc degeneration were significantly associated with newly developed Modic changes.

In the cervical spine over a ten-year period, type 2 Modic changes developed most frequently. Newly developed Modic changes were significantly associated with age, gender, and pre-existing disc degeneration.


We investigated the relationship between spinopelvic parameters and disc degeneration in young adult patients with spondylolytic spondylolisthesis. A total of 229 men with a mean age of 21 years (18 to 26) with spondylolytic spondylolisthesis were identified. All radiological measurements, including pelvic incidence, sacral slope, pelvic tilt, lumbar lordosis, sacral inclination, lumbosacral angle (LSA), and sacrofemoral distance, were calculated from standing lateral lumbosacral radiographs. The degree of intervertebral disc degeneration was classified using a modified Pfirrmann scale. We analysed the spinopelvic parameters according to disc level, degree of slip and disc degeneration. There were significant positive correlations between the degree of slip and pelvic incidence (p = 0.009), sacral slope (p = 0.003) and lumbar lordosis (p = 0.010). The degree of slip and the LSA were correlated with disc degeneration (p < 0.001 and p = 0.003, respectively). There was also a significant difference between the degree of slip (p < 0.001) and LSA (p = 0.006) according to the segmental level of disc degeneration. Cite this article: Bone Joint J 2013;95-B:1239–43


Bone & Joint 360
Vol. 11, Issue 6 | Pages 34 - 36
1 Dec 2022

The December 2022 Spine Roundup. 360. looks at: Deep venous thrombosis prophylaxis protocol on a Level 1 trauma centre patient database; Non-specific spondylodiscitis: a new perspective for surgical treatment; Disc degeneration could be recovered after chemonucleolysis; Three-level anterior cervical discectomy and fusion versus corpectomy- anterior cervical discectomy and fusion “hybrid” procedures: how does the alignment look?; Rivaroxaban or enoxaparin for venous thromboembolism prophylaxis; Surgical site infection: when do we have to remove the implants?; Determination of a neurologic safe zone for bicortical S1 pedicle placement; Do you need to operate on unstable spine fractures in the elderly: outcomes and mortality; Degeneration to deformity: when does the patient need both?


Aims. In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD. Results. A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion. DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD. Cite this article: Bone Joint Res 2024;13(5):247–260


The relationship of degeneration to symptoms has been questioned. MRI detects apparently similar disc degeneration and degenerative changes in subjects both with and without back pain. We aimed to overcome these problems by re-annotating MRIs from asymptomatic and symptomatic groups onto the same grading system. We analysed disc degeneration in pre-existing large MRI datasets. Their MRIs were all originally annotated on different scales. We re-annotated all MRIs independent of their initial grading system, using a verified, rapid automated MRI annotation system (SpineNet) which reported degeneration on the Pfirrmann (1-5) scale, and other degenerative features (herniation, endplate defects, marrow signs, spinal stenosis) as binary present/absent. We compared prevalence of degenerative features between symptomatics and asymptomatics. Pfirrmann degeneration grades in relation to age and spinal level were very similar for the two independent groups of symptomatics over all ages and spinal levels. Severe degenerative changes were significantly more prevalent in discs of symptomatics than asymptomatics in the caudal but not the rostral lumbar discs in subjects < 60 years. We found high co-existence of degenerative features in both populations. Degeneration was minimal in around 30% of symptomatics < 50 years. We confirmed age and disc level are significant in determining imaging differences between asymptomatic and symptomatic populations and should not be ignored. Automated analysis, by rapidly combining and comparing data from existing groups with MRIs and information on LBP, provides a way in which epidemiological and ‘big data’ analysis could be advanced without the expense of collecting new groups


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 73 - 73
11 Apr 2023
Nüesch A Kanelis E Alexopoulos L Williams F Geris L Gantenbein B Lacey M Le Maitre C
Full Access

A key cause of low back pain is the degeneration of the intervertebral disc (IVD). Causality between infection of the IVD and its degenerative process gained great interest over the last decade. Granville Smith et al. (2021) identified 36 articles from 34 research studies investigating bacteria in human IVDs. Bacteria was identified in 27 studies, whereas 9 attributed bacterial presence to contamination. Cutibacterium acnes was the most abundant, followed by coagulase-negative staphylococcus. However, whether bacteria identified were present in vivo or represent perioperative contamination remains unclear. This study investigated whether bacteria are present in IVDs and what potential effects they may have on native disc cells. Immunohistochemical staining for Gram positive bacteria was performed on human IVD tissue to identify presence and characterise bacterial species. Nucleus pulposus (NP) cells in monolayer and 3D alginate were stimulated with LPS and Peptidoglycan (0.1-50 µg/ml) for 48hrs. Following stimulation qPCR for factors associated with disc degeneration including matrix genes, matrix degrading enzymes, cytokines, neurotrophic factors and angiogenic factors and conditioned media collected for ELISA and luminex analysis. Gram positive bacteria was detected within human IVD tissue. Internalisation of bacteria by NP cells influenced the cell and nuclei morphology. Preliminary results of exposure of NP cells to bacterial components indicate that LPS as well as Peptidoglycan increase IL-8 and ADAMTS-4 gene expression following 48 hours of stimulation with a dose response seen for IL-8 induction by peptidoglycan compared to the control group. Underlining these results, IL-8 protein release was increased for treated groups compared to non-treated control. Further analysis is underway investigating other output measures and additional biological repeats. This study has demonstrated bacteria are present within IVD cells within IVD tissue removed from degenerate IVD and is determining the potential influence of these on disc degeneration


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1183 - 1186
1 Sep 2006
Quinlan JF Duke D Eustace S

Bertolotti’s syndrome is characterised by anomalous enlargement of the transverse process(es) of the most caudal lumbar vertebra which may articulate or fuse with the sacrum or ilium and cause isolated L4/5 disc disease. We analysed the elective MR scans of the lumbosacral spine of 769 consecutive patients with low back pain taken between July 2003 and November 2004. Of these 568 showed disc degeneration. Bertolotti’s syndrome was present in 35 patients with a mean age of 32.7 years (15 to 60). This was a younger age than that of patients with multiple disc degeneration, single-level disease and isolated disc degeneration at the L4/5 level (p ≤ 0.05). The overall incidence of Bertolotti’s syndrome in our study was 4.6% (35 of 769). It was present in 11.4% (20 patients) of the under-30 age group. Our findings suggest that Bertolotti’s syndrome must form part of a list of differential diagnoses in the investigation of low back pain in young people


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 146 - 146
1 Nov 2021
Antoniou J
Full Access

Osteoarthritis (OA) is a painful and disabling chronic condition that constitutes a major challenge to health care worldwide. There is currently no cure for OA and the analgesic pharmaceuticals available do not offer adequate and sustained pain relief, often being associated with significant undesirable side effects. Another disease associated with degenerating joints is Intervertebral disc degeneration (IVDD) which is a leading cause of chronic back pain and loss of function. It is characterized by the loss of extracellular matrix, specifically proteoglycan and collagen, tissue dehydration, fissure development and loss of disc height, inflammation, endplate sclerosis, cell death and hyperinnervation of nociceptive nerve fibers. The adult human IVD seems incapable of intrinsic repair and there are currently no proven treatments to prevent, stop or even retard disc degeneration. Fusion is currently the most common surgical treatment of symptomatic disc disease. However, radiographic follow-up studies have revealed that many patients develop adjacent segment disc degeneration due to altered spine biomechanics. The development of safe and efficacious disease modifying OA drugs (DMOADs) that treat pain and inflammation in joints will improve our ability to control the disease. I addition, a biologic treatment of IVDD is desirable. This presentation will provide an overview of recent advances and future prospects of a multimodal biologic treatment of OA, and IVDD. We will focus on Link N, a naturally occurring peptide representing the N terminal region of link protein and the first 1–8 residues of Link N (short Link N, sLN) responsible for the biologic therapy in question


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results. The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions. BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye, B. Ju, H. Wang, K-B. Lee. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration. Bone Joint Res 2016;5:412–418. DOI: 10.1302/2046-3758.59.BJR-2016-0032.R1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 59 - 59
1 Nov 2021
Basatvat S Williams R Snuggs J Laagland L Medzikovic A Bach F Liyanage D Ito K Tryfonidou M Maitre CL
Full Access

Introduction and Objective. Intervertebral disc (IVD) degeneration accompanying with low back pain is a serious worldwide problem. Even though, surgical treatments are available for pain relief, there is an urgent need to establish enduring cell-based remedies. Notochordal (NC) cells as the ancestor of nucleus pulposus (NP) cells in human IVD are a promising therapeutic target. It has been reported that the loss of NC cells after childhood could promote the onset of disc degeneration. Thus, we firstly, aimed to optimise the culture of NC cells in vitro without using the FCS in alginate (3D) culture systems, secondly, investigate their behaviour in healthy and degenerate niche and lastly, co-culture these cells with degenerated NP cells to assess their regeneration potentials. Materials and Methods. Porcine NC cells were extracted using pronase treatment followed by overnight digestion in 0.01% collagenase II. After extraction, cells were culture in 1.2% alginate beads (gold standard 3D culture) in either low glucose DMEM or αMEM medium. Cells were harvested after 24 hours, 1 week and 2 weeks for gene expression analysis and formalin fixed paraffin embedding. Quantitative Real-Time PCR and Immuno-staining were performed for analysis of NC markers (KRT18, FOXA2 and T) and COL I as a negative marker. Next, NC cells were cultured in healthy and degenerate medium to assess their viability and behaviour. Results. A mixed phenotype of NC and NP cells was observed in alginate bead cultures. NC phenotype was observed within all culture conditions with production of GAGs and maintenance of vacuolated phenotype. Gene expression analysis showed no significant difference between the culture of NC cells in low glucose DMEM and αMEM medium. Interestingly, NC cell viability was maintained in both healthy and degenerate media, despite observing more dead cells in degenerate conditions. Current investigations are comparing the behaviour of NC cells in healthy and degenerate niche. Conclusions. Investigating the preservation of NC phenotype in alginate culture and studying their behaviour between healthy and degenerate conditions would lead us to better understand their characteristics in different niches and how we can further use them in therapeutic purposes for disc degeneration


