Advertisement for orthosearch.org.uk
Results 1 - 100 of 4626
Results per page:
Bone & Joint Open
Vol. 5, Issue 6 | Pages 524 - 531
24 Jun 2024
Woldeyesus TA Gjertsen J Dalen I Meling T Behzadi M Harboe K Djuv A

Aims. To investigate if preoperative CT improves detection of unstable trochanteric hip fractures. Methods. A single-centre prospective study was conducted. Patients aged 65 years or older with trochanteric hip fractures admitted to Stavanger University Hospital (Stavanger, Norway) were consecutively included from September 2020 to January 2022. Radiographs and CT images of the fractures were obtained, and surgeons made individual assessments of the fractures based on these. The assessment was conducted according to a systematic protocol including three classification systems (AO/Orthopaedic Trauma Association (OTA), Evans Jensen (EVJ), and Nakano) and questions addressing specific fracture patterns. An expert group provided a gold-standard assessment based on the CT images. Sensitivities and specificities of surgeons’ assessments were estimated and compared in regression models with correlations for the same patients. Intra- and inter-rater reliability were presented as Cohen’s kappa and Gwet’s agreement coefficient (AC1). Results. We included 120 fractures in 119 patients. Compared to radiographs, CT increased the sensitivity of detecting unstable trochanteric fractures from 63% to 70% (p = 0.028) and from 70% to 76% (p = 0.004) using AO/OTA and EVJ, respectively. Compared to radiographs alone, CT increased the sensitivity of detecting a large posterolateral trochanter major fragment or a comminuted trochanter major fragment from 63% to 76% (p = 0.002) and from 38% to 55% (p < 0.001), respectively. CT improved intra-rater reliability for stability assessment using EVJ (AC1 0.68 to 0.78; p = 0.049) and for detecting a large posterolateral trochanter major fragment (AC1 0.42 to 0.57; p = 0.031). Conclusion. A preoperative CT of trochanteric fractures increased detection of unstable fractures using the AO/OTA and EVJ classification systems. Compared to radiographs, CT improved intra-rater reliability when assessing fracture stability and detecting large posterolateral trochanter major fragments. Cite this article: Bone Jt Open 2024;5(6):524–531


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims. Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods. Methods. In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance. Results. Comparison of the mean postoperative femoral stem version measurements between CT and 3D hipEOS showed no significant difference (p = 0.862). In addition, the two version measurements were strongly correlated (r = 0.95; p < 0.001), and the mean paired difference in postoperative femoral version for CT scan and 3D biplanar radiography was -0.09° (95% confidence interval -1.09 to 0.91). Only three stem measurements (6.7%) were considered outliers with a > 5° difference. Conclusion. Our study supports the use of low-dose biplanar radiography for the postoperative assessment of femoral stem version after THA, demonstrating high correlation with CT. We found no significant difference for postoperative femoral version when comparing CT to 3D EOS. We believe 3D EOS is a reliable option to measure postoperative femoral version given its advantages of lower radiation dosage and shorter examination time. Cite this article: Bone Joint J 2022;104-B(11):1196–1201


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 178 - 183
1 Jan 2021
Kubik JF Rollick NC Bear J Diamond O Nguyen JT Kleeblad LJ Wellman DS Helfet DL

Aims. Malreduction of the syndesmosis has been reported in up to 52% of patients after fixation of ankle fractures. Multiple radiological parameters are used to define malreduction; there has been limited investigation of the accuracy of these measurements in differentiating malreduction from inherent anatomical asymmetry. The purpose of this study was to identify the prevalence of positive malreduction standards within the syndesmosis of native, uninjured ankles. Methods. Three observers reviewed 213 bilateral lower limb CT scans of uninjured ankles. Multiple measurements were recorded on the axial CT 1 cm above the plafond: anterior syndesmotic distance; posterior syndesmotic distance; central syndesmotic distance; fibular rotation; and sagittal fibular translation. Previously studied malreduction standards were evaluated on bilateral CT, including differences in: anterior, central and posterior syndesmotic distance; mean syndesmotic distance; fibular rotation; sagittal translational distance; and syndesmotic area. Unilateral CT was used to compare the anterior to posterior syndesmotic distances. Results. A difference of anterior to posterior syndesmotic distance > 2 mm was observed in 89% of ankles (n = 190) on unilateral CT assessment. Using bilateral CT, we found that 35% (n = 75) of normal ankles would be considered malreduced by current malreduction parameters. In 50 patients (23%), only one parameter was anomalous, 18 patients (8%) had two positive parameters and seven patients (3%) had three. Difference in fibular rotation had the lowest false positive rate of all parameters at 6%, whereas posterior syndesmotic distance difference had the highest at 15%. Conclusion. In this study, 35% of native, uninjured syndesmoses (n = 75) would be classified as malreduced by current diagnostic standards on bilateral CT and 89% had an asymmetric incisura on unilateral CT (n = 190). Current radiological parameters are insufficient to differentiate mild inherent anatomical asymmetry from malreduction of the syndesmosis. Cite this article: Bone Joint J 2021;103-B(1):178–183


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1097 - 1100
1 Aug 2012
Venkatesan M Fong A Sell PJ

The aim of this study was first, to determine whether CT scans undertaken to identify serious injury to the viscera were of use in detecting clinically unrecognised fractures of the thoracolumbar vertebrae, and second, to identify patients at risk of ‘missed injury’. . We retrospectively analysed CT scans of the chest and abdomen performed for blunt injury to the torso in 303 patients. These proved to be positive for thoracic and intra-abdominal injuries in only 2% and 1.3% of cases, respectively. However, 51 (16.8%) showed a fracture of the thoracolumbar vertebrae and these constituted our subset for study. There were eight women and 43 men with mean age of 45.2 years (15 to 94). There were 29 (57%) stable and 22 (43%) unstable fractures. Only 17 fractures (33.3%) had been anticipated after clinical examination. Of the 22 unstable fractures, 11 (50%) were anticipated. Thus, within the whole group of 303 patients, an unstable spinal injury was missed in 11 patients (3.6%); no harm resulted as they were all protected until the spine had been cleared. A subset analysis revealed that patients with a high Injury Severity Score, a low Glasgow Coma Scale and haemodynamic instability were most likely to have a significant fracture in the absence of positive clinical findings. This is the group at greatest risk. Clinical examination alone cannot detect significant fractures of the thoracolumbar spine. It should be combined with CT imaging to reduce the risk of missed injury


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1167 - 1171
1 Sep 2014
Khan O Witt J

The cam-type deformity in femoroacetabular impingement is a 3D deformity. Single measurements using radiographs, CT or MRI may not provide a true estimate of the magnitude of the deformity. We performed an analysis of the size and location of measurements of the alpha angle (α°) using a CT technique which could be applied to the 3D reconstructions of the hip. Analysis was undertaken in 42 patients (57 hips; 24 men and 18 women; mean age 38 years (16 to 58)) who had symptoms of femoroacetabular impingement related to a cam-type abnormality. An α° of > 50° was considered a significant indicator of cam-type impingement. Measurements of the α° were made at different points around the femoral head/neck junction at intervals of 30°: starting at the nine o’clock (posterior), ten, eleven and twelve o’clock (superior), one, two and ending at three o’clock (anterior) position. The mean maximum increased α° was 64.6° (50.8° to 86°). The two o’clock position was the most common point to find an increased α° (53 hips; 93%), followed by one o’clock (48 hips; 84%). The largest α° for each hip was found most frequently at the two o’clock position (46%), followed by the one o’clock position (39%). Generally, raised α angles extend over three segments of the clock face. Single measurements of the α°, whether pre- or post-operative, should be viewed with caution as they may not be representative of the true size of the deformity and not define whether adequate correction has been achieved following surgery. Cite this article: Bone Joint J 2014;96-B:1167–71.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 14 - 14
1 Mar 2021
Au K Gammon B Undurraga S Culliton K Louati H D'Sa H
Full Access

The clinical diagnosis of distal radioulnar joint (DRUJ) instability remains challenging. The current diagnostic gold standard is a dynamic computerized topography (CT) scan. This investigation compares the affected and normal wrists in multiple static positions of forearm rotation.. However, its accuracy has been questioned, as the wrist is unloaded and not placed under stress. This may fail to capture DRUJ instability that does not result in static malalignment between the ulnar head and sigmoid notch. The purpose of this biomechanical study was to evaluate the effectiveness of both dynamic and stress CT scans in detecting DRUJ instability. A customized DRUJ arthrometer was designed that allows for both static positioning, as well as dorsal and volar loading at the DRUJ in various degrees of forearm rotation. Ten fresh frozen cadavers were prepared and mounted in the apparatus. CT scans were performed both in the unloaded condition (dynamic CT) and with each arm subjected to a standardized 50N volar and dorsal force (stress CT) in neutral and maximum pronation/ supination. The TFCC (triangular fibrocartilage complex)was then sectioned peripherally to simulate DRUJ instability and the methodology was repeated. CT scans were then evaluated for displacement using the radioulnar ratio method. When calculating the radioulnar ratio for intact wrists using the dynamic CT technique, values were 0.50, 0.64, 0.34 for neutral, pronation and supination, respectively. When the TFCC was sectioned and protocol repeated, the values for the simulated unstable wrist for dynamic CT were 0.54, 0.62, 0.34 for neutral, pronation and supination, respectively. There was no statistically significant difference between the intact and sectioned states for any position of forearm rotation using dynamic CT. Usingstress CT, mean radioulnar ratios for the intact specimens were calculated to be 0.44, 0.36 and 0.31 for neutral, pronation and supination, respectively. After sectioning the TFCC, the radioulnar ratios increased to 0.61, 0.39 and 0.46 for neutral, pronation and supination. There was a statistically significant difference between intact and simulated-unstable wrists in supination (p = 0.002) and in neutral (p=0.003). The radioulnar ratio values used to measure DRUJ translation for dynamic CT scans were unable to detect a statistically significant difference between stable and simulated unstable wrists. This was true for all positions of forearm rotation. However, when a standard load was placed across the DRUJ, statically significant changes in the radioulnar ratio were seen in neutral and supination between stable and simulated unstable wrists. This discrepancy challenges the current gold standard of dynamic CT in its ability to accurately diagnosis DRUJ instability. It also introduces stress CT as a possible solution for diagnosing DRUJ instability from peripheral TFCC lesions


Bone & Joint Open
Vol. 4, Issue 7 | Pages 478 - 489
1 Jul 2023
Tennent D Antonios T Arnander M Ejindu V Papadakos N Rastogi A Pearse Y

Aims. Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT. Methods. Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%. Results. At 13.8%, only the Pico technique measured under the threshold. At 17.6% and 22.9% bone loss all techniques measured above the threshold. The Pico technique was 97.1% accurate, but had a high false-negative rate and poor sensitivity underestimating the need for grafting. The Sugaya technique had 100% specificity but 25% of the measurements were incorrectly above the threshold. A contralateral COBF underestimates the area by 16% and the diameter by 5 to 7%. Conclusion. No one method stands out as being truly accurate and clinicians need to be aware of the limitations of their chosen technique. They are not interchangeable, and caution must be used when reading the literature as comparisons are not reliable. Cite this article: Bone Jt Open 2023;4(7):478–489


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims. To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. Methods. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated. Results. The mean time between the implantation and the second CT scan was two years (1 to 5). The mean age of the patients during CTAC implantation was 75 years (60 to 92). The mean scaffold-bone contact area increased from 16% (SD 12.6) to 28% (SD 11.9). The mean scaffold-bone distance decreased from a mean of 6.5 mm (SD 2.0) to 5.5 mm (SD 1.6). None of the CTACs were revised or radiologically loose. Conclusion. There was a statistically significant increase of scaffold-bone contact area over time, but the total contact area of the scaffold in relation to the acetabular bone remained relatively low. As all implants remained well fixed, the question remains to what extend the scaffold contributes to the observed stability, in relation to the screws. A future design implication might be an elimination of the bulky scaffold component. This design modification would reduce production costs and may optimize the primary fit of the implant. Cite this article: Bone Joint J 2024;106-B(4):359–364


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 45 - 45
17 Nov 2023
Rix L Tushingham S Wright K Snow M
Full Access

Abstract. Objective. A common orthopaedic pain found in a wide spectrum of individuals, from young and active to the elderly is anterior knee pain (AKP). It is a multifactorial disorder which is thought to occur through muscular imbalance, overuse, trauma, and structural malalignment. Over time, this can result in cartilage damage and subsequent chondral lesions. Whilst the current gold standard for chondral lesion detection is MRI, it is not a highly sensitive tool, with around 20% of lesions thought to be mis-diagnosed by MRI. Single-photon emission computerised tomography with conventional computer tomography (SPECT/CT) is an emerging technology, which may hold clinical value for the detection of chondral lesions. SPECT/CT may provide valuable diagnostic information for AKP patients who demonstrate absence of structural change on other imaging modalities. This review systematically assessed the value of SPECT/CT as an imaging modality for knee pain, and its ability to diagnose chondral lesions for patients who present with knee pain. Methods. Using PRISMA guidelines, a systematic search was carried out in PubMed, Science Direct, and Web of Knowledge, CINAHL, AMED, Ovid Emcare and Embase. Inclusion criteria consisted of any English language article focusing on the diagnostic value of SPECT/CT for knee chondral lesions and knee pain. Furthermore, animal or cadaver studies, comparator technique other than SPECT/CT or patients with a pathology other than knee chondral lesions were excluded from the study. Relevant articles underwent QUADAS-2 bias assessment. Results. 11,982 manuscripts were identified, and the titles were screened for relevance. Seven studies were selected as being appropriate and were subjected to QUADAS-2 assessment. All 7 articles scored low for bias. Two papers deemed that the ICRS score of chondral lesions at intraoperative assessment correlated with SPECT/CT tracer uptake. Two studies concluded that MRI significantly correlated with SPECT/CT tracer uptake, with some instances whereby SPECT/CT identified more chondral lesions than MRI. Two papers compared bone scintigraphy (BS) to SPECT/CT and concluded that SPECT/CT was not only able to identify more chondral lesions than BS, but also localise and characterise the lesions. Conclusion. Evidence implies that SPECT/CT may be a useful imaging modality for the detection and localisation of cartilage lesions, particularly in discrepant cases whereby there is an absence of lesions on other imaging modalities, or a lack of correspondence with patients’ symptoms. More studies would be of value to confirm the conclusions of this review. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims. We aimed to evaluate the utility of . 68. Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with . 99m. Tc-methylene bisphosphonates (. 99m. Tc-MDP) bone scan. Methods. We studied 39 patients with suspected PJI or AL. These patients underwent . 68. Ga-citrate PET/CT, . 99m. Tc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations. Results. Overall, 23 and 16 patients were diagnosed with PJI and AL, respectively. The sensitivity and specificity of three-phase bone scan and SPECT/CT were 100% and 62.5%, 82.6%, and 100%, respectively. Attenuation correction (AC) at 60 minutes and non-AC at 60 minutes of PET/CT had the same highest sensitivity and specificity (91.3% and 100%), and AC at 60 minutes combined with SPECT/CT could improve the diagnostic efficiency (sensitivity = 95.7%). Diagnostic efficacy of the SUVmax was low (area under the curve (AUC) of ten minutes and 60 minutes was 0.814 and 0.806, respectively), and SUVmax of the lesion/SUVmean of the normal bone at 60 minutes was the best semi-quantitative parameter (AUC = 0.969). Conclusion. 68. Ga-citrate showed the potential to differentiate PJI from AL, and visual analysis based on uptake pattern of tracer was reliable. The visual analysis method of AC at 60 minutes, combined with . 99m. Tc-MDP SPECT/CT, could improve the sensitivity from 91.3% to 95.7%. In addition, a major limitation of our study was that it had a limited sample size, and more detailed studies with a larger sample size are warranted. Cite this article: Bone Joint Res 2022;11(6):398–408


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1020 - 1029
1 Sep 2023
Trouwborst NM ten Duis K Banierink H Doornberg JN van Helden SH Hermans E van Lieshout EMM Nijveldt R Tromp T Stirler VMA Verhofstad MHJ de Vries JPPM Wijffels MME Reininga IHF IJpma FFA

Aims. The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures. Methods. A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis. Results. Of 170 patients, 22 (13%) subsequently received a THA. Native hip survival in patients with a step-off ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 94% vs 70% vs 74%). Native hip survival in patients with a gap ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 100% vs 84% vs 78%). Step-off displacement > 2 mm (> 2 to 4 mm hazard ratio (HR) 4.9, > 4 mm HR 5.6) and age > 60 years (HR 2.9) were independent predictors for conversion to THA at follow-up. Conclusion. Patients with minimally displaced acetabular fractures who opt for nonoperative fracture treatment may be informed that fracture displacement (e.g. gap and step-off) up to 2 mm, as measured on CT images, results in limited risk on conversion to THA. Step-off ≥ 2 mm and age > 60 years are predictors for conversion to THA and can be helpful in the shared decision-making process. Cite this article: Bone Joint J 2023;105-B(9):1020–1029


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 98 - 98
1 Jul 2022
Vidakovic H Meen R Ohly N
Full Access

Abstract. Introduction. Mako robotic assisted knee arthroplasty requires a planning CT scan within 8 weeks of surgery according to the supplier's protocol. This is often impractical, therefore we evaluated whether CT scans remain valid for an extended period. Methodology. Patients undergoing Mako partial (PKA) and total (TKA) knee arthroplasty were identified from our hospital database. The hospital PACS system was used to define the time interval between the initial planning CT scan and surgery, and whether further imaging was required prior to surgery. Results. 443 consecutive Mako cases (225 TKA and 218 PKA) were undertaken between November 2019 and December 2021 (33 cases to March 2020, and 410 cases from August 2020). CT scans were done within 8 weeks of surgery in 229 patients (51.7%); between 8 and 24 weeks in 148 patients (33.4%); between 24 and 48 weeks in 53 patients (12.0%); and more than 48 weeks in 13 patients (2.9%). Repeat pre-operative radiographs were done in the first 43 patients with a delay to surgery of more than 8 weeks following their CT scan. No gross anatomical changes were identified, and this practice was therefore discontinued. No patients required a repeat CT scan. There were no intra-operative registration errors in any patient in this series. Conclusion. Planning CT scans were valid for up to one year in a large series of patients undergoing Mako PKA and TKA. This may allow for more cost-effective use of resources, while minimising irradiation to patients


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 124 - 125
1 Mar 2009
Martin A Sheinkop M Prenn M Moosmann D von Strempel A
Full Access

Introduction: Optimal component position in all planes and well balanced soft tissues lead to a good clinical outcome and long-term survival after total knee arthroplasty. We investigated the implantation accuracy of navigated total knee arthroplasty at 3 months followup and the influence on the clinical outcome at 2 years followup. Patients and Methods: Forty-four patients (44 procedures) were enrolled in our prospective study. One half of the surgeries were performed using a computed tomography based navigation system, and one half of the surgeries were performed without computed tomography navigation. Outcomes were based on the Insall knee score parameters, anterior knee pain, patient satisfaction, feeling of instability, and step test. The radiographic parameters were the mechanical axis, tibial slope, lateral distal femoral angle, and medial proximal tibial angle. Results: The radiographic measurements showed no differences between both groups (patients within ± 3° inaccuracy range in computed tomography based/computed tomography free groups; mechanical axis 86%/81%, tibial slope 95%/91%, lateral distal femoral angle 95%/91%, medial proximal tibial angle 91%/95%). The cumulative error of alignment showed no difference between the study groups. Seventeen of 21 (81%) patients fulfilled four criteria in the CT based group, and 15 of 21 (71.4%) patients fulfilled four criteria in the comparison group. Nineteen of 21 (90.5%) patients in both groups achieved three criteria in an optimal manner. An increased (p < 0.001) Insall knee score was found for changes over time in both study groups; however, there were no differences between the CT based or CT free patient groups. The postoperative ROM in both groups showed no difference at the 3-month and 2-year followup examinations. Both groups had an increase (p ≤ 0.002) in ROM between the 3-month and 2-year followup examinations. The examination of ligament balancing in full extension showed a higher rate of a stable soft tissue situation in the CT free navigation group but the difference was not significant. In 30° of flexion we detected a better (p = 0.004) ligament situation medially and laterally in the CT free group. The anterior drawer test showed a better (p = 0.035) stability in the CT free navigation group. Discussion: The computed tomography free system provided equal radiographic results, but we found improved ligament balancing in the computed tomography free group. The computed tomography based module has an optimal preoperative planning procedure, but is more expensive and time consuming


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 68 - 68
2 Jan 2024
Li J
Full Access

Applications of weightbearing computed tomography (WBCT) imaging in the foot and ankle have emerged over the past decade. However, the potential diagnostic benefits are scattered across the literature, and a concise overview is currently lacking. Therefore, we aimed to systematically review all reported diagnostic applications per anatomical region in the foot and ankle. A systematic literature search was performed in the electronic databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “weightbearing/standing CT and ankle, hind-, mid- or forefoot”. English language studies analyzing the diagnostic applications of WBCT were included. Studies were excluded if they simulated weightbearing CT, described normal subjects, included cadaveric samples or samples were case reports. The modified Methodological Index for Non-Randomized Studies (MINORS) was applied for quality assessment. The added value was defined as the review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the Prospero database (CRD42019106980). A total of 48 studies (prospective N=8, retrospective N=36, cohort study N=1, diagnostic N=2, prognostic comparative study N=1) were found to be eligible for review. The following diagnostic applications were identified per anatomical area in the foot: ankle (osteoarthritis N=5, ligament injury N=6); hindfoot (deformity N=9); midfoot (Lisfranc injury N=2, flatfoot deformity N=13, osteoarthritis N=1); forefoot (hallux valgus N=12). The identified studies contained diagnostic applications that could not be used on plain radiographs. The mean MINORS equaled 10.1 on a total of 16 (range: 8 to 12). Diagnostic applications of weightbearing CT imaging are most frequently studied in hindfoot deformity, but other area's areas are on the rise. Post-processing of images was identified as the main added value compared to WBRX. However, the findings should be interpreted with caution as the average quality score was moderate. Therefore, future prospective studies are warranted to consolidate the role of WBCT in diagnostic and therapeutic algorithms


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 70 - 70
2 Jan 2024
Peiffer M
Full Access