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 829 - 833
1 Jun 2016
Hou Y Nie L Pan X Si M Han Y Li J Zhang H

Aims. In order to evaluate the effectiveness of the Mobi-C implant in cervical disc degeneration, a randomised study was conducted, comparing the Mobi-C prosthesis arthroplasty with anterior cervical disc fusion (ACDF) in patients with single level cervical spondylosis. Patients and Methods. From January 2008 to July 2009, 99 patients were enrolled and randomly divided into two groups, those having a Mobi-C implant (n = 51; 30 men, 21 women) and those undergoing ACDF (n = 48; 28 men, 20 women).The patients were followed up for five years, with the primary outcomes being the Japanese Orthopaedic Association score, visual analogue scale for pain and the incidence of further surgery. The secondary outcomes were the Neck Disability Index and range of movement (ROM) of the treated segment. Results. The incidence of further surgery was found to be statistically significant between the two groups (p = 0.49), with seven ACDF patients requiring further surgery and only one Mobi-C patient requiring re-operation. There were significant differences (p < 0.001) between the two groups in the ROM of the treated segment. However, both Mobi-C surgery and ACDF surgery were effective in improving the patient’s clinical symptoms. Take home message: Mobi-C implant surgery is a safe alternative to ACDF surgery in cervical disc degeneration. Cite this article: Bone Joint J 2016;98-B:829–3


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 24 - 24
1 Oct 2019
Emanuel K Mader K Peeters M Kingma I Rustenburg C Vergroesen P Sammon C Smit T
Full Access

Purpose of study and background. Mechanical overloading initiates intervertebral disc degeneration, presumably because cells break down the extracellular matrix (ECM). We used Fourier Transform Infrared Spectroscopy (FTIR) imaging to identify, visualize and quantify the ECM and aimed to identify spectroscopic markers for early disc degeneration. Methods and Results. In seven goats, one disc was injected with chondroitinase ABC (mild degeneration) and after three months compared to control. Ex vivo, 50 caprine discs received physiological loading (50–150N) or overloading (50–400N) in a loaded disc culture system. To determine whether ECM degeneration is due to cell activity, half of the discs was subjected to freeze-thaw cycles. Spectroscopic images were collected at 1000–1300 cm. −1. and analyzed using multivariate curve resolution analysis. In vivo, less proteoglycan was found in the degenerated group (p<0.05), especially in the nucleus. Collagen content was increased in the nucleus and anterior annulus, and had higher entropy (p<0.01), indicating matrix disorganization. In the ex vivo experiment, the proteoglycan/collagen ratio was decreased (p<0.05) in the vital group and there was an increase in collagen entropy (p<0.05). A significant interaction between loading and vitality was found in the amount of collagen (p<0.05), but not in the entropy. Conclusion. Three weeks of mild overloading causes measurable changes in the extracellular matrix. Increased collagen entropy indicates that remodeling of collagen is a first step into disc degeneration. We could not confirm, however, that increase in entropy was due to cell activity. FTIR imaging allows more detailed investigation of early disc degeneration than traditional measures. There are no conflicts of interest. Partially funded by Dutch Arthritis Funds, personal grant KSE


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 725 - 733
1 Apr 2021
Lai MKL Cheung PWH Samartzis D Karppinen J Cheung KMC Cheung JPY

Aims. The aim of this study was to determine the differences in spinal imaging characteristics between subjects with or without lumbar developmental spinal stenosis (DSS) in a population-based cohort. Methods. This was a radiological analysis of 2,387 participants who underwent L1-S1 MRI. Means and ranges were calculated for age, sex, BMI, and MRI measurements. Anteroposterior (AP) vertebral canal diameters were used to differentiate those with DSS from controls. Other imaging parameters included vertebral body dimensions, spinal canal dimensions, disc degeneration scores, and facet joint orientation. Mann-Whitney U and chi-squared tests were conducted to search for measurement differences between those with DSS and controls. In order to identify possible associations between DSS and MRI parameters, those who were statistically significant in the univariate binary logistic regression were included in a multivariate stepwise logistic regression after adjusting for demographics. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported where appropriate. Results. Axial AP vertebral canal diameter (p < 0.001), interpedicular distance (p < 0.001), AP dural sac diameter (p < 0.001), lamina angle (p < 0.001), and sagittal mid-vertebral body height (p < 0.001) were significantly different between those identified as having DSS and controls. Narrower interpedicular distance (OR 0.745 (95% CI 0.618 to 0.900); p = 0.002) and AP dural sac diameter (OR 0.506 (95% CI 0.400 to 0.641); p < 0.001) were associated with DSS. Lamina angle (OR 1.127 (95% CI 1.045 to 1.214); p = 0.002) and right facet joint angulation (OR 0.022 (95% CI 0.002 to 0.247); p = 0.002) were also associated with DSS. No association was observed between disc parameters and DSS. Conclusion. From this large-scale cohort, the canal size is found to be independent of body stature. Other than spinal canal dimensions, abnormal orientations of lamina angle and facet joint angulation may also be a result of developmental variations, leading to increased likelihood of DSS. Other skeletal parameters are spared. There was no relationship between DSS and soft tissue changes of the spinal column, which suggests that DSS is a unique result of bony maldevelopment. These findings require validation in other ethnicities and populations. Level of Evidence: I (diagnostic study). Cite this article: Bone Joint J 2021;103-B(4):725–733


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 30 - 30
1 Apr 2018
Emanuel K Peeters M Kingma I Mader K Rustenburg C Sammon C Smit T
Full Access

Biomechanical overloading initiates intervertebral disc degeneration. We hypothesized that this is due to mechanosensitivity of the cells, which break down the extracellular matrix. Previously, we found that overloading in a loaded disc culture system causes upregulation of remodeling- and inflammatory gene expressions. Fourier Transform Infrared Spectroscopy is a novel technique to identify, visualize and quantify ECM. In this research, we first identified novel spectroscopic markers for disc degeneration, and then applied these markers to investigate the first steps into disc degeneration by overloading. In dataset 1, 18 discs of 9 goats were injected with chondroitinase ABC (degenerated) or not (control), and obducted 3 months after injection. This was used to find new spectroscopic markers for degeneration. In dataset 2, 42 goat discs were loaded with a physiological loading regime (50–150N) or overloading (50–400N) in a loaded disc culture system. In 18 of these discs, the cell activity was diminished in advance by freeze-thaw cycles and culturing on saline alone (non-vital group)). 24 additional discs were cultured in culture medium immediately post-mortem (vital group). Thereby, we are able to control whether the effect of the overloading is due to cell activity. The discs were fixed in formaldehyde, and 4 μm mid-sagittal were mounted to steel reflectance slides. Infrared spectroscopic mosaic images (23 × 57 images) were collected in transflectance mode at a spectral region of 1025–1150 cm. −1. Data was pre-processed by second derivative transformation and MCR-MALS with two factors. The two factors were transferable between datasets, confirming the reliability. The first factor represents proteoglycans, as confirmed by Saffrin-O staining. In dataset 1, the degenerated group had less proteoglycan factor overall, especially in the nucleus (p<0.05). The second factor was found to have a lower entropy (p<0.01), showing a disorganization in the matrix. In dataset 2, no significant reduction in proteoglycan was found due to overloading in any group. However, the entropy was lower in the overloaded vital group (p<0.05), but not in the overloaded non-vital group (p>0.5). Therefore, we conclude that infrared spectroscopy is a promising tool to investigate early disc degeneration. Overloading can cause changes in the extracellular matrix, but only due to cell activity. Entropy is an early marker for early disc degeneration, implying that cutting of the extracellular matrix by cell activity is the first step into intervertebral disc degeneration


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 565 - 565
1 Oct 2010
Kröner A Engel A Eyb R Grabmeier G Krampla W Lomoschitz K
Full Access

Study design: Prospective clinical and radiologic study. Objective: The purpose of this study was to investigate the risk factors for adjacent segment degeneration after posterior lumbar interbody fusion (PLIF). Summary of Background data: Although several authors have reported the adjacent segment degeneration after lumbar or lumosacral fusion, there is no consensus regarding the risk factors for adjacent segment degeneration. Methods: Sixty-five patients were studied after PLIF after a minimum follow up time of 6 years. Plain and flexion/ extension radiographs and MRI scans were obtained and compared to preoperative and postoperative. Progression of segment degeneration was defined as a condition in which the distinction between nucleus and annulus is lost, and the disc space is collapsed according to the grading system (Grade 1–5) described by Pfirrmann et al evaluated with T2 weighted MRI scans. Patients were divided into three groups: Group 1 with no radiological progression of disc degeneration, Group 2 with radiological progression of disc degeneration, and Group 3 with radiological progression of disc degeneration and clinical deterioration. Risk factors for progression of adjacent disc degeneration as lumbar lordosis, lordosis at the fused segment, facet sagittalization, and pre-existing disc degeneration were evaluated. The images were evaluated by two independent radiologists. Results: Fifteen patients (23%) showed no radiological progression of disc degeneration on MRI scans and were classified into Group 1. Forty patients (62%) developed some cranial or caudal deterioration of the adjacent segment without clinical deterioration and were classified into Group 2. Ten patients (15%) required reoperation for neurological and clinical deterioration caused by cranial or caudal degeneration of the adjacent disc (Group 3). No statistically significant differences were found in lumbar lordosis, lordosis at the fused segment, facet sagittalization between each group. Patients in Group 3 showed on preoperative MRI already moderate to severe alteration of the adjacent disc (mean Grade 4) compared to Group 1 (mean Grade 2) and 2 (mean Grade 2,5) (p< 0.01). Conclusion: After PLIF disc degeneration appear homogeneously at several levels cranial and caudal to fusion over the years in most of the patients (79%). Only pre-existing degeneration of the adjacent cranial and caudal segment is a potential risk factor for clinical deterioration caused by disc collapse


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 981 - 996
1 Aug 2020
Yang Y Zhao H Chai Y Zhao D Duan L Wang H Zhu J Yang S Li C Chen S Chae S Song J Wang X Yu X