Acute syndesmotic ankle injuries continue to impose a diagnostic dilemma and it remains unclear whether weighbearing or external rotation should be exerted rotation during the imaging process. Therefore, we aimed to implement both axial load (weightbearing) and external rotation in the assessment of a clinical cohort of patients with syndesmotic ankle injuries syndesmotic using weightbearing CT imaging. In this retrospective comparative cohort study, patients with an acute syndesmotic ankle injury were analyzed using a WBCT (N= 20; Mean age= 31,64 years; SD= 14,07. Inclusion criteria were an MRI confirmed syndesmotic ankle injury imaged by a bilateral WBCT of the ankle during weightbearing and combined weightbearing-external rotation. Exclusion criteria consisted of fracture associated syndesmotic ankle injuries. Three-dimensional (3D) models were generated from the CT slices. Tibiofibular displacement and Talar Rotation was quantified using automated3D measurements (Anterior TibioFibular Distance (ATFD), Alpha Angle, Posterior TibioFibular Distance (PTFD) and Talar Rotation (TR) Angle) in comparison to a cohort of non-injured ankles. Results. The difference in neutral-stressed Alpha° and ATFD showed a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (P = 0.046 and P = 0.039, respectively) The difference in neutral-stressed PTFD and TR° did not show a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (P = 0.492; P = 0.152, respectively). Conclusion. Application of combined weightbearing-external rotation reveals a dynamic anterior tibiofibular widening in patients with syndesmotic ankle injuries. This study provides the first insights based on 3D measurements to support the potential relevance of applying external rotation during WBCT imaging. However, to what extent certain displacement patterns are associated with syndesmotic instability and thus require operative treatment strategies has yet to be determined in future studies


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 254 - 260
1 Mar 2023
Bukowski BR Sandhu KP Bernatz JT Pickhardt PJ Binkley N Anderson PA Illgen R

Aims. Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral BMD with CTXA would improve identification of osteopenia and osteoporosis compared with available preoperative dual-energy X-ray absorptiometry (DXA) analysis, and determine if improved recognition of low BMD would affect the use of cemented stem fixation. Methods. Retrospective chart review of a single-surgeon database identified 78 patients with CTXA performed prior to robotic-assisted THA (raTHA) (Group 1). Group 1 was age- and sex-matched to 78 raTHAs that had a preoperative hip CT but did not have CTXA analysis (Group 2). Clinical demographics, femoral fixation method, CTXA, and DXA data were recorded. Demographic data were similar for both groups. Results. Preoperative femoral BMD was available for 100% of Group 1 patients (CTXA) and 43.6% of Group 2 patients (DXA). CTXA analysis for all Group 1 patients preoperatively identified 13 osteopenic and eight osteoporotic patients for whom there were no available preoperative DXA data. Cemented stem fixation was used with higher frequency in Group 1 versus Group 2 (28.2% vs 14.3%, respectively; p = 0.030), and in all cases where osteoporosis was diagnosed, irrespective of technique (DXA or CTXA). Conclusion. Preoperative hip CT scans which are routinely obtained prior to raTHA can determine bone health, and thus guide femoral fixation strategy. Systematic preoperative evaluation with CTXA resulted in increased recognition of osteopenia and osteoporosis, and contributed to increased use of cemented femoral fixation compared with routine clinical care; in this small study, however, it did not impact short-term periprosthetic fracture risk. Cite this article: Bone Joint J 2023;105-B(3):254–260


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 16 - 16
17 Nov 2023
Youssef A Pegg E Gulati A Mangwani J Brockett C Mondal S
Full Access

Abstract. Objectives. The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent biomechanical studies such as finite element analysis. The bones within the ankle joint vary significantly in size and shape. The purpose of this study was to test the hypothesis that the accuracy and reliability of a segmented bone geometry is independent of the particular bone being measured. Methods. Computed tomography (CT) scan data (slice thickness 1 mm, pixel size 808±7 µm) from three anonymous patients was used for the development of the ankle geometries (consisting of the tibia, fibula, talus, calcaneus, and navicular bones) using Simpleware Scan IP software (Synopsys, Exeter, UK). Each CT scan was segmented 4 times by an inexperienced undergraduate, resulting in a total of 12 geometry assemblies. An experienced researcher segmented each scan once, and this was used as the ‘gold standard’ to quantify the accuracy. The solid bone geometries were imported into CAD software (Inventor 2023, Autodesk, CA, USA) for measurement of the surface area and volume of each bone, and the distances between bones (tibia to talus, talus to navicular, talus to calcaneus, and tibia to fibula) were carried out. The intra-class coefficient (ICC) was used to assess intra-observer reliability. Bland Altman plots were employed as a statistical measure for criteria validity (accuracy) [1]. Results. The average ICC score was 0.93, which is regarded as a high reliability score for an inexperienced user. The talus to navicular and talus to tibia separations, which had the smallest distances, showed a slight decrease in reliability and this was observed for all separations shorter than 2 mm. According to the Bland-Altman plots, more than 95% of the data points were inside the borders of agreement, which is an excellent indication of accuracy. The bias percentage (average error percentage) varied between 1% and 4% and was constant across all parameters, with the proportion rising for short distance separations. Conclusions. The current study demonstrates that an inexperienced undergraduate, with access to software manuals, can segment an ankle CT scan with excellent reliability. The present study also concluded that all five bones were segmented with high levels of accuracy, and this was not influenced by bone volume or type. The only factor found to influence the reliability was the magnitude of distance between bones, where if this was smaller than 2 mm it reduced the reliability, indicating the influence of CT scan resolution on the segmentation reliability. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 118 - 118
10 Feb 2023
Sundaraj K Corbett J Yong Yau Tai J Salmon L Roe J
Full Access

The emergence of patient specific instrumentation has seen an expansion from simple radiographs to plan total knee arthroplasty (TKA) with modern systems using computed tomography (CT) or magnetic resonance imaging scans. Concerns have emerged regarding accuracy of these non-weight bearing modalities to assess true mechanical axis. The aim of our study was to compare coronal alignment on full length standing AP imaging generated by the EOS acquisition system with the CT coronal scout image. Eligible patients underwent unilateral or bilateral primary TKA for osteoarthritis under the care of investigating surgeon between 2017 and 2022, with both EOS X-Ray Imaging Acquisition System and CT scans performed preoperatively. Coronal mechanical alignment was measured on the supine coronal scout CT scan and the standing HKA EOS. Pre-operative lower limb coronal alignment was assessed on 96 knees prior to TKA on the supine coronal scout CT scan and the standing HKA EOS. There were 56 males (56%), and 44 right knees (44%). The mean age was 68 years (range 53-90). The mean coronal alignment was 4.7 degrees (SD 5.3) on CT scan and 4.6 degrees (SD 6.2) on EOS (p=0.70). There was a strong positive correlation of coronal alignment on CT scan and EOS (pearson. 0.927, p=0.001). The mean difference between EOS and CT scan was 0.9 degrees (SD 2.4). Less than 3 degrees variation between measures was observed in 87% of knees. On linear regression for every 1° varus increase in CT HKA alignment, the EOS HKA alignment increased by 0.93° in varus orientation. The model explained 86% of the variability. CT demonstrates excellent reliability for assessing coronal lower limb alignment compared to EOS in osteoarthritic knees. This supports the routine use of CT to plan TKA without further weight bearing imaging in routine cases


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 82 - 82
7 Aug 2023
Jones R Phillips J Panteli M
Full Access

Abstract. Introduction. Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures, used for the management of end-stage arthritis. With the recent introduction of robotic assisted joint replacement, Computed Tomography (CT) has become part of required pre-operative planning. The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on planned joint arthroplasty. Methodology. All consecutive patients undergoing an elective TJR (hip or knee arthroplasty) were retrospectively identified, over a 3-year period (December 2019 and December 2022). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation. Results. A total of 624 patients (637 studies, 323 (51.8%) female, 301 (48.2%) male) were identified of which 163 (25.6%) showed incidental findings within the long bones or pelvis. Of these 52 (8.2%) were significant, potentially requiring further management, 32 (5.0%) represented potential malignancy and 4 (0.6%) resulted in a new cancer diagnosis. Conclusion. It is not currently national standard practice to report planning CT imaging as it is deemed an unnecessary expense and burden on radiology services. Within the study cohort 52 (8.2%) of patients had a significant incidental finding that required further investigation or management and 4 (0.6%) had a previously undiagnosed malignancy. In order to avoid the inevitability of a missed malignancy on a planning CT, we must advocate for formal reports in all cases


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 86 - 86
1 Sep 2012
Harvie P Fletcher T Sloan K Beaver R
Full Access

In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 592 - 593
1 Nov 2011
Bailey CS Alsaleh K Ho D Rosas-Arellano P Bailey SI Gurr KR
Full Access

Purpose: Magnetic resonance imaging (MRI) and Computerized tomography (CT) are commonly used for the diagnosis and assessment of lumbar spinal stenosis. The available literature has not identified which modality is superior. We compared the reliability and accuracy of CT and MRI in the assessment of lumbar spinal stenosis. Method: We performed a prospective review of CT and MRI scans of 54 patients referred for surgical consultation. One orthopaedic spine fellow and one neuro-radiologist reviewed the CTs and MRIs. A qualitative and quantitative analysis was performed. Intra-observer and inter-observer reliability was determined using Kappa coefficient. The patient’s official reports were correlated with analysis performed by the two reviewers. Owsestry and SF-36 data was correlated with the qualitative and qualitative assessment of stenosis on CT, MRI using the Pearson’s R coefficient. Results: MRI – substantial inter-observer agreement was achieved between surgeon and neuro-radiologist as well as between surgeon and reporting radiologist (κ= 0.74 and κ=0.64 respectively). Moderate agreement was found between neuro-radiologist and reporting radiologist (κ=0.57). Almost perfect intra-observer reliability for MRI was achieved by the two expert reviewers (κ=0.91 for surgeon and κ=0.92 for neuro-radiologist). CT – moderate inter-observer agreement (κ=0.58) was found between surgeon and neuro-radiologist. Fair agreement was found between neuro-radiologist and reporting radiologist and between surgeon and reporting radiologist (κ=0.30 and 0.32 respectively). Substantial intra-observer agreement was found for the surgeon (κ=0.77) while the neuro-radiologist achieved almost perfect agreement (κ=0.96). Conclusion: This study directly demonstrates that MRI is likely a more reliable tool than CT, but neither correlates with functional status


Bone & Joint Open
Vol. 3, Issue 1 | Pages 12 - 19
3 Jan 2022
Salih S Grammatopoulos G Burns S Hall-Craggs M Witt J

Aims. The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC). Methods. This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC. Results. CT-measured LCEA and AI correlated strongly with roentgenographical LCEA (r = 0.92; p < 0.001) and AI (r = 0.83; p < 0.001). Radiological LCEA correlated very strongly with CT FHC (r = 0.92; p < 0.001). The sum of AWI and PWI also correlated strongly with CTFHC (r = 0.73; p < 0.001). CT measurements of LCEA and AI were 3.4° less and 2.3° greater than radiological LCEA and AI measures. There was a linear relation between radiological LCEA and CT FHC. The linear regression model statistically significantly predicted FHC from LCEA, F(1,96) = 545.1 (p < 0.001), adjusted R. 2. = 85.0%, with the prediction equation: CT FHC(%) = 42.1 + 0.77(XRLCEA). Conclusion. CT and roentgenographical measurement of acetabular parameters are comparable. Currently, a radiological LCEA greater than 25° is considered normal. This study demonstrates that those with hip pain and normal radiological acetabular parameters may still have deficiencies in FHC. More sophisticated imaging techniques such as 3D CT should be considered for those with hip pain to identify deficiencies in FHC. Cite this article: Bone Jt Open 2022;3(1):12–19