Aims. Whether to perform hybrid surgery (HS) in contrast to anterior cervical discectomy and fusion (ACDF) when treating patients with multilevel cervical disc degeneration remains a controversial subject. To resolve this we have undertaken a meta-analysis comparing the outcomes from HS with ACDF in this condition. Methods. Seven databases were searched for studies of HS and ACDF from inception of the study to 1 September 2019. Both random-effects and fixed-effects models were used to evaluate the overall effect of the C2-C7 range of motion (ROM), ROM of superior/inferior adjacent levels, adjacent segment degeneration (ASD), heterotopic ossification (HO), complications, neck disability index (NDI) score, visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, Odom’s criteria, blood loss, and operating and hospitalization time. To obtain more credible results contour-enhanced funnel plots, Egger’s and Begg’s tests, meta-regression, and sensitivity analyses were performed. Results. In total, 17 studies involving 861 patients were included in the analysis. HS was found to be superior to ACDF in maintaining C2-C7 ROM and ROM of superior/inferior adjacent levels, but HS did not reduce the incidence of associated level ASD. Also, HS did not cause a higher rate of HO than ACDF. The frequency of complications was similar between the two techniques. HS failed to achieve more favourable outcomes than ACDF using the NDI, VAS, JOA, and Odom’s scores. HS did not show any more advantages in operating or hospitalization time but did show reduction in blood loss. Conclusion. Although HS maintained cervical kinetics, it failed to reduce the incidence of ASD. This finding differs from previous reports. Moreover, patients did not show more benefits from HS with respect to symptom improvement, prevention of complications, and clinical outcomes. Cite this article: Bone Joint J 2020;102-B(8):981–996


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 56 - 56
4 Apr 2023
Sun Y Zheng H Kong D Yin M Chen J Lin Y Ma X Tian Y Wang Y
Full Access

Using deep learning and image processing technology, a standardized automatic quantitative analysis systerm of lumbar disc degeneration based on T2MRI is proposed to help doctors evaluate the prognosis of intervertebral disc (IVD) degeneration. A semantic segmentation network BianqueNet with self-attention mechanism skip connection module and deep feature extraction module is proposed to achieve high-precision segmentation of intervertebral disc related areas. A quantitative method is proposed to calculate the signal intensity difference (SI) in IVD, average disc height (DH), disc height index (DHI), and disc height-to-diameter ratio (DHR). According to the correlation analysis results of the degeneration characteristic parameters of IVDs, 1051 MRI images from four hospitals were collected to establish the quantitative ranges for these IVD parameters in larger population around China. The average dice coefficients of the proposed segmentation network for vertebral bodies and intervertebral discs are 97.04% and 94.76%, respectively. The designed parameters of intervertebral disc degeneration have a significant negative correlation with the Modified Pfirrmann Grade. This procedure is suitable for different MRI centers and different resolution of lumbar spine T2MRI (ICC=.874~.958). Among them, the standard of intervertebral disc signal intensity degeneration has excellent reliability according to the modified Pfirrmann Grade (macroF1=90.63%~92.02%). we developed a fully automated deep learning-based lumbar spine segmentation network, which demonstrated strong versatility and high reliability to assist residents on IVD degeneration grading by means of IVD degeneration quantitation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 26 - 26
1 Oct 2022
Bell J Owen D Meek K Terrill N Sanchez-Weatherby J Le Maitre C
Full Access

Background. An improved understanding of intervertebral disc (IVD) structure and function is required for treatment development. Loading induces micro-fractures at the interface between the nucleus pulposus (NP) and the annulus fibrosus (AF), which is hypothesized to induce a cascade of cellular changes leading to degeneration. However, there is limited understanding of the structural relationship between the NP and AF at this interface and particularly response to load. Here, X-ray scattering is utilised to provide hierarchical morphometric information of collagen structure across the IVD, especially the interface region under load. Methodology. IVDs were imaged using the I22 SAXS/WAXS beamline at Diamond Light Source. Peaks associated with the D-banded structure of collagen fibrils were fitted to quantify their azimuthal distribution, as well the magnitude and direction of internal strains under static and applied strain (0–20%). Results. IVD tissue regions exhibited structural “AF-like” and “NP-like” fingerprints. Demonstrating high internal strains on collagen fibres particularly within the NP region of the disc. AF and NP regions showed distinct collagen orientation and internal strains with an apparent lack of bracing structure seen at the interface between the differential mechanical tissues. X-ray scattering under tensile strain provided structural information at high resolution, with clear differences observed between normal and degenerate discs under load. Conclusion. X ray scattering has been utilised to develop an improved understanding of collagen structure across the intervertebral disc which can be utilised to gain an increased understanding of load induced propagation of micro fissures and disc degeneration. Conflict of Interest: No conflict of interest. Funding: BioPro Network, UCL for funding this study through support from the MRC (MR/R025673/1)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 16 - 16
1 Oct 2022
Nüesch A Alexopoulos L Kanelis E Williams F Geris L Gantenbein B Lacey M Le Maitre C
Full Access

Objectives. This study aims to investigate whether bacteria are present in intervertebral discs (IVDs) and their influence. Causality between chronic infection of the IVD and its degenerative process gained great interest recently. Granville Smith et al. (2021) identified 36 articles from 34 research studies investigating bacteria in IVDs, from these 27 studies found, Cutibacterium acnes being the most abundant. However, whether bacteria identified were present in vivo or if they represent contamination remains unclear. Methods. Human IVD tissue was fixed in paraffin and Immunohistochemical stained for Gram-positive bacteria. NP cells in monolayer have been stimulated with LPS (0.1–50 µg/ml) and Peptidoglycan (0.1–50 µg/ml) for 24, 48 and 72 hrs to investigate their influence. The concentration of proinflammatory and catabolic cytokines in the media is being measured using ELISA. RNA extracted and RT-qPCR utilised for factors associated with disc degeneration matrix genes, matrix degrading enzymes, cytokines, neurotrophic factors and angiogenic factors. Results. Bacteria were detected within IVD tissue. Bacteria was internalized by the NP cells and influenced the nuclei morphology. Preliminary results of the exposure of NP cells to bacterial components demonstrate that ADAMTS4 as well as IL-8 were showed an increase in gene expression after LPS and peptidoglycan treatment compared to the non-treated control. Underlining these results, IL-8 protein was increased in treated groups, whereas peptidoglycan treated groups showed a dose dependence. Conclusion. This study demonstrates that Gram positive bacteria are present within the IVD. The exposure of NP cells to peptidoglycans indicates that bacterial components trigger a stress response. Conflicts of Interest: No conflict of interest. Sources of Funding: This project is part of the Disc4All Training network to advance integrated computational simulations in translational medicine, applies to intervertebral disc degeneration and funded by Horizon 2020 (H2020-MSCA-ITN-ETN-2020 GA: 955735)


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 207 - 207
1 Nov 2002
Park J
Full Access

Introduction: The effect of facet tropism on the development of lumbar disc diseases has been investigated but is still controversy; moreover, there has been no study to be done on far lateral lumbar disc herniation (LDH). In the current study, the authors attempted to determine the differences of the degree of facet tropism and the degree of disc degeneration between far lateral and posterolateral LDHs. In addition, the effect of the difference of degree of facet tropism and the degree of disc degeneration on the development of far lateral LDH was investigated compared with posterolateral LDH. Methods: 38 LDHs (far lateral, n = 19; posterolateral, n = 19) who underwent posterior open discectomy or paraspinal approach were included in this study. The mean age was 52.3 years in far lateral LDH and 45.3 years in posterolateral LDH. The degrees of facet tropism and disc degeneration were measured at herniated disc level using MRI, and compared for the two different types of LDHs. Mann-Whitney U test and Spearman test were used for analysis. Results: There were significant statistical differences in the degree of facet tropism and the degree of disc degeneration. There was no significant correlation between the degree of facet tropism and the degree of disc degeneration in far lateral LDH. Discussion: The current study suggests that the differences of the degree of facet tropism and the degree of disc degeneration might be considered as the key factors to determine the development of far lateral LDH compared with posterolateral LDH


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 146 - 146
4 Apr 2023
Li H Chen H
Full Access

Lumbar diseases have become a major problem affecting human health worldwide. Conservative treatment of lumbar diseases is difficult to achieve ideal results, and surgical treatment of trauma, complications, it is imperative to develop a new treatment method. This study aims to explore the regulatory mechanism of cartilage endplate ossification caused by abnormal stress, and design intervention targets for this mechanism, so as to provide theoretical reference for the prevention and treatment of lumbar degeneration. In vivo, we constructed spinal instability model in mice. In vitro, we used a mechanical tensile machine to simulate the abnormal stress conditions of the endplate cartilage cells. Through the high-throughput sequencing, we found the enrichment of Hippo signaling pathway. As YAP is a key protein in the Hippo signaling pathway, we then created cartilaginous YAP elimination mice (Col2::YAPfl/fl). The lumbar spine model was constructed again in these mice for H&E, SOFG and immunofluorescence staining. In vitro lentivirus was used to knock out YAP, immunofluorescence staining, WB and qPCR were performed. Finally, we conducted therapeutic experiments by using YAP agonist and AAV5 carrying YAP plasmids. We collected 8w samples from C57/BL6 mice after modeling. We found ossification of the endplate in mice similar to human disc degeneration. High-throughput sequencing of stretched cells demonstrated high enrichment of the Hippo signaling pathway. By immunofluorescence staining, it was confirmed that Col-II decreased and Col-X gradually increased in the endplate cartilage of mice. This was also confirmed at 7 days after an in vitro stretch of 5% and 12%. Meanwhile, we found that cartilaginous YAP elimination mice developed very severe endplate degeneration. However, the endplate was well protected by intraperitoneal injection of YAP agonist or AAV5-YAP endplate injection, and the results in vitro were consistent with that. In the process of cartilaginous ossification, abnormal stress regulates Col10a1 to promote cartilage endplate ossification through Hippo signaling pathway mediated YAP, and we expect to find potential drug targets for treatment through this mechanism


Background. Magnetic resonance imaging (MRI) algorithm identifies end stage severely degenerated disc as ‘black’, and a moderately degenerate to non-degenerated disc as ‘white’. MRI is based on signal intensity changes that identifies loss of proteoglycans, water, and general radial bulging but lacks association with microscopic features such as fissure, endplate damage, persistent inflammatory catabolism that facilitates proteoglycan loss leading to ultimate collapse of annulus with neo-innervation and vascularization, as an indicator of pain. Thus, we propose a novel machine learning based imaging tool that combines quantifiable microscopic histopathological features with macroscopic signal intensities changes for hybrid assessment of disc degeneration. Methods. 100-disc tissue were collected from patients undergoing surgeries and cadaveric controls, age range of 35–75 years. MRI Pfirrmann grades were collected in each case, and each disc specimen were processed to identify the 1) region of interest 2) analytical imaging vector 3) data assimilation, grading and scoring pattern 4) identification of machine learning algorithm 5) predictive learning parameters to form an interface between hardware and software operating system. Results. Kernel algorithm defines non-linear data in xy histogram. X,Y values are scored histological spatial variables that signifies loss of proteoglycans, blood vessels ingrowth, and occurrence of tears or fissures in the inner and outer annulus regions mapped with the dampening and graded series of signal intensity changes. Conclusion. To our knowledge this study is the first to propose a machine learning method between microscopic spatial tissue changes and macroscopic signal intensity grades in the intervertebral disc. No conflict of interest declared.  . Sources of Funding. ICMR/5/4-5/3/42/Neuro/2022-NCD-1, Dr TMA PAI SMU/ 131/ REG/ TMA PURK/ 164/2020. A part of the above study was presented as an oral paper at the International Society for the Study of Lumbar Spine (ISSLS) meeting held on 1–5. th. May 2023, Melbourne, Australia


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 9 - 9
3 Mar 2023
Zahid A Mohammed R
Full Access

Anterior cervical discectomy and fusion (ACDF) is a well-established spinal operation for cervical disc degeneration disease with neurological compromise. The procedure involves an anterior approach to the cervical spine with discectomy to relieve the pressure on the impinged spinal cord to slow disease progression. The prosthetic cage replaces the disc and can be inserted stand-alone or with an anterior plate that provides additional stability. The literature demonstrates that the cage-alone (CA) is given preference over the cage-plate (CP) technique due to better clinical outcomes, reduced operation time and resultant morbidity. This retrospective case-controlled study compared CA versus CP fixation used in single and multilevel anterior cervical discectomy and fusion for myelopathy in a tertiary centre in Wales. A retrospective clinico-radiological analysis was undertaken, following ACDF procedures over seven years in a single tertiary centre. Inclusion criteria were patients over 18 years of age with cervical myelopathy who had at least six-month follow-up data. SPSS was used to identify any statistically significant difference between both groups. The data were analysed to evaluate the consistency of our findings in comparison to published literature. Eighty-six patients formed the study cohort; 28 [33%] underwent ACDF with CA and 58 [67%] with CP. The patient demographics were similar in both groups, and fusion was observed in all individuals. There was no statistical difference between the two constructs when assessing subsidence, clinical complication (dysphagia, dysphonia, infection), radiological parameters and reoperations. However, a more significant percentage [43% v 61%] of patients improved their cervical lordosis angle with CP treatment. Furthermore, the study yielded that surgery to upper cervical levels results in a higher incidence of dysphagia [65% v 35%]. Finally, bony growth across the cage was observed on X-ray in 12[43%] patients, a unique finding not mentioned in the literature previously. Our study demonstrates no overall difference between the two groups, and we recommend careful consideration of individual patient factors when deciding what construct to choose


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 121 - 121
2 Jan 2024
Tilotta V Di Giacomo G Cicione C Ambrosio L Russo F Papalia R Vadalà G Denaro V
Full Access

Invertebral disc degeneration (IDD) is a degenerative disease involving a variety of musculoskeletal and spinal disorders such as lower back pain (LBP). Secretome derived from mesenchymal stem cells (MSCs) have exerted beneficial effect on tissue regeneration. In this study, the goal was to investigate the paracrine and the anti-inflammatory effects of secretome from interleukin IL1β preconditioned Bone Marrow MSCs (BMSCs) on human nucleus pulposus cells (hNPCs) in a 3D in vitro model. Secretome was collected from BMSCs (BMSCs-sec) after preconditioning with 10 ng/mL IL1β. hNPCs were isolated from surgical specimens, culture expanded in vitro, encapsulated in alginate beads and treated with: growth medium; IL1β 10 ng/mL; IL1β 10 ng/mL for 24 hours and then BMSCs-sec. We examined: i) cell proliferation and viability (flow cytometry), ii) nitrite production (Griess assay) and ROS quantification (Immunofluorescence) iii) glycosaminoglycan (GAG) amount (DMBB) and iv) gene expression levels of extracellular matrix (ECM) components and inflammatory mediators (qPCR). One-way ANOVA analysis was used to compare the groups under exam and data were expressed as mean ± S.D. In vitro tests showed an enhancement of hNPCs proliferation after treatment with BMSCs-sec (p ≤ 0.05) compared to IL1β group. After 24 hours, the percentage of dead cells was higher in IL1β treated hNPCs compared to control group and decreased significantly in combined IL1β and BMSCs-sec sample group (p ≤ 0.01). Nitrite and ROS production were significantly mitigated and GAGs content was improved by preconditioned BMSCs-sec (p ≤ 0.05). Furthermore, gene expression levels were modulated by BMSCs-sec treatment compared to controls. Our results supported the potential use of BMSCs' secretome as a cell-free strategy for IDD, overcoming the side effects of cell-therapy. Moreover, secretome derived from IL1β preconditioned BMSCs was able to reduce hNPCs death, attenuate ECM degradation and oxidative stress counteracting IDD progression. Acknowledgements: Financial support was received from the “iPSpine” and “RESPINE” Horizon 2020 projects


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 47 - 47
1 Sep 2019
Gurrib S Best S Cameron R
Full Access

Aim of Study and Background. The vertebral endplate (VEP) is characterised as a bilayer of cartilage and bone, acting as a boundary between the disc and the vertebra. The disc being the largest avascular tissue in the body, relies primarily on the nutritional pathways from the vascular network in the adjacent VEP. Disruption of this nutrient supply has been identified as a major contributor to disc degeneration, yet the 3D topology of the network is poorly understood. The aim of this work is the characterisation of this vascular network to further understand the physiology of the vascular network and the correlation between disc degeneration and nutrient supply. Methods and Results. Caudal and cranial VEP sections were sampled from lumbar ovine spines and imaged using high-resolution micro-computed tomography (micro-CT) at 4.92 µm pixel size. The diameter, length, orientation and depth from the VEP surface were measured for individual canals using 3D canal centreline models using ScanIP. The results showed higher concentration of canals in the central regions of the VEP and in caudal VEP to the disc. Large transverse canals were identified running parallel to the VEP surface connected to both the disc and the vertebra, and depth-dependence of the length and diameter of the canals was recorded. Conclusion. This work demonstrates that the micro-CT, coupled with centreline models is an extremely useful tool for the characterisation of the vascular network in the VEP. Further study is required to evaluate the effect of degeneration on the observed patterns and to assess reliability of these results when compared with human VEP. No conflicts of interest. No funding obtained


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 154 - 161
1 Feb 2019
Cheung PWH Fong HK Wong CS Cheung JPY

Aims. The aim of this study was to determine the influence of developmental spinal stenosis (DSS) on the risk of re-operation at an adjacent level. Patients and Methods. This was a retrospective study of 235 consecutive patients who had undergone decompression-only surgery for lumbar spinal stenosis and had a minimum five-year follow-up. There were 106 female patients (45.1%) and 129 male patients (54.9%), with a mean age at surgery of 66.8 years (. sd. 11.3). We excluded those with adult deformity and spondylolisthesis. Presenting symptoms, levels operated on initially and at re-operation were studied. MRI measurements included the anteroposterior diameter of the bony spinal canal, the degree of disc degeneration, and the thickness of the ligamentum flavum. DSS was defined by comparative measurements of the bony spinal canal. Risk factors for re-operation at the adjacent level were determined and included in a multivariate stepwise logistic regression for prediction modelling. Odds ratios (ORs) with 95% confidence intervals were calculated. Results. Of the 235 patients, 21.7% required re-operation at an adjacent segment. Re-operation at an adjacent segment was associated with DSS (p = 0.026), the number of levels decompressed (p = 0.008), and age at surgery (p = 0.013). Multivariate regression model (p < 0.001) controlled for other confounders showed that DSS was a significant predictor of re-operation at an adjacent segment, with an adjusted OR of 3.93. Conclusion. Patients with DSS who have undergone lumbar spinal decompression are 3.9 times more likely to undergo future surgery at an adjacent level. This is a poor prognostic indicator that can be identified prior to index decompression surgery


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 88 - 88
1 Apr 2018
Khalaf K Nikkhoo M Parnianpour M Bahrami M Cheng CH
Full Access