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 89 - 89
23 Feb 2023
Marasco S Gieroba T Di Bella C Babazadeh S Van Bavel D
Full Access

Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative Mako CT planning scans (CTs). Sixty-eight patients who underwent TKA from 2020–2021 with pre-operative LLR and CTs were included. Three observers (Surgeon, Fellow, Registrar) measured the LDFA and MPTA on LLR and CT independently on three separate occasions, to determine aHKA. Statistical analysis was undertaken with Bland-Altman test and coefficient of repeatability. An average intra-observer measurement error of 3.5° on LLR and 1.73° on CTs for MPTA was detected. Inter-observer errors were 2.74° on LLR and 1.28° on CTs. For LDFA, average intra-observer measurement error was 2.93° on LLR and 2.3° on CTs, with inter-observer errors of 2.31° on LLR and 1.92° on CTs. Average aHKA intra-observer error was 4.8° on LLR and 2.82° on CTs. Inter-observer error of 3.56° for LLR and 2.0° on CTs was measured. The aHKA is reproducible on both LLR and CT. CT measurements are more reproducible both between and within observers. The difference between measurements using LLR and CT is small and hence these two can be considered interchangeable. CT may obviate the need for LLRs and may overcome difficulties associated with positioning, rotation, body habitus and flexion contractures when assessing coronal alignment


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 79 - 84
1 Jun 2020
Abdelfadeel W Houston N Star A Saxena A Hozack WJ

Aims. The aim of this study was to analyze the true costs associated with preoperative CT scans performed for robotic-assisted total knee arthroplasty (RATKA) planning and to determine the value of a formal radiologist’s report of these studies. Methods. We reviewed 194 CT reports of 176 sequential patients who underwent primary RATKA by a single surgeon at a suburban teaching hospital. CT radiology reports were reviewed for the presence of incidental findings that might change the management of the patient. Payments for the scans, including the technical and professional components, for 330 patients at two hospitals were also recorded and compared. Results. There were 82 incidental findings in 61 CT studies, one of which led to a recommendation for additional testing. Across both institutions, the mean total payment for a preoperative scan was $446 ($8 to $3,870). The mean patient payment was $71 ($0 to $2,690). There was wide variation in payments between the institutions. In Institution A, the mean total payment was $258 ($168 to $264), with a mean patient payment of $57 ($0 to $100). The mean technical payment in this institution was $211 ($8 to $856), while the mean professional payment was $48 ($0 to $66). In Institution B, the mean total payment was $636 ($37 to $3,870), with a mean patient payment of $85 ($0 to $2,690). Conclusion. The total cost of a CT scan is low and a minimal part of the overall cost of the RATKA. No incidental findings identified on imaging led to a change in management, suggesting that the professional component could be eliminated to reduce costs. Further studies need to take into account the patient perspective and the wide variation in total costs and patient payments across institutions and insurances. Cite this article: Bone Joint J 2020;102-B(6 Supple A):79–84


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 155 - 155
1 May 2011
Harvie P Fletcher T Morrison D Day R Sloan K Beaver R
Full Access

Aim: In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. Methods: An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Results: Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). Conclusions: CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 66 - 66
2 Jan 2024
Burssens A
Full Access

Osteotomies in the musculoskeletal system are joint preserving procedures to correct the alignment of the patient. In the lower limb, most of the pre-operative planning is performed on full leg weightbearing radiographs. However, these images contain a 2-dimensional projection of a 3-dimensional deformity, lack a clear visualization of the joint surface and are prone to rotational errors during patient positioning. Weightbearing CT imaging has demonstrated to overcome these shortcomings during the first applications of this device at level of the foot and ankle. Recent advances allow to scan the entire lower limb and novel applications at the level of the knee and hip are on the rise. Here, we will demonstrated the current techniques and 3-dimensional measurements used in supra- and inframalleolar osteotomies around the ankle. Several of these techniques will be transposed to other parts in the lower limb to spark future studies in this field


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 48 - 48
1 Dec 2022
Yee N Iorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine: if ultra-low dose CT without sedation was feasible given the movement disorders in this population; what the radiation exposure was compared to standard pre-operative imaging; whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α = 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 68 - 68
1 Dec 2022
Yee N Lorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine:. if ultra-low dose CT without sedation was feasible given the movement disorders in this population;. what the radiation exposure was compared to standard pre-operative imaging;. whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α= 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 5 - 5
2 Jan 2024
Huyghe M Peiffer M Cuigniez F Tampere T Ashkani-Esfahani S D'Hooghe P Audenaert E Burssens A
Full Access

One-fourth of all ankle trauma involve injury to the syndesmotic ankle complex, which may lead to syndesmotic instability and/or posttraumatic ankle osteoarthritis in the long term if left untreated. The diagnosis of these injuries still poses a deceitful challenge, as MRI scans lack physiologic weightbearing and plain weightbearing radiographs are subject to beam rotation and lack 3D information. Weightbearing cone-beam CT (WBCT) overcomes these challenges by imaging both ankles during bipedal stance, but ongoingdebate remains whether these should be taken under weightbearing conditions and/or during application of external rotation stress. The aim of this study is study therefore to compare both conditions in the assessment of syndesmotic ankle injuries using WBCT imaging combined with 3D measurement techniques. In this retrospective study, 21 patients with an acute ankle injury were analyzed using a WBCT. Patients with confirmed syndesmotic ligament injury on MRI were included, while fracture associated syndesmotic injuries were excluded. WBCT imaging was performed in weightbearing and combined weightbearing-external rotation. In the latter, the patient was asked to internally rotate the shin until pain (VAS>8/10) or a maximal range of motion was encountered. 3D models were developed from the CT slices, whereafter. The following 3D measurements were calculated using a custom-made Matlab® script; Anterior tibiofibular distance (AFTD), Alpha angle, posterior Tibiofibular distance (PFTD) and Talar rotation (TR) in comparison to the contralateral non-injured ankle. The difference in neutral-stressed Alpha angle and AFTD were significant between patients with a syndesmotic ankle lesion and contralateral control (P=0.046 and P=0.039, respectively). There was no significant difference in neutral-stressed PFTD and TR angle. Combined weightbearing-external rotation during CT scanning revealed an increased AFTD in patients with syndesmotic ligament injuries. Based on this study, application of external rotation during WBCT scans could enhance the diagnostic accuracy of subtle syndesmotic instability


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1380 - 1385
2 Aug 2021
Kim Y Ryu J Kim JK Al-Dhafer BAA Shin YH

Aims. The aim of this study was to assess arthritis of the basal joint of the thumb quantitatively using bone single-photon emission CT/CT (SPECT/CT) and evaluate its relationship with patients’ pain and function. Methods. We retrospectively reviewed 30 patients (53 hands) with symptomatic basal joint arthritis of the thumb between April 2019 and March 2020. Visual analogue scale (VAS) scores for pain, grip strength, and pinch power of both hands and Patient-Rated Wrist/Hand Evaluation (PRWHE) scores were recorded for all patients. Basal joint arthritis was classified according to the modified Eaton-Glickel stage using routine radiographs and the CT scans of SPECT/CT, respectively. The maximum standardized uptake value (SUVmax) from SPECT/CT was measured in the four peritrapezial joints and the highest uptake was used for analysis. Results. According to Eaton-Glickel classification, 11, 17, 17, and eight hands were stage 0 to I, II, III, and IV, respectively. The interobserver reliability for determining the stage of arthritis was moderate for radiographs (k = 0.41) and substantial for CT scans (k = 0.67). In a binary categorical analysis using SUVmax, pain (p < 0.001) and PRWHE scores (p = 0.004) were significantly higher in hands with higher SUVmax. Using multivariate linear regression to estimate the pain VAS, only SUVmax (B 0.172 (95% confidence interval (CI) 0.065 to 0.279; p = 0.002) showed a significant association. Estimating the variation of PRWHE scores using the same model, only SUVmax (B 1.378 (95% CI, 0.082 to 2.674); p = 0.038) showed a significant association. Conclusion. The CT scans of SPECT/CT provided better interobserver reliability than routine radiographs for evaluating the severity of arthritis. A higher SUVmax in SPECT/CT was associated with more pain and functional disabilities of basal joint arthritis of the thumb. This approach could be used to complement radiographs for the evaluation of patients with this condition. Cite this article: Bone Joint J 2021;103-B(8):1380–1385


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 5 - 5
1 Oct 2020
Gorman H Jordan E Varady NH Hosseinzadeh S Smith S Chen AF Mont M Iorio R
Full Access

Introduction. A staging system has been developed to revise the 1994 ARCO classification for ONFH. The final consensus resulted in the following 4-staged system: stage I—X-ray is normal, but either magnetic resonance imaging or bone scan is positive; stage II—X-ray is abnormal (subtle signs of osteosclerosis, focal osteoporosis, or cystic change in the femoral head) but without any evidence of subchondral fracture, fracture in the necrotic portion, or flattening of the femoral head; stage III—fracture in the subchondral or necrotic zone as seen on X-ray or computed tomography scans. This stage is further divided into stage IIIA (early, femoral head depression ≤2 mm) and stage IIIB (late, femoral head depression >2 mm); and stage IV—X-ray evidence of osteoarthritis with accompanying joint space narrowing, acetabular changes, and/or joint destruction. Radiographs, magnetic resonance imaging (MRI), and computed tomography (CT) scans may all be involved in diagnosing ONFH; however, the optimal diagnostic modality remains unclear. The purpose of this study was to identify: 1) how ONFH is diagnosed at a single academic medical center, and 2) if CT is a necessary modality for diagnosing/staging OFNH. Methods. The EMR was queried for the diagnosis of ONFH between 1/1/2008–12/31/2018 at a single academic medical center. CT and MRI scans were reviewed by the senior author and other contributors. The timing and staging quality of the diagnosis of ONFH were compared between MRI and CT to determine if CT was a necessary component of the ONFH work-up. Results. There were 803 patients with ONFH over the 10 years of study. 382 had CT only, 166 had MRI only, and 255 had both a CT and MRI. Of the 255 patients who had both CT and MRI, 228 actually had ONFH after inspection. A diagnosis of ONFH was made by MRI only in 57% (129/228) while another 21% (48/228) used MRI and CT simultaneously. 22% (51/228) of cases were diagnosed by CT scan first. 94% (48/51) of these cases involved a cancer (CA) diagnoses, the CT scans were used for CA staging and were not helpful with ARCO staging of ONFH. The other 3 cases identified asymptomatic ONFH. MRI scans performed after diagnosis with CT in symptomatic patients were then utilized for staging. Conclusion. Although CT scan was a useful adjunct for diagnosing ONFH during a staging workup for CA, it was not useful for ARCO staging of ONFH and treatment decisions. Based on this retrospective study, CT scan is not necessary when using the Revised ARCO Staging System


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 36 - 36
2 May 2024
Jones R Phillips J Panteli M
Full Access

Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures used for the management of end-stage arthritis. With the recent introduction of robotic-assisted joint replacement, Computed tomography (CT) has become part of required pre-operative planning. The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on the planned joint arthroplasty. All consecutive patients undergoing an elective TJA (total joint arthroplasty; hip or knee) were retrospectively identified, over a 4-year period (December 2019 and November 2023). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation. A total of 987 patients (female: 514 patients (52.1%)) undergoing TJA were identified (THA: 444 patients (45.0%); TKA: 400 patients (40.5%); UKA: 143 patients (14.5%)). Incidental findings within imaged areas were identified in 227 patients (23.0%). Of these findings, 74 (7.5%) were significant, requiring further investigation or management, 40 (4.1%) of which represented potential malignancy and 4 (0.4%) resulting in a new cancer diagnosis. A single patient was found to have an aneurysm requiring urgent vascular intervention. Surgery was delayed for further investigation in 4 patients (0.4%). Significant findings were more frequent in THA patients (THA: 43 (9.7%) TKA/UKA: 31 (5.7%). Within our cohort, 74 (7.5%) patients had significant incidental findings that required further investigations or management, with 4 (0.4%) having a previously undiagnosed malignancy. We strongly advocate that all robotic arthroplasty planning CTs are reviewed and reported by a specialist, to avoid missing undiagnosed malignancies and other significant diagnoses


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 739 - 745
1 Apr 2021
Mehta JS Hodgson K Yiping L Kho JSB Thimmaiah R Topiwala U Sawlani V Botchu R

Aims. To benchmark the radiation dose to patients during the course of treatment for a spinal deformity. Methods. Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)). Results. There were more ionizing radiation-based imaging events and higher radiation dose exposures in the surgical group than in the non-surgical group (p < 0.001). The difference in effective dose for children between the surgical and non-surgical groups was statistically significant, the surgical group being significantly higher (p < 0.001). This led to a higher estimated risk of cancer induction for the surgical group (1:222 surgical vs 1:1,418 non-surgical). However, the dose difference for adults was not statistically different between the surgical and non-surgical groups. In all cases the effective dose received by all cohorts was significantly higher than that from exposure to natural background radiation. Conclusion. The treatment of spinal deformity is radiation-heavy. The dose exposure is several times higher when surgical treatment is undertaken. Clinicians should be aware of this and review their practices in order to reduce the radiation dose where possible. Cite this article: Bone Joint J 2021;103-B(4):1–7


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 87 - 87
4 Apr 2023
Gehweiler D Pastor T Gueorguiev B Jaeger M Lambert S
Full Access

The periclavicular space is a conduit for the brachial plexus and subclavian-axillary vascular system. Changes in its shape/form generated by alteration in the anatomy of its bounding structures, e.g. clavicle malunion, cause distortion of the containing structures, particularly during arm motion, leading to syndromes of thoracic outlet stenosis etc., or alterations of scapular posture with potential reduction in shoulder function. Aim of this study was developing an in vitro methodology for systematic and repeatable measurements of the clinically poorly characterized periclavicular space during arm motion using CT-imaging and computer-aided 3D-methodologies. A radiolucent frame, mountable to the CT-table, was constructed to fix an upper torso in an upright position with the shoulder joint lying in the isocentre. The centrally osteotomized humerus is fixed to a semi-circular bracket mounted centrally at the end of the frame. All arm movements (ante-/retroversion, abduction/elevation, in-/external rotation) can be set and scanned in a defined and reproducible manner. Clavicle fractures healed in malposition can be simulated by osteotomy and fixation using a titanium/carbon external fixator. During image processing the first rib served as fixed reference in space. Clavicle, scapula and humerus were registered, segmented, and triangulated. The different positions were displayed as superimposed surface meshes and measurements performed automatically. Initial results of an intact shoulder girdle demonstrated that different arm positions including ante-/retroversion and abduction/elevation resulted solely in a transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space. A radiolucent frame enabling systematic and reproducible CT scanning of upper torsos in various arm movements was developed and utilized to characterize the effect on the 3D volume of the periclavicular space. Initial results demonstrated exclusively transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space during arm positions within a physiological range of motion


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 11 - 11
1 Mar 2021
Wong M Wiens C Kooner S Buckley R Duffy P Korley R Martin R Sanders D Edwards B Schneider P
Full Access

Nearly one quarter of ankle fractures have a recognized syndesmosis injury. An intact syndesmosis ligament complex stabilizes the distal tibio-fibular joint while allowing small, physiologic amounts of relative motion. When injured, malreduction of the syndesmosis has been found to be the most important independent factor that contributes to inferior functional outcomes. Despite this, significant variability in surgical treatment remains. This may be due to a poor understanding of normal dynamic syndesmosis motion and the resultant impact of static and dynamic fixation on post-injury syndesmosis kinematics. As the syndesmosis is a dynamic structure, conventional CT static images do not provide a complete picture of syndesmosis position, giving potentially misleading results. Dynamic CT technology has the ability to image joints in real time, as they are moved through a range-of-motion (ROM). The aim of this study was to determine if syndesmosis position changes significantly throughout ankle range of motion, thus warranting further investigation with dynamic CT. This is an a priori planned subgroup analysis of a larger multicentre randomized clinical trial, in which patients with AO-OTA 44-C injuries were randomized to either Tightrope or screw fixation. Bilateral ankle CT scans were performed at 1 year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). In the uninjured ankles, three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance, in order to determine normal syndesmosis position. Paired samples t-tests compared measurements taken at maximal DF and maximal PF. Twelve patients (eight male, six female) were included, with a mean age of 44 years (±13years). The mean maximal DF achieved was 1-degree (± 7-degrees), whereas the mean maximal PF was 47-degrees (± 8-degrees). The ASD in DF was 3.0mm (± 1.1mm) versus 1.9mm (± 0.8mm) in PF (p<0.01). The MSD in DF was 3.3mm (±1.1mm) versus 2.3mm (±0.9mm) in PF (p<0.01). The PSD in DF was 5.3mm (±1.5mm) versus 4.6mm (±1.9mm) in PF (p<0.01). These values are consistent with the range of normal parameters previously reported in the literature, however this is the first study to report the ankle position at which these measurements are acquired and that there is a significant change in syndesmosis measurements based on ankle position. Normal syndesmosis position changes in uninjured ankles significantly throughout range of motion. This motion may contribute to the variation in normal anatomy previously reported and controversies surrounding quantifying anatomic reduction after injury, as the ankle position is not routinely standardized, but rather static measurements are taken at patient-selected ankle positions. Dynamic CT is a promising modality to quantify normal ankle kinematics, in order to better understand normal syndesmosis motion. This information will help optimize assessment of reduction methods and potentially improve patient outcomes. Future directions include side-to-side comparison using dynamic CT analysis in healthy volunteers


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 822 - 827
1 May 2021
Buzzatti L Keelson B Vanlauwe J Buls N De Mey J Vandemeulebroucke J Cattrysse E Scheerlinck T

Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options. Cite this article: Bone Joint J 2021;103-B(5):822–827


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 104 - 104
1 Mar 2021
Segers T De Brucker D Huysse W Van Oevelen A Pfeiffer M Burssens A Audenaert E
Full Access

Syndesmotic ankle injuries are present in one fourth of all ankle trauma and may lead to chronic syndesmotic instability as well as posttraumatic ankle osteoarthritis. The main challenge remains distinguishing them from other types of ankle trauma. Currently, the patient's injured and non-injured ankles are compared using plain radiographs to determine pathology. However, these try to quantify 3D displacement using 2D measurements techniques and it is unknown to what extent the 3D configuration of the normal ankle syndesmosis is symmetrical. We aimed to assess the 3D symmetry of the normal ankle syndesmosis between the right and left side in a non- and weightbearing CT. In this retrospective comparative cohort study, patients with a bilateral non-weightbearing CT (NWBCT; N=28; Mean age=44, SD=17.4) and weight-bearing CT (WBCT; N=33; Mean age=48 years; SD=16.3) were analyzed. Consecutive patients were included between January 2016 and December 2018 when having a bilateral non-weightbearing or weightbearing CT of the foot and ankle. Exclusion criteria were the presence of hindfoot pathology and age less than 18 years or greather than 75 years. CT images were segmented to obtain 3D models. Computer Aided Design (CAD) operations were used to fit the left ankle on top of the right ankle. The outermost point of the apex of the lateral malleolus (AML), anterior tubercle (ATF) and posterior tubercle (PTF) were computed. The difference in the coordinates attached to these anatomical landmarks of the left distal fibula in the ankle syndesmosis with respect to right were used to quantify symmetry. A Cartesian coordinate system was defined based on the tibia to obtain the direction of differences in all six degrees of freedom. Statistical analysis was performed using the Mann-Whitney U test to allow comparison between measurements from a NWBCT and WBCT. Reference values were determined for each 3D measurement in a NWBCT and WBCT based on their 2SD. The highest difference in translation could be detected in the anterior-posterior direction (Mean AP. NWBCT. = −0.01mm; 2SD=3.43/Mean AP. WBCT. =−0.1mm; 2SD=2.3) and amongst rotations in the external direction (Mean AP. NWBCT. =−0.3°; 2SD=6.7/Mean AP. WBCT. =-0,2°; 2SD=5.2). None of these differences were statistically significant in the normal ankle syndesmosis when obtained from a NWBCT compared to a WBCT (P>0.05). This study provides references values concerning the 3D symmetry of the normal ankle syndesmosis in weightbearing and non-weightbearing CT-scans. These novel data contribute relevantly to previous 2D radiographic quantifications. In clinical practice they will aid in distinguishing if a patient with a syndesmotic ankle lesion differs from normal variance in syndesmotic ankle symmetry


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 6 - 6
1 Mar 2021
Penev P Zderic I Qawasmi F Mosheiff R Knobe M Krause F Richards G Raykov D Gueorguiev B Klos K
Full Access

Being commonly missed in the clinical practice, Lisfranc injuries can lead to arthritis and long-term complications. There are controversial opinions about the contribution of the main stabilizers of the joint. Moreover, the role of the ligament that connects the medial cuneiform (MC) and the third metatarsal (MT3) is not well investigated. The aim of this study was to investigate the influence of different Lisfranc ligament injuries on CT findings under two specified loads. Sixteen fresh-frozen human cadaveric lower limbs were embedded in PMMA at mid-shaft of the tibia and placed in a weight-bearing radiolucent frame for CT scanning. All intact specimens were initially scanned under 7.5 kg and 70 kg loads in neutral foot position. A dorsal approach was then used for sequential ligaments cutting: first – the dorsal and the (Lisfranc) interosseous ligaments; second – the plantar ligament between the MC and MT3; third – the plantar Lisfranc ligament between the MC and the MT2. All feet were rescanned after each cutting step under the two loads. The average distances between MT1 and MT2 in the intact feet under 7.5 kg and 70 kg loads were 0.77 mm and 0.82 mm, whereas between MC and MT2 they were 0.61 mm and 0.80 mm, without any signs of misalignment or dorsal displacement of MT2. A slight increase in the distances MT1-MT2 (0.89 mm; 0.97 mm) and MC-MT2 (0.97 mm; 1.13 mm) was observed after the first disruption of the dorsal and the interosseous ligaments under 7.5 kg and 70 kg loads. A further increase in MT1-MT2 and MC-MT2 distances was registered after the second disruption of the ligament between MC and MT3. The largest distances MT1-MT2 (1.5 mm; 1.95 mm) and MC-MT2 (1.74 mm; 2.35 mm) were measured after the final plantar Lisfranc ligament cut under the two loads. In contrast to the previous two the previous two cuts, misalignment and dorsal displacement of 1.25 mm were seen at this final disrupted stage. The minimal pathological increase in the distances MT1-MT2 and MC-MT2 is an important indicator for ligamentous Lisfranc injury. Dorsal displacement and misalignment of the second metatarsal in the CT scans identify severe ligamentous Lisfranc injury. The plantar Lisfranc ligament between the medial cuneiform and the second metatarsal seems to be the strongest stabilizer of the Lisfranc joint. Partial lesion of the Lisfranc ligaments requires high clinical suspicion as it can be easily missed