Clinical investigations show that the cervical spine presents wide inter-individual variability, where its motion patterns and load sharing strongly depend on the anatomy. The magnitude and scope of cervical diseases, including disc degeneration, stenosis, and spondylolisthesis, constitute serious health and socioeconomic challenges that continue to increase along with the world”s growing aging population. Although complex exact finite element (FE) modeling is feasible and reliable for biomechanical studies, its clinical application has been limited as it is time-consuming and constrained to the input geometry, typically based on one or few subjects. The objective of this study was twofold: first to develop a validated parametric subject-specific FE model that automatically updates the geometry of the lower cervical spine based on different individuals; and second to investigate the motion patterns and biomechanics associated with typical cervical spine diseases. Six healthy volunteers participated in this study upon informed consent. 26 parameters were identified and measured for each vertebra in the lower cervical spine from Lateral and AP radiographs in neutral, flexion and extension viewpoints in the standing position. The lower cervical FE model was developed including the typical vertebrae (C3-C7), intervertebral discs, facet joints, and ligaments using ANSYS (PA, USA). In order to validate the FE model, the bottom surface of C7 was fixed, and a 73.6N preload together with a 1.8 N.m pure moment were input into the model in both flexion and extension. The results were compared to experimental studies from literature. Disc degeneration disease (DDD) was used as an example, where the geometry of C5-C6 disc was changed in the model to simulate 3 different grades of disc degeneration (mimicking grades 1 to 3), and the resulting biomechanical responses were evaluated. The average ranges of motion (ROM) were found to be 4.84 (±0.73) degrees and 5.36 (±0.68) degrees for flexion and extension for C5-C6 functional unit, respectively, in alignment with literature. The total ROM of the model with disc generation grades 2 and 3 was found to have decreased significantly as compared to the intact model. In contrast, the axial stresses on the degenerated discs were significantly higher than the intact discs for all 3 degeneration grades. Our preliminary results show that this novel validated subject-specific FE model provides a potential valuable tool for noninvasive time and cost effective analyses of cervical spine biomechanical (kinematic and kinetic) changes associated with various diseases. The model also provides an opportunity for clinicians to use quantitative data towards subject-specific informed therapy and surgical planning. Ongoing and future work includes expanding the studied population to investigate individuals with different cervical spine afflictions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 43 - 43
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Injury of the intervertebral disc (IVD) can occur for many reasons including structural weakness due to disc degeneration. A common disc injury is herniation. A herniated nucleus can compress spinal nerves, causing pain, and nucleus depressurisation changes mechanical behaviour. Many studies have investigated in vitro IVD injuries including endplate fracture, incisions, and nucleotomy. There is, however, a lack of consensus on how the biomechanical behaviour of spinal motion segments is affected. The aim of this study was to induce defined changes to IVDs of spine specimens in vitro and apply 6 degree of freedom testing to evaluate the effect of these changes. Six porcine lumbar spinal motion segments were harvested from organically farmed pigs. Posterior structures were removed to produce isolated spinal disc specimens. Specimens were potted in Wood's metal, ensuring the midplane of the IVD remained horizontal. After potting, specimens were sprayed with 0.9% saline, wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was equilibrated for 30 minutes before testing. Specimens were tested intact and after a partial nucleotomy removing ~0.34g of nuclear material with a curette through an annular incision. Stiffness tests were performed using the University of Bath's custom 6-axis spine simulator with coordinate axes and displacement amplitudes. Tests comprised five cycles with data acquired at 100Hz. Stiffness matrices were evaluated from the last three motion cycles using the linear least squares method. Stiffness matrices for intact and nucleotomy tests were compared. No significant differences in shear, axial or torsional stiffnesses were noted. Nucleotomy caused significantly higher stiffness in lateral bending and flexion-extension with increased linearity and the load-displacement behaviour in these axes displayed no neutral zone (NZ). Induced changes were designed to replicate posterolaterally herniated discs. Unaffected shear, axial and torsional stiffnesses suggest the annulus is crucial in these axes. However, reduced ROM and NZ after nucleotomy suggests bending is most affected by herniation. Increased linearity and lack of defined NZ in these axes demonstrates herniation causes major changes to the viscoelastic behaviour of spine specimens in response to loading


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 39 - 39
1 Sep 2019
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Methods and Results. Immunohistochemistry for the senescence marker: p16. INK4A. was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16. INK4A. positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. Conclusions. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression, which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro. No conflicts of interest. Sources of funding: Funded by ARUK and MRC


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 36 - 36
17 Nov 2023
Warren J Mengoni M
Full Access

Abstract. Objectives. While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis. Methods. Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints. Results. Relative facet joint displacement under load, in a neutral position, showed more displacement (2.36 ±1.68 mm) compared to the cross-head when under compression (2.06 ±1.19 mm). Motion capture indicated the relative displacement of the facet joints was more posterior with some lateral motion. For five of the six facet joints, pressure measurement was possible only on 24±7 % of the surface due to the large change in curvature. Partially measured loads through the facets was 10.5 ±1.1 N. Conclusions. The relative displacement of the lumbar facet joints compared to the crosshead displacement was consistent with previous studies of cervical facet joints, despite the differences in anatomical geometry between cervical and lumbar joints. The difficulties in accurately measuring the load transfer through the facet joints was due to the age of the tissue and the degree of curvature of the facet joints. Synchronisation of the biomechanical data will provide a setup to assess the effect of interventions such as spinal fusion, with curvature-related issues unlikely to occur in human spines. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 86 - 86
1 Dec 2022
Grant M Bokhari R Alsaran Y Epure LM Antoniou J Mwale F
Full Access

Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of proteoglycan and Col II in NP and AF cells, similar to treatment with IL-1b. (n = 4). Contrarily to IL-1b, Ca. 2+. and cincalcet did not significantly increase the expression of catabolic enzymes save ADAMTS5. Similar effects were observed in whole organ cultures, as Ca. 2+. and cinacalcet decreased proteoglycan and collagen content. Although both Ca. 2+. and cinacalcet increased the expression of alkaline phosphatase (ALP), only in Ca. 2+. -treated IVDs was there evidence of calcium deposits in NP and AF tissues as determined by von Kossa staining. Biomechanical studies on Ca. 2+. and cinacalcet-treated IVDs demonstrated decreases in complex modulus (p<0.01 and p<0.001, respectively; n=5), however, only Ca. 2+. -treated IVDs was there significant increases stiffness in NP and AF tissues (p<0.001 and p<0.05, respectively; n=3). Our results suggest that changes in the local concentrations of calcium and activation of CaSR affects matrix protein synthesis, calcification and IVD biomechanics. Ca. 2+. may be a contributing factor in IVD degeneration and calcification


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 29 - 29
1 Nov 2018
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However, to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Immunohistochemistry for the senescence marker: p16INK4A was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16 INK4A positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 435 - 435
1 Sep 2009
Costi J Stanley R Smith L Tettis H Tsangari H Hearn T Fazzalari N
Full Access

Introduction: Disc degeneration causes structural and biochemical tissue changes resulting in altered stresses that may affect vertebral bone remodelling. We hypothesized that disc degeneration alters vertebral cortical strains and disc mechanics of the motion segment, with and without the presence of zygapophyseal joints. Methods: Twenty human lumbar functional spinal units (FSUs) were strain gauged on the lateral and anterior vertebral cortices, below the inferior endplate. Each FSU was preloaded overnight (0.2 MPa) in a bath and subjected to dynamic compression (1 MPa), flexion/extension/lateral bending (500N + 5 Nm), and axial rotation (5 Nm), before and after removal of the zygapophyseal joints. After testing, discs were macroscopically assessed and graded (1–4) for degeneration. Stiffness, phase angle (energy absorption) and principal strains were calculated. ANOVAs with the dependent variable of principal strain/stiffness/phase angle versus disc grade were performed for each testing direction. Results: Assessment of disc degenerative condition revealed six grade 2 discs, eight grade 3, and six grade 4. Age and degeneration were highly correlated (r=0.80, P< 0.0001). The effect of disc grade on stiffness was significant overall in most loading directions, before and after removal of zygapophyseal joints (P< 0.008), apart for axial rotation (P> 0.587). Post-hoc multiple comparisons for all loading directions apart for axial rotation revealed that the stiffness of grade 4 discs was significantly larger than grades 2 and 3 discs in most loading directions. For phase angle (approximate magnitude 5°), no significant overall effects due to degeneration were found across any loading direction (P> 0.2). ANOVA analyses on maximum/minimum principal strains found no significant effect due to disc grade (P> 0.063). However, a small number of significant effects due to disc grade were found at particular strain gauge locations for the isolated disc in flexion, the intact FSU in extension, and the intact FSU/isolated disc in right lateral bending. Discussion: This study represents the first of its kind to investigate the effects of disc degeneration on vertebral bone cortical strain and disc mechanical properties. Significant increases in stiffness were found with increasing degeneration in all test directions apart for axial rotation. Changes in disc stiffness were consistent with other studies and may be a result of the structural and biochemical changes within the disc that accompany the degenerative process. The non-significant small phase angles suggest that the disc behaves more like an elastic solid than a poroelastic material, and that dehydration associated with degeneration does not adversely affect damping. Principal strains were not significantly affected by disc degeneration overall, suggesting that the cortical shell adjacent to the disc-endplate boundary maintains a relatively homeostatic condition, with more dramatic architectural changes probably occurring within the trabecular bone. Applications of this research include providing important validation data for analytical/finite element models of the intact FSU and isolated disc segment, and a better understanding of the magnitudes of cortical strains that need to be maintained in order to avoid damaging vertebral bone stress-shielding effects after treatments for disc degeneration


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 226 - 226
1 May 2009
Antoniou J Beaudoin G Demers CN Goswami T Mwale F Iatridis JC
Full Access

Despite a relentless search for adequate and effective treatment, low back pain is one of the most prevalent and costly illness in today’s society. While disc degeneration has been implicated as a major etiologic component of low back pain, there has been relatively little study in developing an objective, accurate, non-invasive diagnostic tool in the detection and quantification of matrix changes in early disc degeneration. The aim of the present study was to establish the correlations between magnetic resonance (MR) parameters and the biochemical and mechanical properties of the nucleus pulposus (NP) undergoing targeted trypsin digestion and axial compression. Three-disc segments from bovine tails were either unloaded or loaded (cyclic compression: 50N-300N-50N at 1 Hz for 16h) to evaluate the effect of compression loading and the interactive effects of trypsin treatment and mechanical loading. The MR examinations were carried out in a 1.5-Tesla whole-body Siemens Avanto System (Siemens AG, Germany). The frozen NP and annulus fibrosus (AF) tissue sections reserved for mechanical analysis were tested under confined compression; swelling pressure was calculated based on the increase in measured force throughout the initial dwell period. Total water, proteoglycan, collagen, and denatured collagen contents were also measured. Results showed that loading had a significant effect on the MR properties (T1, T2, T1ñ, MTR, ADC) of both disc tissues. Loading had a greater effect on the MR parameters and biochemical composition of the NP than trypsin. In contrast, trypsin had a larger effect on the mechanical properties. Results also indicated that localised trypsin injection predominantly affected the NP. T1ñ was sensitive to loading and correlated with the water content of the NP and AF but not with their proteoglycan content. Results support the concept that physiologic loading is an important confounder and that T1ñ is an essential parameter in efforts to develop quantitative MRI as a non-invasive diagnostic tool to detect and quantify matrix and material changes in early disc degeneration. Further studies are required to determine the potential of the T1ñ technique to be used as a non-invasive diagnostic tool of the biochemical and mechanical changes occurring in disc degeneration


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 193 - 193
1 May 2011
Blondel B Tropiano P Marnay T
Full Access

Study Design and Objectives: The aim of this prospective study is to analyze clinical results of lumbar total disc arthroplasty according to the MRI evaluation of the disc degeneration. Summary of Background Data: Disc degeneration of the lumbar spine is associated with different signs on MRI study. Such lesions can be treated by spinal fusion or disc arthroplasty, and no strong therapeutic consensus is available at the moment. Non-fusion techniques have been developed for the treatment of disc degeneration disease and are able to preserve intervertebral mobility with good clinical results. Materials and Methods: 221 patients with a mean age of 42 years have been included in this study. 107 patients were classified Modic 0, 65 Modic 1 and 49 Modic 2. Clinical evaluation (Oswestry Disability Index, Lumbar and Radicular visual analogic score) was performed preoperatively and at 3, 6, 12 and 24 months postoperatively. Results: Mean follow-up of the series was 30 months [24–72 months]. A significant clinical improvement (p< 0, 05) was observed on each criteria between the preoperative evaluation and last follow-up. On the multivariate analysis between the three groups, a significant difference was observed, with better clinical results in the group classified Modic 1. Conclusion: Total lumbar disc arthroplasty provide a significant clinical improvement in patients with disc degenerative disease with a minimum follow-up of two years. Best results were achieved in the group of patients classified as Modic 1 on the MRI evaluation. These results are applicable for the selection of indications of total disc arthroplasty and also for the patient information preoperatively


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 60 - 60
1 Nov 2021
Cazzanelli P Hausmann ON Wuertz-Kozak K
Full Access

Introduction and Objective. Intervertebral disc (IVD) degeneration is one of the major contributors to low back pain, the leading cause of disability worldwide. This multifactorial pathological process involves the degradation of the extracellular matrix, inflammation, and cell loss due to apoptosis and senescence. While the deterioration of the extracellular matrix and cell loss lead to structural collapse of the IVD, increased levels of inflammation result in innervation and the development of pain. Amongst the known regulators of inflammation, toll-like receptors (TLRs) and more specifically TLR-2 have been shown to be specifically relevant in IVD degeneration. As strong post-transcriptional regulators, microRNAs (miRNAs) and their dysregulation has been connected to multiple pathologies, including degenerative diseases such as osteoarthritis and IVD degeneration. However, the role of miRNAs in TLR signalling in the IVD is still poorly understood and was hence investigated in this study. Materials and Methods. Human Nucleus pulposus (hNP) and Annulus fibrosus (hAF) cells (n=5) were treated with the TLR-2/6 specific agonist PAM2CSK4 (100 ng/mL for 6 hours) in order to activate the TLR2 signalling pathway. After the activation both miRNA and mRNA were isolated, followed by next-generation sequencing and qPCR analysis of proinflammatory cytokines respectively. Furthermore, cell supernatants were used to analyze the secretion of proinflammatory cytokines with enzyme-linked immunosorbent assay. TLR-2 knockdown (siRNA) cells were used as a control. Statistical analysis was conducted by performing Kolmogorov-Smirnov test and a two-tailed Student's t-test using GraphPad Prism version 9.0.2 for Windows (GraphPad Software, La Jolla California USA). Results. TLR-2 activation resulted in the induction of an inflammatory cell response, with a significant increase in gene expression of interleukin (IL)-6 (525 ± 180 fold change, p < 0.05) and IL-8 (7513 ± 1907 fold change, p < 0.05) and protein secretion of IL-6 (30.5 ± 8.1 pg/mL) and IL-8 (28.9 ± 5.4 pg/mL). TLR-2 activation was furthermore associated with changes in the miRNA profile of hNP and hAF cells. Specifically, we identified 10 differentially expressed miRNAs in response to TLR-2 activation, amongst which were miR-335–3p (1.45 log2 FC, p < 0.05), miR-125b-1–3p (0.55 log2 FC, p < 0.05), and miR-181a-3p (−1.05 log2 FC, p < 0.05). Conclusions. The identified miRNAs are known to be associated with osteoarthritis (miR-335-3p), inflammation and IVD degeneration (mir-125-1-3p and miR-181a-3p), but the link to TLR signalling has not been previously reported. Experiments to validate the identified miRNAs and elucidate their functional role are undergoing. The identification of these miRNAs provides an opportunity to further investigate miRNAs in the context of TLR activation and inflammation and to enhance our understanding of underlying molecular mechanisms behind disc degeneration, inflammation, and TLR dysregulation


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 4 | Pages 613 - 619
1 Jul 1996
Harada T Ebara S Anwar MM Okawa A Kajiura I Hiroshima K Ono K

We have reviewed the cervical spine radiographs of 180 patients with athetoid cerebral palsy and compared them with those of 417 control subjects. Disc degeneration occurred earlier and progressed more rapidly in the patients, with advanced disc degeneration in 51%, eight times the frequency in normal subjects. At the C3/4 and C4/5 levels, there was listhetic instability in 17% and 27% of the patients, respectively, again six and eight times more frequently than in the control subjects. Angular instability was seen, particularly at the C3/4, C4/5 and C5/6 levels. We found a significantly higher incidence of narrowing of the cervical canal in the patients, notably at the C4 and C5 levels, where the average was 14.4 mm in the patients and 16.4 mm in normal subjects. The combination of disc degeneration and listhetic instability with a narrow canal predisposes these patients to relatively rapid progression to a devastating neurological deficit


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 586 - 586
1 Nov 2011
Bishop PB Fisher C Quon J Dvorak M
Full Access

Purpose: Clinical practice guideline (CPG) concordant treatment (Ctx) has been shown to be more effective than CPG discordant care (Dtx) in a heterogeneous cohort of patients with acute lower back pain (ALBP). However, patients with underlying spine pathology (e.g. stenosis, disc degeneration, facet joint arthropathy) or without identifiable spine pathology may all present solely with ALBP. At present, it is unknown if underlying spine pathology influences the outcome of Ctx. The purpose of this study was to determine if Ctx is more effective than Dtx in patients with differing underlying spine pathology who present with ALBP. Method: A Two-arm, randomized control trial with stratified analysis. Inclusion: Ages 19–59; QTFSD I, II ALBP < 4 weeks. Exclusion: “Red Flag” conditions, comorbidities contraindicating Ctx. The primary outcome was the difference between Ctx and Dtx Roland Morris Disability (RDQ) scores at 16 weeks post baseline between study groups. Secondary outcomes: differences in Bodily Pain (BP), Physical Functioning (PF) SF-36 domain scores at 16 weeks. Patients were assessed by a spine physician and randomized to Ctx or Dtx. Patients were stratified on the basis of CT or MRI evidence of:. spinal stenosis;. disc degeneration;. facet joint arthropathy; or. no identifiable pathology. Hospital / University Ethics approval was obtained. Results: Eighty-eight patients were recruited; 39 in Ctx & 38 in Dtx group completed the study. Baseline prognostic variables were evenly distributed between groups. Outcomes: mean difference in 16 week RDQ, BP and PF scores between Ctx and Dtx was statistically greatest in group 4 (p< 0.001). There was no significant clinical improvement in RDQ, BP or PF scores in either the Ctx or Dtx in group 2. Conclusion: Ctx was more effective than Dtx in patients with no identifiable spine pathology and ineffective and equivalent to Dtx in patients with underlying disc degeneration


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 449 - 449
1 Oct 2006
Vaccaro A
Full Access

The basis of back pain and disc degeneration is little understood. The end point of disk degeneration is cellular decline, loss of water content, decrease of proteoglycans, decrease in Type II collagen with consequent increase in Type I collagen as well as anular fissures, loss of mechanical competence of the disk facet complex as well as bony changes. Little is known of the process from the healthy disk to more degenerated disc. The current solution to what is thought to be the causes of the problem is surgery involving disc excision, fusion and/or replacement. These solutions may be the cause of more problems. Frequently these solutions are temporary. The question is whether there is a better or different way to treat this pain-generating disc degeneration. In intervening with disc degeneration by manipulating the cellular environment, timing may be everything. However we do not know at which time point the decline of disc tissue becomes irreversible, when any cellular, genetic or growth factor therapies to try to regenerate will be futile. The goal is to find this point and try to perform therapies that are appropriate at that time point. The strategies should include promoting and upgrading matrix synthesis within the disc, inhibiting the catabolic processes that may be a normal aging process, and to try to replace the loss number of cells to increase the matrix to avoid the imbalance between synthesis and catabolism that maybe causing the disk degeneration. Disc tissue and chondrocytes cultured using a variety of techniques synthesize proteoglycans and collagen type II. These culture systems can be used to manipulate the biology using growth factors, gene therapy methods and environmental cues to increase proteoglycans or collagen II production. Human OP-1 has been shown to increase proteoglycan synthesis while collagen type II can be increased when cultures are exposed to recombinant human BMP. Unfortunately, growth factors have a short half life and must therefore be administered in multiple doses to prolong their effect. The potential solution may be the use of viral vector or gene therapy. When a viral vector with an exogenous gene is introduced into cell cultures, the gene is incorporated into the target cell which can express the gene producing growth factors long term. Adenoviral vector systems using a therapeutic gene containing TGF beta 1 promotes both proteoglycan and collagen synthesis. This response is dose dependent. Similarly, anulus fibrosis cell cultures show increased collagen synthesis when exposed to viral vectors carrying BMPs and Sox-9 genes. Combined use of multiple growth factors genes such as TGF beta 1, BMP 2, and IGF has an additive effect on proteoglycan synthesis. The Sox-9 gene is essential for chondrogenesis. It has been shown to promote type II collagen synthesis in disc cell cultures. In animal studies adeno Sox-9 inoculation of the disc maintains normal disc anatomy while controls show disc degeneration and osteophyte formation. To date, studies show that growth factors may slow the degenerative process but not reverse it. Disc chondrocytes are sparse in numbers and difficult to isolate and culture. Mesenchymal stem cells grown in an hypoxic environment will produce collagen and Sox-9 markers similar to nucleus pulposus cells. Cells harvested from the disc and grown in culture will survive and synthesis matrix when retransplanted into the disc environment. If suitable cells can be cultured and genetically manipulated to up regulate growth factor production, then introduction of these cells into a degenerating disc at an appropriate stage might favorably moderate the degenerative process hopefully obviating the need for surgery