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 49 - 49
11 Apr 2023
Speirs A Melkus G Rakhra K Beaule P
Full Access

Femoroacetabular impingement (FAI) results from a morphological deformity of the hip and is associated with osteoarthritis (OA). Increased bone mineral density (BMD) is observed in the antero-superior acetabulum rim where impingement occurs. It is hypothesized that the repeated abnormal contact leads to damage of the cartilage layer, but could also cause a bone remodelling response according to Wolff's Law. Thus the goal of this study was to assess the relationship between bone metabolic activity measured by PET and BMD measured in CT scans. Five participants with asymptomatic cam deformity, three patients with uni-lateral symptomatic cam FAI and three healthy controls were scanned in a 3T PET-MRI scanner following injection with [18F]NaF. Bone remodelling activity was quantified with Standard Uptake Values (SUVs). SUVmax was analyzed in the antero-superior acetabular rim, femoral head and head-neck junction. In these same regions, BMD was calculated from CT scans using the calibration phantom included in the scan. The relationship between SUVmax and BMD from corresponding regions was assessed using the coefficient of determination (R. 2. ) from linear regression. High bone activity was seen in the cam deformity and acetabular rim. SUVmax was negatively correlated with BMD in the antero-superior region of the acetabulum (R. 2. =0.30, p=0.08). SUVmax was positively correlated with BMD in the antero-superior head-neck junction of the femur (R. 2. =0.359, p=0.067). Correlations were weak in other regions. Elevated bone turnover was seen in patients with a cam deformity but the relationship to BMD was moderate. This study demonstrates a pathomechanism of hip degeneration associated with FAI deformities, consistent with Wolff's law and the proposed mechanical cause of hip degeneration in FAI. [18F]-NaF PET SUV may be a biomarker of degeneration, especially in early stages of degeneration, when joint preservation surgery is likely to be the most successful


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 13 - 13
1 Sep 2021
Patankar A Fragkakis EM Papadakos N Fenner C Ajayi B Beharry N Lupu C Bernard J Bishop T Lui DF
Full Access

Introduction. Degenerative spondylosis (DS) represents a challenging condition to diagnose and treat. There are multiple modalities to investigate DS including X-ray, MRI and CT, but symptoms may not be equivocal to DS to support the clinical findings. The investigation of metastases commonly utilises SPECT/CT for identification of areas of increased osteoblastic activity to denote disease. The aim of the study was to analyse the prevalence of asymptomatic DS in a consecutive hospital cohort of oncology patients who had SPECT/CT for investigation of metastases. Methods. Oncology patients who underwent SPECT/CT at St. George's Hospital were analysed between 2015–2019. Exclusion criteria: back pain, inflammatory disorders, metastases, trauma, infection. Radiology reports were examined for DS and anatomical distribution of tracer uptake. Results. A total of 1182 patients had a Whole-Body SPECT CT used for the spinal analysis. After exclusions (age >80 [n=260], non-cancer [n=318], back pain [n=72]), 522 reports with cancer were utilised. Mean age was 65 (4–80). Age and distribution of DS are given in the table. Conclusion. The prevalence of radiological asymptomatic DS is prevalent in large proportions of patients without back pain, and its incidence increases with age. Approximately 60% of 60 year old and 70% of 70 years old patients have asymptomatic DS in the lumbosarcal region. We conclude that SPECT/CT will detect radiographic degenerative spondylosis in an asymptomatic hospital cohort and this prevalence increase with age. Therefore, this modality of imaging must be utilised with caution when investigating potential pain generators. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 67 - 67
2 Jan 2024
Belvedere C
Full Access

3D accurate measurements of the skeletal structures of the foot, in physiological and impaired subjects, are now possible using Cone-Beam CT (CBCT) under real-world loading conditions. In detail, this feature allows a more realistic representation of the relative bone-bone interactions of the foot as they occur under patient-specific body weight conditions. In this context, varus/valgus of the hindfoot under altered conditions or the thinning of plantar tissues that occurs with advancing age are among the most complex and interesting to represent, and numerous measurement proposals have been proposed. This study aims to analyze and compare these measurements from CBCT in weight-bearing scans in a clinical population. Sixteen feet of diabetic patients and ten feet with severe adult flatfoot acquired before/after corrective surgery underwent CBCT scans (Carestream, USA) while standing on the leg of interest. Corresponding 3D shapes of each bone of the shank and hindfoot were reconstructed (Materialise, Belgium). Six different techniques found in the literature were used to calculate the varus/valgus deformity, i.e., the inclination of the hindfoot in the frontal plane of the shank, and the distance between the ground and the metatarsal heads was calculated along with different solutions for the identification of possible calcifications. Starting with an accurate 3D reconstruction of the skeletal structures of the foot, a wide range of measurements representing the same angle of hindfoot alignment were found, some of them very different from each other. Interesting correlations were found between metatarsal height and subject age, significant in diabetic feet for the fourth and fifth metatarsal bones. Finally, CBCT allows 3D assessment of foot deformities under loaded conditions. The observed traditional measurement differences and new measurement solutions suggest that clinicians should consider carefully the anatomical and functional concepts underlying measurement techniques when drawing clinical and surgical conclusions


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1200 - 1209
14 Sep 2020
Miyamura S Lans J He JJ Murase T Jupiter JB Chen NC

Aims. We quantitatively compared the 3D bone density distributions on CT scans performed on scaphoid waist fractures subacutely that went on to union or nonunion, and assessed whether 2D CT evaluations correlate with 3D bone density evaluations. Methods. We constructed 3D models from 17 scaphoid waist fracture CTs performed between four to 18 weeks after fracture that did not unite (nonunion group), 17 age-matched scaphoid waist fracture CTs that healed (union group), and 17 age-matched control CTs without injury (control group). We measured the 3D bone density for the distal and proximal fragments relative to the triquetrum bone density and compared findings among the three groups. We then performed bone density measurements using 2D CT and evaluated the correlation with 3D bone densities. We identified the optimal cutoff with diagnostic values of the 2D method to predict nonunion with receiver operating characteristic (ROC) curves. Results. In the nonunion group, both the distal (100.2%) and proximal (126.6%) fragments had a significantly higher bone density compared to the union (distal: 85.7%; proximal: 108.3%) or control groups (distal: 91.6%; proximal: 109.1%) using the 3D bone density measurement, which were statistically significant for all comparisons. 2D measurements were highly correlated to 3D bone density measurements (Spearman’s correlation coefficient (R) = 0.85 to 0.95). Using 2D measurements, ROC curve analysis revealed the optimal cutoffs of 90.8% and 116.3% for distal and proximal fragments. This led to a sensitivity of 1.00 if either cutoff is met and a specificity of 0.82 when both cutoffs are met. Conclusion. Using 3D modelling software, nonunions were found to exhibit bone density increases in both the distal and proximal fragments in CTs performed between four to 18 weeks after fracture during the course of treatment. 2D bone density measurements using standard CT scans correlate well with 3D models. In patients with scaphoid fractures, CT bone density measurements may be useful in predicting the likelihood of nonunion. Cite this article: Bone Joint J 2020;102-B(9):1200–1209


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 78 - 78
1 Mar 2021
Kandhari V Grasso S Twiggs J
Full Access

Abstract. Background. Accurate analysis of the patellar resurfacing is essential to better understand the etiology of patella-femoral problems and dissatisfaction following total knee arthroplasty (TKA). In the current published literature patellar resurfacing is analysed using 2D radiographs. With use of radiographs there is potential for error due to differences in limb positioning, projection, anatomic variability and difficulties in appreciating the cement-bone interface. So, we have developed a CT Scan based 3D modelled technique for accurate evaluation of patellar resurfacing. Methods. This technique for analyses of patellar resurfacing is based on the pre-operative and pos-operative CT Scan data of the patients who underwent TKA with patellar resurfacing. In the first step, accurately landmarked 3D models of pre-op patellae were created from pre-operative CT Scan data in ScanIP software. This model was imported in Geomagic design software and computational model of post-op patella was created. This was further analysed to determine the inclination of the patellar resection plane, patellar button positioning and articular volumetric restoration of the patella. Reliability and reproducibility of the technique was tested by comparing 3 sets of 10 measurements done by 2 independent investigators on 30 computational models of patellae derived from the data of randomly chosen 30 TKA patients. Results. The developed technique for analyses of patellar resurfacing is reliable and reproducible. The intraclass correlation co-efficient was >0.90 for the 10 measurements performed by two investigators. Conclusions. This technique can be used by surgeons and engineers for accurate analysis of the patellar resurfacing especially in patients with persistent patello-femoral problems after TKA. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 22 - 22
1 Jul 2020
Wong M Buckley R Duffy P Korley R Martin R Harrison T Sanders DW Schneider P Wiens C
Full Access

The syndesmosis ligament complex stabilizes the distal tibiofibular joint, while allowing for the subtle fibular motion that is essential for ankle congruity. Flexible fixation with anatomic syndesmosis reduction results in substantial improvements in functional outcomes. New dynamic CT technology allows real-time imaging, as the ankle moves through a range of motion. The aim of this study was to determine if dynamic CT analysis is a feasible method for evaluating syndesmosis reduction and motion following static and flexible syndesmosis fixation. This is a subgroup analysis of a larger multicenter randomized clinical trial, in which patients with AO 44-C injuries were randomized to either Tightrope (one knotless Tightrope, Group T) or screw fixation (two 3.5-mm cortical screws, Group S). Surgical techniques and rehabilitation were standardized. Bilateral ankle CT scans were performed at one year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). Three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: anterior, midpoint, and posterior tibiofibular distances. T-tests compared Group T and Group S, and injured and uninjured ankles in each group. Fifteen patients (six Group T [three male], nine Group S [eight male]) were included. There was no difference for mean age (T = 42.8 ± 14.1 years, S = 37 ± 12.6, P = 0.4) or time between injury and CT scan (T = 13 ± 1.8 months, S = 13.2 ± 1.8, P = 0.8). Of note in Group S, seven of nine patients had at least one broken screw and one additional patient had screws removed by the time of their dynamic CT. There was no significant difference between treatment groups for tibiofibular distance measurements in maximal PF or DF. Group T showed no significant difference between the injured and uninjured side for tibiofibular measurements in maximal PF and DF, suggesting anatomic reduction. For Group S, however, there was a significantly larger distance for all three measurements at maximal PF compared to the uninjured ankle (all P < 0 .05). In all but one Group S patient, screws were broken or removed prior to their dynamic CT, allowing possible increased syndesmotic motion, similar to Group T. Despite this, dynamic CT analysis detected increased tibiofibular distance in Group S as ankles moved into maximal PF when compared with the uninjured ankle. Given the importance of anatomic syndesmosis reduction, dynamic ankle CT technology may provide valuable physiologic information warranting further investigation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 8 - 8
23 Jun 2023
Baujard A Martinot P Demondion X Dartus J Girard J Migaud H
Full Access