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 225 - 225
1 Jul 2014
Detiger S Holewijn R Hoogendoorn R Helder M Berger F Kuijer J Smit T
Full Access

Summary Statement. Conventional imaging techniques lack the ability to objectively assess early stages of intervertebral disc degeneration, characterised by glycosaminoglycan loss. This study shows that MRI T2∗ mapping correlates positively with GAG content and that it provides continuous measurements for disc degeneration. Introduction. Early degenerative changes arise in the nucleus pulposus (NP) and are characterised by a loss of glycosaminoglycans (GAG). Early disc degeneration (DD) could possibly be treated with upcoming regenerative therapies (e.g. with stem cells and/or growth factors). In order to evaluate degeneration and treatments, a sensitive diagnostic tool is needed. While conventional magnetic resonance imaging (MRI) and x-ray techniques can detect late stages of DD, these techniques lack the ability to detect early degenerative changes. Recently, T2∗ mapping has been proposed as a new technique to evaluate early IVD degeneration, yet the correlation with GAG content and histological features has not been previously investigated. The objective of this study was to determine the value of T2∗ mapping in diagnosing DD by correlating this technique with the biochemical composition of IVDs. Materials & Methods. Six caprine lumbar spines obtained from an in vivo study and two healthy goat spines from the local abattoir, encompassing a total of 48 IVDs, were examined using sagittal standard T2-weighted and T2∗ mapping MRI protocols at 1.5 Tesla. Regions of interest (ROIs) were drawn on the T2∗ maps, covering the IVD. Based on T2 weighted MRI, discs were morphologically classified using the Pfirrmann score. Histological and macroscopic features were evaluated based on grading scales adapted for goat DD. Finally, GAG content was determined using colorimetric analysis (DMMB assay). Correlations between variables were analysed using Pearson correlation (r) coefficients (parametric data) or Spearman's rho (ρ) coefficients (non-parametric data). Results. The mean GAG content in the NP was 450 μg/mg dry weight (range 20–730 μg/mg dry weight) and the mean histological grade was 2.2 (range 0–6), corresponding with relatively mild disc degeneration. A linear positive correlation was observed between T2∗ and NP GAG content (r = 0.65, p < 0.001). T2∗ in the NP decreased linearly with increasing degeneration as assessed with macroscopic (ρ = 0.33, p < 0.05) and histological (ρ = −0.45, p < 0.05) grading, as well as with the Pfirrmann scoring system (ρ = −0.67, p < 0.001). Discussion. T2∗ mapping is a relatively new MRI technique which allows for measurements on a continuous scale, is acquired in less time than T2 mapping and minimises observer bias compared to grading systems. Although limited by a small sample size (n=48), this study showed a relatively good, linear correlation between T2∗ and GAG content in the NP, suggesting that T2∗ mapping may be an efficient and reliable tool for the objective assessment of proteoglycan content in early DD. Furthermore, with minor software modifications, it can be implemented on a standard 1.5 Tesla clinical MRI scanner. Future research should aim at optimizing the efficiency and user-friendliness of the T2∗ mapping protocol as well as yielding an even stronger correlation between T2∗ mapping and glycosaminoglycan content in human IVD tissue


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 152 - 152
1 Mar 2006
Schizas C Scaletta C Burri N Pioletti D Applegate
Full Access

Background: Low back pain due to disc degeneration is a major problem in industrialized countries. So far surgical treatment has consisted of either fusing the involved segments or replacing them with a prosthetic disc. Both techniques yield unpredictable results. Objective: Looking at a biological solution we have been exploring the possibilities of harvesting and culturing adult and fetal human intervertebral disc cells in vitro. Methods: Nucleus pulposus tissue has been surgically removed in cases of scoliosis, lumbar disc degeneration and cervical disc herniation after obtaining patient’s consent. Fetal disc tissue was also obtained following approval by the hospital ethics committee. Tissue was put in culture with and without prior collagenase II digestion. No antibiotics or growth factors were used. Cells were kept in culture until confluence and preserved in liquid nitrogen for further study. Results: We found that it was possible to obtain homogenous populations of cells macroscopically identifiable as chondrocytes from the adult donnors. Collagenase II treatment provided the best results in adult cells whereas digestion was not necessary for the fetal tissue. The latter showed rapid growth compared to adult cells. Further characterization is underway. Conclusions: It is possible to obtain cultures of nucleus pulposus human cells from a variety of donors, including adolescent patients with little degeneration as well as from patients showing symptoms and signs of lumbar and cervical disc degeneration.. Fetal tissue could also be cultured without growth factor use. Fetal cells in particular multiplied faster than adult cells and could possibly be used as a cell bank in view of tissue engineering projects


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives. The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity. Methods. A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12. Results. No MMP12 expression was detected in the nucleus pulposus. Expression of MMP12 in the annulus progressively increased from group I to groups II and III, mainly at the concave side. Many growth plate chondrocytes expressed MMP12 in the control group, less in group I and rare in groups II and III. Changes in cell phenotype and reduction of cell number were observed, together with disorganisation of matrix microstructure similar to disc degeneration. ProMMP12 was detected at the area of 54 kDa and active MMP12 at 22 kDa. Conclusions. Expression of MMP12 after application of asymmetric loading in a rat tail increased in the intervertebral disc but decreased in the growth plate and correlated with the degree of the deformity and the side of the wedged disc. Cite this article: Bone Joint Res 2014;3:273–9


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 687 - 691
1 May 2005
Aihara T Takahashi K Ogasawara A Itadera E Ono Y Moriya H

We studied 52 patients, each with a lumbosacral transitional vertebra. Using MRI we found that the lumbar discs immediately above the transitional vertebra were significantly more degenerative and those between the transitional vertebrae and the sacrum were significantly less degenerative compared with discs at other levels. We also performed an anatomical study using 70 cadavers. We found that the iliolumbar ligament at the level immediately above the transitional vertebra was thinner and weaker than it was in cadavers without a lumbosacral transitional vertebra. Instability of the vertebral segment above the transitional vertebra because of a weak iliolumbar ligament could lead to subsequent disc degeneration which may occur earlier than at other disc levels. Some stability between the transitional vertebra and the sacrum could be preserved by the formation of either an articulation or by bony union between the vertebra and the sacrum through its transverse process. This may protect the disc from further degeneration in the long term


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 409 - 409
1 Sep 2005
Brisby H Wei A Chung S Tao H Ma D Diwan A
Full Access

Introduction Intervertebral disc degeneration may cause chronic low back pain. Disc degeneration is characterized by dysfunctional cells and a decrease in extra-cellular components. Bone marrow derived mononuclear cells are a heterogeneous cell population which contains mesenchymal stem cells. Transplantation of stem cells and progenitor cells may provide a new approach to treat disc degeneration, but it is unclear if transplanted cells can survive and differentiate in the non-vascularized disc. Methods Bone marrow was collected from syngeneic Sprague-Dawley rats and mononuclear cells were isolated. The cells were labelled with a fluorescence dye (Cell Tracker Orange) and suspended in PBS. 10–20μl of the cell suspension (1–2x10. 5. cells/disc) was transplanted into coccygeal discs in 12 syngeneic rats. For each rat two discs were cell transplanted and one disc served as control. The rats were sacrificed after 0, 7, 14 or 21 days. For each time point the discs from one animal were saved for routine histological staining. The cell transplanted discs of the other animals (n=4 discs per time point) were formalin-fixed, frozen and sectioned together with the control discs. Frozen disc sections were visualized with fluorescence microscopy and the number of transplanted cells assessed. Expression of collagen II, a marker of chondrocytes and chondrocyte-like cells in the disc, was assessed in the transplanted cells using immunofluorescence technique. Results All cell-suspension injected discs contained transplanted bone-marrow cells. The discs within each time-group demonstrated a large variation in number of detected cells. There was a decrease in detected cells at 7, 14 and 21 days compared to day 0. Transplanted cells expressed collagen II after 21 days but not after 7 and 14 days. Discussion The results suggest that transplanted bone marrow-derived mononuclear cells can survive and differentiate within the intervertebral disc. Further studies in models of disc degeneration are warranted to investigate the regenerative potential of the disc following cell transplantation


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1664 - 1668
1 Dec 2010
Ranson CA Burnett AF Kerslake RW

In our study, the aims were to describe the changes in the appearance of the lumbar spine on MRI in elite fast bowlers during a follow-up period of one year, and to determine whether these could be used to predict the presence of a stress fracture of the posterior elements. We recruited 28 elite fast bowlers with a mean age of 19 years (16 to 24) who were training and playing competitively at the start of the study. They underwent baseline MRI (season 1) and further scanning (season 2) after one year to assess the appearance of the lumbar intervertebral discs and posterior bony elements. The incidence of low back pain and the amount of playing and training time lost were also recorded. In total, 15 of the 28 participants (53.6%) showed signs of acute bone stress on either the season 1 or season 2 MR scans and there was a strong correlation between these findings and the later development of a stress fracture (p < 0.001). The prevalence of intervertebral disc degeneration was relatively low. There was no relationship between disc degeneration on the season 1 MR scans and subsequent stress fracture. Regular lumbar MR scans of asymptomatic elite fast bowlers may be of value in detecting early changes of bone stress and may allow prompt intervention aimed at preventing a stress fracture and avoiding prolonged absence from cricket