Mechanical irritation or impingement of the iliopsoas tendon accounts for 2–6% of persistent postoperative pain cases after total hip arthroplasty (THA). The most common trigger is anterior cup overhang. CT-scan can be used to identify and measure this overhang; however, no threshold exists for symptomatic anterior iliopsoas impingement. We conducted a case–control study in which CT-scan was used to define a threshold that differentiates patients with iliopsoas impingement from asymptomatic patients after THA. We analyzed the CT-scans of 622 patients (758 CT-scans) between 2011 and 2020. Out of this population we identified 136 patients with symptoms suggestive of iliopsoas impingement. Among them, 6 were subsequently excluded: three because the diagnosis was reestablished intra-operatively (one metallosis, two anterior instability related to posterior prosthetic impingement) and three because they had another obvious cause of impingement (one protruding screw, one protruding cement plug, one stem collar), leaving 130 patients in the study (impingement) group. They were matched to a control group of 138 patients who were asymptomatic after THA. The anterior cup overhang (anterior margin of cup not covered by anterior wall) was measured by an observer (without knowledge of the clinical status) on an axial CT slice based on anatomical landmarks (orthogonal to pelvic axis). The impingement group had a median overhang of 8 mm [IQR: 5 to 11] versus 0 mm [IQR: 0 to 4] for the control group (p<.001). Using ROC curves, an overhang threshold of 4 mm was best correlated with a diagnosis of impingement (sensitivity 79%, specificity 85%, PPV = 75%, NPV = 85%). Pain after THA related to iliopsoas impingement can be reasonably linked to acetabular overhang if it exceeds 4 mm on a CT scan. Below this threshold, it seems logical to look for another cause of iliopsoas irritation or another reason for the pain after THA before concluding impingement is present


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 21 - 21
2 Jan 2024
Harting H Polyak A Angrisani N Herrmann T Ehlert N Meißner J Willmann M Al-Bazaz S Ross T Bankstahl J Reifenrath J
Full Access

In orthopedic surgery, implant infections are a serious issue and difficult to treat. The aim of this study was to use superparamagnetic nanoporous silica nanoparticles (MNPSNP) as candidates for directed drug delivery. Currently, short blood circulation half-life due to interactions with the host's immune system hinder nanoparticles in general from being clinically used. PEGylation is an approach to reduce these interactions and to enhance blood circulation time. The effect of PEGylation of the used . 68. Ga-labelled MNPSNP on the distribution and implant accumulation was examined by PET/CT imaging and gamma counting in an implant mouse model. Female Balb/c mice (n=24) received a magnetic implant subcutaneously on the left and a titanium implant on the right hind leg. On day one, 12 of these mice received an additional clodronate®-injection for macrophage depletion. On the second postoperative day, mice were anaesthetized and MNPSNP (native or PEGylated) injected intravenously, followed by a dynamic PET-scan over 60 minutes, a CT- and a static PET-scan at 120 min. As control, 12 mice received only . 68. Ga-MNPSNP (native or PEGylated). Gamma counting of inner organs, urine, blood and implant area was performed as further final analysis. Although PEGylation of the nanoparticles already resulted in lower liver uptakes, both variants of . 68. Ga-labeled MNPSNP accumulated in liver and spleen. Combination of PEGylation with clodronate®-injection led to a highly significant effect whereas clodronate®-injection alone could not reveal significant differences. In gamma counting, a significantly higher %I.D./g was found for the tissue surrounding the magnetic implants compared to the titanium control, although in a low range. PEGylation and/or clodronate®-injection revealed no significant differences regarding nanoparticle accumulation at the implantation site. PEGylation increases circulation time, but MNPSNP accumulation at the implant site was still insufficient for treatment of infections. Additional efforts have to further increase circulation time and local accumulation. Acknowledgements: This work is funded by the German Research Foundation (DFG, project number 280642759)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 19 - 19
1 Dec 2022
Belvedere C Ruggeri M Berti L Ortolani M Durante S Miceli M Leardini A
Full Access

Biomedical imaging is essential in the diagnosis of musculoskeletal pathologies and postoperative evaluations. In this context, Cone-Beam technology-based Computed Tomography (CBCT) can make important contributions in orthopaedics. CBCT relies on divergent cone X-rays on the whole field of view and a rotating source-detector element to generate three-dimensional (3D) volumes. For the lower limb, they can allow acquisitions under real loading conditions, taking the name Weight-Bearing CBCT (WB-CBCT). Assessments at the foot, ankle, knee, and at the upper limb, can benefit from it in situations where loading is critical to understanding the interactions between anatomical structures. The present study reports 4 recent applications using WB-CBCT in an orthopaedic centre. Patient scans by WB-CBCT were collected for examinations of the lower limb in monopodal standing position. An initial volumetric reconstruction is obtained, and the DICOM file is segmented to obtain 3D bone models. A reference frame is then established on each bone model by virtual landmark palpation or principal component analysis. Based on the variance of the model point cloud, this analysis automatically calculates longitudinal, vertical and mid-lateral axes. Using the defined references, absolute or relative orientations of the bones can be calculated in 3D. In 19 diabetic patients, 3D reconstructed bone models of the foot under load were combined with plantar pressure measurement. Significant correlations were found between bone orientations, heights above the ground, and pressure values, revealing anatomic areas potentially prone to ulceration. In 4 patients enrolled for total ankle arthroplasty, preoperative 3D reconstructions were used for prosthetic design customization, allowing prosthesis-bone mismatch to be minimized. 20 knees with femoral ligament reconstruction were acquired with WB-CBCT and standard CT (in unloading). Bone reconstructions were used to assess congruency angle and patellar tilt and TT-TG. The values obtained show differences between loading and unloading, questioning what has been observed so far. Twenty flat feet were scanned before and after Grice surgery. WB-CBCT allowed characterization of the deformity and bone realignment after surgery, demonstrating the complexity and multi-planarity of the pathology. These applications show how a more complete and realistic 3D geometric characterization of the of lower limb bones is now possible in loading using WB-CBCT. This allows for more accurate diagnoses, surgical planning, and postoperative evaluations, even by automatisms. Other applications are in progress


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 114 - 114
1 Feb 2020
Slotkin E Pierrepont J Smith E Madurawe C Steele B Ricketts S Solomon M
Full Access

Introduction. The direct anterior approach (DAA) for total hip arthroplasty continues to gain popularity. Consequently, more procedures are being performed with the patient supine. The approach often utilizes a special leg positioner to assist with femoral exposure. Although the supine position may seem to allow for a more reproducible pelvic position at the time of cup implantation, there is limited evidence as to the effects on pelvic tilt with such leg positioners. Furthermore, the DAA has led to increased popularity of specific softwares, ie. Radlink or JointPoint, that facilitate the intra-op analysis of component position from fluoroscopy images. The aim of this study was to assess the difference in cup orientation measurements between intra-op fluoroscopy and post-op CT. Methods. A consecutive series of 48 DAA THAs were performed by a single surgeon in June/July 2018. All patients received OPS. TM. pre-operative planning (Corin, UK), and the cases were performed with the patient supine on the operating table with the PURIST leg positioning system (IOT, Texas, USA). To account for variation in pelvic tilt on the table, a fluoroscopy image of the hemi-pelvis was taken prior to cup impaction, and the c-arm rotated to match the shape of the obturator foramen on the supine AP Xray. The final cup was then imaged using fluoroscopy, and the radiographic cup orientation measured manually using Radlink GPS software (Radlink, California, USA). Post-operatively, each patient received a low dose CT scan to measure the radiographic cup orientation in reference to the supine coronal plane. Results. Mean cup orientation from intra-op fluoro was 38° inclination (32° to 43°) and 24° anteversion (20° to 28°). Mean cup orientation from post-op CT was 40° inclination (29° to 47°) and 30° anteversion (22° to 38°). Cups were, on average, 6° more anteverted and 2° more inclined on post-op CT than intra-op. These differences were statistically significant, p<0.001. All 48 cups were more anteverted on CT than intra-op. There was no statistical difference between pre- and post-op supine pelvic tilt (4.1° and 5.1° respectively, p = 0.41). Discussion. We found significant differences in cup orientation measurements performed from intra-op fluoro to those from post-op CT. This is an important finding given the attempts to adjust for pelvic tilt during the procedure. We theorise two sources of error contributing to the measurement differences. Firstly, the under-compensation for the anterior pelvic tilt on the table. Although the c-arm was rotated to match the obturator foramen from the pre-op imaging, we believe the manual matching technique utilised in the Radlink software carries large potential errors. This would have consistently led to an under-appreciation of the adjustment angle required. Secondly, the manual nature of defining the cup ellipse on the fluoro image has previously been shown to underestimate the degree of cup anteversion. These combined errors would have consistently led to the under-measurement of cup anteversion seen intra-operatively. In conclusion, we highlight the risk of over-anteversion of the acetabular cup when using 2D measurements, given the manual inputs required to determine a result


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 478 - 484
1 Apr 2020
Daniels AM Wyers CE Janzing HMJ Sassen S Loeffen D Kaarsemaker S van Rietbergen B Hannemann PFW Poeze M van den Bergh JP

Aims. Besides conventional radiographs, the use of MRI, CT, and bone scintigraphy is frequent in the diagnosis of a fracture of the scaphoid. However, which techniques give the best results remain unknown. The investigation of a new imaging technique initially requires an analysis of its precision. The primary aim of this study was to investigate the interobserver agreement of high-resolution peripheral quantitative CT (HR-pQCT) in the diagnosis of a scaphoid fracture. A secondary aim was to investigate the interobserver agreement for the presence of other fractures and for the classification of scaphoid fracture. Methods. Two radiologists and two orthopaedic trauma surgeons evaluated HR-pQCT scans of 31 patients with a clinically-suspected scaphoid fracture. The observers were asked to determine the presence of a scaphoid or other fracture and to classify the scaphoid fracture based on the Herbert classification system. Fleiss kappa statistics were used to calculate the interobserver agreement for the diagnosis of a fracture. Intraclass correlation coefficients (ICCs) were used to assess the agreement for the classification of scaphoid fracture. Results. A total of nine (29%) scaphoid fractures and 12 (39%) other fractures were diagnosed in 20 patients (65%) using HR-pQCT across the four observers. The interobserver agreement was 91% for the identification of a scaphoid fracture (95% confidence interval (CI) 0.76 to 1.00) and 80% for other fractures (95% CI 0.72 to 0.87). The mean ICC for the classification of a scaphoid fracture in the seven patients diagnosed with scaphoid fracture by all four observers was 73% (95% CI 0.42 to 0.94). Conclusion. We conclude that the diagnosis of scaphoid and other fractures is reliable when using HR-pQCT in patients with a clinically-suspected fracture. Cite this article: Bone Joint J 2020;102-B(4):478–484


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 56 - 56
1 Mar 2021
Schneider P Thoren J Cushnie D Del Balso C Tieszer C Sanders D
Full Access