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 35 - 35
1 Mar 2005
Redmond NM Whitehouse GH Roberts N
Full Access

As part of a 10 year follow-up study investigating the relationship between MRI-diagnosed disc disease and low back pain (LBP), a comparison of MRI image acquisition protocols was conducted. The aim was to establish whether the modern protocol produced improved diagnoses of lumbar disc disease. This is of significance when attempting to determine links between lumbar disc disease and LBP. The proposed hypothesis was that little difference in the pathology reported of MRI lumbar spines between the surface coil acquired images (Coil-MRI) and phased-array acquired images (Phased-MRI) would be found. Methods: Local ethics committee approval was granted for this study. 31 male subjects (aged 35–71 years) were recruited and underwent two subsequent scans. For both Coil-MRI and Phased-MRI scans sagittal dual echo, T1, axial T1 and T2 images were acquired. A Consultant Radiologist blindly reviewed the 62 scans continuously and reported on the pathology. Disease pathology assessment consisted of disc degeneration, disc herniation (based on 5-grade classification systems), facet hypertrophy (FH) and nerve root compression (NRC). Results: A wide range of pathology was reported at all disc levels, particularly with regard to disc degeneration and herniation. Kappa agreement statistics were computed for each pathological feature at all disc levels. Disc degeneration and herniation reports were statistically consistent for all disc levels (kappa range: 0.6–0.8, p< 0.05 for degeneration & 0.5–0.7, p< 0.05 for herniation). The results show that at the L4/L5 disc level, 1 in 10 discs were reported as ‘moderately degenerate’ (an increase of 1 grade) in Phased-MRI scans. At the same disc level, 1 in 6 discs were reported as ‘moderately herniated’ in Phased-MRI scans compared to ‘bulging’ in Coil-MRI scans, indicating that Phased-MRI coil scans may improve clarity in particular for herniation diagnosis. Pathology for FH and NRC were limited, with the majority of subjects (over 91% for FH and NRC irrespective of protocol) presenting with normal features. Conclusion: The statistical results indicate that few differences in pathological diagnosis of lumbar disc disease occurred, however Phased-MRI appears to increase confidence in diagnosing more severe features at some disc levels


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 726 - 736
1 May 2010
Hee HT Ismail HD Lim CT Goh JCH Wong HK

Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 456 - 456
1 Oct 2006
Zigler J Rashbaum R Sachs B Ohnmeiss D
Full Access

Introduction Fusion has been the primary treatment for symptomatic disc degeneration unresponsive to non-operative care. The results for two-level fusion have generally been worse than for one-level. There is little information available concerning two-level total disc replacement (TDR), and none comes from prospective studies. The purpose of this study was to analyse the results of two-level disc replacement and compare these results to single-level cases performed at the same centre. Methods This data was collected from a single center participating in a multicentre a prospective, FDA-regulated clinical trial evaluating the ProDisc. This study is based on data from the first 105 patients (36 2-level and 69 one-level) enrolled who have reached a minimum of 12 months follow-up (data for 18 and 24 month were included if available at the time of data analysis). All patients were treated for symptomatic disc degeneration unresponsive to non-operative care. Data were collected pre-, peri-, and 6 weeks and 3, 6, 12, 18, and 24 months post-operatively. Outcome data included visual analog scale (VAS) assessing pain, Oswestry Disability Questionnaire, patient satisfaction (VAS ranging from 0 to 10), and a question asking patients if they would have the same surgery again. Within the 1-level and 2-level subgroups, pre- and postoperative data were compared to determine if there was improvement. The percentage of change in the pre- to post-operative scores was compared to determine if there were differences between the 1- and 2-level subgroups. Results The mean estimated blood loss (1-level= 57.7 cc vs. 2-level = 76.7 cc), operative time (1-level = 61.6 min vs. 2-level = 96.7 min) and length of hospitalization (1-level=1.86 days vs. 2-level= 2.36 days) were significantly less in the single-level cases (p< 0.05). VAS pain scores improved significantly (p< 0.05) in 1- and 2-level cases. The mean improvement in 2-level cases was 58.7% and in 1-level cases 62.4% (p> 0.05). Between the one and two-level cases, there was no significant difference in the percentage of patients who would have the surgery again (86.6% vs. 77.8%; p> 0.05). The mean satisfaction score in the single-level TDR group was 8.2 and was 7.1 in the 2-level group (maximum score of 10). Discussion This study found that both 1- and 2-level TDR results in significant improvement in pain and function scores. Patients undergoing 2-level disc replacement yielded outcomes similar to 1-level cases. These results support TDR as a viable treatment for 2-level symptomatic disc degeneration


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 67 - 67
1 Nov 2016
Grant M Epure L Salem O Alaqeel M Antoniou J Mwale F
Full Access

Testing potential therapeutics in the regeneration of the disc requires the use of model systems. Although several animal models have been developed to test intervertebral disc (IVD) regeneration, application becomes costly when used as a screening method. The bovine IVD organ culture system offers an inexpensive alternative, however, in the current paradigm, the bony vertebrae is removed to allow for nutrient diffusion to disc cells. This provides limitations on the conditions and strategies one can employ in investigating IVD regeneration and mechanisms in degenerative disc disease (i.e. complex loading). Although one method has been attempted to extend the survival of bovine vertebrae containing IVDs (vIVD) cell viability declined after two weeks in culture. Our goal was to develop and validate a long-term organ culture model with vertebral bone, which could be used subsequently for studying biological repair of disc degeneration and biomechanics. Preparation of vIVDs: Bovine IVDs from the tails of 22–28-month-old steers were prepared for organ culture by parallel cuts through the adjacent vertebral bodies at 1cm from the endplates using an IsoMet®1000 Buehler precision sectioning saw. vIVDs were split into two groups: IVDs treated with PrimeGrowth Media kit (developed by Intervertech and licensed to Wisent Bioproducts) and IVDs with DMEM. The PrimeGrowth group was incubated for 1h in PrimeGrowth Isolation Medium (Cat# 319–511-EL) and the DMEM group for 1h in DMEM. After isolation, IVDs were washed in PrimeGrowth Neutralisation Medium (Cat# 319–512-CL) while the other IVDs were washed in DMEM. The discs isolated with PrimeGrowth and DMEM were cultured for up to 5 months in sterile vented 60 ml Leakbuster™ Specimen Containers in PrimeGrowth Culture Medium (Cat# 319–510-CL) and DMEM with no mechanical load applied. Live/Dead Assay: vIVDs cultured for 1 or 5 months were dissected and cell viability was assessed in different regions by confocal microscopy using Live/Dead® (Invitrogen) fluorescence assay. Glucose Diffusion: After one month of culture, vIVDs were incubated for 72h in diffusion medium containing PBS (1x), CaCl2 (1mM), MgCl2 (0.5mM), KCl2 (5mM), 0.1% BSA and 150µM 2-NDBG, a D-glucose fluorescent analogue. Discs were dissected and IVD tissues were incubated in guanidinium chloride extraction buffer. Extracts were measured for fluorescence. After 5 months in culture, vIVDs prepared with PrimeGrowth kit demonstrated approximately 95% cell viability in all regions of the disc. However, dramatic reductions (∼90%) in vIVD viability were measured in DMEM group after 1 month. vIVD viability was related to the amount of 2-NDBG incorporated into the disc tissue. We have developed a novel method for isolating IVDs with vertebral bone capable of long-term viability. This method may not only help in the discovery of novel therapeutics in disc regeneration, but could also advance our understanding on complex loading paradigms in disc degeneration


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 411 - 411
1 Sep 2005
Williamson O Sears W
Full Access

Introduction Cervical disc replacement has been advocated as a technique for retaining segmental motion following discectomy. The in vivo kinematics of the prosthesis are predicted to influence outcome, but remain poorly understood. The aim of this study was to determine whether factors that might possibly influence outcome can be reliably measured. Methods Anteroposterior and lateral xrays were performed pre-, inter- and post-operatively on 67 patients undergoing cervical prosthetic disc replacement. The xrays were reviewed by 3 observers. Measurements were performed manually by two observers and using digital image analysis software by a third observer. The inter-rater reliability of categorical measurements such as overall cervical alignment, degree of disc degeneration and length of spinous processes was assessed using unweighted kappa scores. Intra-class correlation coefficients (ICCs) were calculated using a two-way random effects model to assess inter-rater agreement in the observation of continuous variables such as intra-operative disc angles, post-operative shell angles and change in focal lordosis. The intra-rater reliability of measurements of disc space angulation was calculated on a subset of 17 sets of xrays measured by three observers on two occassions, five months apart. Kappa and ICC values were interpreted as recommended by Altman. Results The inter-rater reliability of measuring the degree of disc degeneration (κ= 0.29 p< 0.0001) was fair and the spinous process length (κ = 0.79 p< 0.0001) and overall spinal alignment (κ = 0.69 p< 0.0001) good. The inter-rater reliability of measuring pre-operative focal lordosis (ICC 0.88 (95%CI 0.82–0.92 p< 0.0001)), intra-operative disc angle (ICC 0.86 (95%CI 0.79–0.92) p< 0.0001) and post-operative shell angle (ICC 0.99 (95%CI 0.98–1.00) p< 0.0001) were excellent. ICCs were higher when the average of the rater scores was considered. The ICCs were substantially reduced when agreement between the observers and values obtained using digital imaging was assessed. The intra-rater reliability of measurements of focal lordosis however revealed good agreement when measured manually (ICC 0.68 (95%CI 0.06–0.89) p=0.02) but very good agreement when measured using digital imaging software (ICC 0.82 (95%CI 0.54–0.93) p< 0.0001). The inter-rater reliability of average disc space height when measured using digital imaging software was excellent (ICC 0.83 (95%CI 0.58–0.94) p< 0.0001). Conclusions Whilst the reliability of determining the degree of disc degeneration in the cervical spine is fair, the measurement of focal lordosis, intra-operative disc angles and post-operative shell angle is good or excellent. As these radiological measures can be reliably assessed, they may be further evaluated as predictors of outcome following cervical disc replacement