Flexible fixation techniques combined with anatomic (open) syndesmosis reduction have demonstrated improved functional outcomes and rates of malreduction. Suture-button devices allow physiologic motion of the syndesmosis without need for implant removal, which may lower the risk of recurrent syndesmotic diastasis. There is limited longer-term assessment of the maintenance of reduction between static and flexible syndesmotic fixation using bilateral ankle CT evaluation. This is an a priori planned subgroup analysis of a multi-centre, randomized clinical trial comparing static syndesmosis fixation (two 3.5 mm screws) with flexible fixation (single knotless Tightrope) for patients with AO- OTA 44-C injuries. Patients who completed bilateral ankle CT scans at 3- and 12-month follow-up were included. The primary outcome measure was syndesmotic malreduction based on bilateral ankle CT scans, using the uninjured, contralateral ankle as a control. Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance were calculated to measure syndesmosis reduction. Secondary outcomes included re-operation, adverse events and functional outcomes including the EQ5D, Olerud-Molander Ankle Score (OM), Foot and Ankle Disability Index (FADI), and Work Productivity Activity Impairment Questionnaire (WPAI). Paired samples t-tests were used to compare injured to control ankles (R, v 3.5.1). 42 patients (24 Group S, 18 Group T) were included. ASD for Group T was 5.22mm (95%CI 4.69–5.77) at 3 months compared to 4.26mm (95%CI 3.82–4.71; p=0.007) in controls and 5.38mm (95%CI 4.72–6.04) at 12 months compared to 4.44mm (95%CI 3.73–5.16; p=0.048) in controls. ASD for Group S was 4.63mm (95%CI 4.17– 5.10) at 3 months compared to 4.67mm (95%CI 4.24–5.10; p=0.61) in controls, but significantly increased to 5.73mm (95%CI 4.81–6.66) at 12 months compared to 4.65mm (95%CI 4.15–5.15; p=0.04) in controls. MSD results were similar; Group T had a larger MSD than control ankles at 3 months (p=0.03) and 12 months (p=0.01), while the MSD in Group S was not different at 3 months (p=0.80) but increased at 12 months (p=<0.01). 88% (21/24) of Group S had broken or removed screws by 12 months. Unplanned re-operation was 15% in Group S and 4% in Group T (p=0.02), with an overall re-operation rate of 30% in Group S. There was no significant difference between treatment groups for EQ-5D, OM, FADI or WPAI at 3- or 12-month follow-up. Tightrope fixation resulted in greater diastasis of the ASD and MSD compared to contralateral, uninjured ankles at 3- and 12-months post-fixation. Group S initially had syndesmotic reduction similar to control ankles, but between 3- and 12-months post-fixation, there was significantly increased syndesmosis diastasis compared to controls. The majority of Group S (88%) had either broken screws or scheduled screw removal, which may explain the increased tibio-fibular diastasis seen at 12-months


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 60 - 60
1 Feb 2020
Zhang J Persohn S Bhowmik-Stoker M Otto J Paramasivam M Wahdan A Choplin R Territo P
Full Access

Introduction. Component position and overall limb alignment following Total Knee Arthroplasty (TKA) have been shown to influence device survivorship and clinical outcomes. However current methods for measuring post-operative alignment through 2D radiographs and CTs may be prone to inaccuracies due to variations in patient positioning, and certain anatomical configurations such as rotation and flexion contractures. The purpose of this paper is to develop a new vector based method for overall limb alignment and component position measurements using CT. The technique utilizes a new mathematical model to calculate prosthesis alignment from the coordinates of anatomical landmarks. The hypothesis is that the proposed technique demonstrated good accuracy to surgical plan, as well as low intra and inter-observer variability. Methods. This study received institutional review board approval. A total of 30 patients who underwent robotic assisted TKA (RATKA) at four different sites between March 2017 and January 2018 were enrolled in this prospective, multicenter, non-randomized clinical study. CT scans were performed prior to and 4–6 weeks post-operatively. Each subject was positioned headfirst supine with the legs in a neutral position and the knees at full extension. Three separate CT scans were performed at the anatomical location of the hip, knee, and ankle joint. Hip, knee, and ankle images were viewed in 3D software and the following vertices were generated using anatomical landmarks: Hip Center (HC), Medial Epicondyle Sulcus (MES), Lateral Epicondyle (LE), Femur Center (FC), Tibia Center (TC), Medial Malleolus (MM), Lateral Malleolus (LM), Femur Component Superior (FCS), Femur Component Inferior (FCI), Coronal Femoral Lateral (CFL), Coronal Femoral Medial (CFM), Coronal Tibia Lateral (CTL), and Coronal Tibia Medial (CTM). Limb alignment and component positions were calculated from these vertices using a new mathematical model. The measurements were compared to the surgeons’ operative plan and component targeted positions for accuracy analysis. Two analysts performed the same measurements separately for inter-observer variability analysis. One of the two analysts repeated the measurements at least 30 days apart to assess intra-observer variability. Correlation analysis was performed on the intra-observer analysis, while Bland Altman analysis was performed on the inter-observer analysis. Results. Average measurement errors of overall limb alignments, femoral and tibial component position were less than 1 degree. Bland Altman plots for inter-observer analysis demonstrate great reproducibility in limb and component alignment measurements between surgeons with no bias. Correlation plots for intra-observer analysis demonstrate low variability with slopes ranging between 0.86 to 1.00 and R value greater than 0.88. Discussion. The proposed method demonstrated good accuracy to plan and low intra- and inter observer variability. This technique may be considered for assessing component position accuracy with post-operative CTs. Further studies are needed to investigate the robustness of the method in a larger cohort. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 66 - 66
1 Jul 2020
Tat J Chong J Powell T Martineau PA
Full Access

Anterior shoulder instability is associated with osseous defects of the glenoid and/or humeral head (Hill-Sachs lesions). These defects can contribute to the pathology of instability by engaging together. There is a need to continue to develop methods to preoperatively identify engaging Hill-Sachs lesions for determining appropriate surgical management. The objective was to created a working moveable 3D CT model that allows the user to move the shoulder joint into various positions to assess the relationship between the Hill-Sachs lesion and the anterior glenoid rim. This technique was applied to a cohort series of 14 patients with recurrent anterior dislocation: 4 patients had undergone osteoarticular allografting of Hill-Sachs lesions and 10 control patients had undergone CT scanning to quantify bone loss but had no treatment to address bony pathology. A biomechanical analysis was performed to rotate each 3D model using local coordinate systems through a functional range using an open-source 3D animation program, Blender (Amsterdam, Netherlands). A Hill-Sachs lesion was considered “dynamically” engaging if the angle between the lesion's long axis and anterior glenoid was parallel. In the classical vulnerable position of the shoulder (abduction=90, external rotation=0–135), none of the Hill-Sachs lesions aligned with the anterior glenoid in any of our patients (Figure 1). Therefore, we considered there to be a “low risk” of engagement in these critical positions, as the non-parallel orientation represents a lack of true articular arc mismatch and is unlikely to produce joint instability. We then expanded our search and simulated shoulder positions throughout a physiological range of motion for all groups and found that 100% of the allograft patients and 70% of the controls had positions producing alignment and were “high risk” of engagement (p = 0.18) (Table 1). We also found that the allograft group had a greater number of positions that would engage (mean 4 ± 1 positions of engagement) compared to our controls (mean 2 ± 2 positions of engagement, p = 0.06). We developed a 3D animated paradigm to dynamically and non-invasively visualize a patient's anatomy and determine the clinical significance of a Hill-Sachs lesion using open source software and CT images. The technique demonstrated in this series of patients showed multiple shoulder positions that align the Hill-Sachs and glenoid axes that do not necessarily meet the traditional definition of engagement. Identifying all shoulder positions at risk of “engaging”, in a broader physiological range, may have critical implications towards selecting the appropriate surgical management of bony defects. We do not claim to doubt the classic conceptual definition of engagement, but we merely introduce a technique that accounts for the dynamic component of shoulder motion, and in doing so, avoid limitations of a static criteria assumed traditional definition (like size and location of lesion). Further investigations are planned and will help to further validate the clinical utility of this method. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1668 - 1673
1 Dec 2016
Konda SR Goch AM Leucht P Christiano A Gyftopoulos S Yoeli G Egol KA

Aims. To evaluate whether an ultra-low-dose CT protocol can diagnose selected limb fractures as well as conventional CT (C-CT). Patients and Methods. We prospectively studied 40 consecutive patients with a limb fracture in whom a CT scan was indicated. These were scanned using an ultra-low-dose CT Reduced Effective Dose Using Computed Tomography In Orthopaedic Injury (REDUCTION) protocol. Studies from 16 selected cases were compared with 16 C-CT scans matched for age, gender and type of fracture. Studies were assessed for diagnosis and image quality. Descriptive and reliability statistics were calculated. The total effective radiation dose for each scanned site was compared. Results. The mean estimated effective dose (ED) for the REDUCTION protocol was 0.03 milliSieverts (mSv) and 0.43 mSv (p < 0.005) for C-CT. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) of the REDUCTION protocol to detect fractures were 0.98, 0.89, 0.98 and 0.89 respectively when two occult fractures were excluded. Inter- and intra-observer reliability for diagnosis using the REDUCTION protocol (κ = 0.75, κ = 0.71) were similar to those of C-CT (κ = 0.85, κ = 0.82). Using the REDUCTION protocol, 3D CT reconstructions were equivalent in quality and diagnostic information to those generated by C-CT (κ = 0.87, κ = 0.94). Conclusion. With a near 14-fold reduction in estimated ED compared with C-CT, the REDUCTION protocol reduces the amount of CT radiation substantially without significant diagnostic decay. It produces images that appear to be comparable with those of C-CT for evaluating fractures of the limbs. Cite this article: Bone Joint J 2016;98-B:1668-73


Bone & Joint Open
Vol. 3, Issue 2 | Pages 114 - 122
1 Feb 2022
Green GL Arnander M Pearse E Tennent D

Aims

Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility

Methods

A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 8 - 8
1 Oct 2019
Houston NS Star A Hozack WJ
Full Access

Introduction. Our purpose is to analyze the true costs associated with preoperative CT scans performed for robotic assisted TKA planning and also to determine the value of a formal radiologist reading of these studies. Methods. We reviewed 194 CT scans of 176 sequential patients who underwent primary RTKA by a single surgeon at a suburban teaching hospital. CT radiology reports were reviewed for the presence of incidental findings that might result in change of care to the patient. Actual payments for technical and professional components of the CT scans were retrieved for 170 of the 176 patients. Any patient payments for the CT scan were also recorded. Results. In no CT scan report was there any findings other than arthritis in the knee and nothing was identified that lead to a recommendation for any additional testing. The mean total payment for a preoperative CT scan was $253 (range 0 – 912). The mean technical payment was $206 (range 0 – 856). The mean professional component paid was $48 (range 0 – 66). On average patients personally paid $56 (range 0 – 618). In 99/170 cases (58 %), the patients made no payment. For the remaining 71 patients the mean payment made was $134 (range 10 – 618). Discussion and Conclusion. No CT scan identified any clinical problem other than arthritis – this suggests that the professional component cost of this specific CT scan could be eliminated without harm to patients. The cost of the CT scan – mean <$300 – is low and a minimal part of the total overall cost of a primary TKA. Patients understand the value of the CT scan - preoperative advanced imaging helps ensure a precise and accurate intraoperative experience – and they are willing to pay for any of their costs related to this preoperative test. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 7 - 7
4 Jun 2024
Sangoi D Ranjit S Bernasconi A Cullen N Patel S Welck M Malhotra K
Full Access

Background. The complex deformities in cavovarus feet may be difficult to assess and understand. Weight-bearing CT (WBCT) is increasingly used to evaluate complex deformities. However, the bone axes may be difficult to calculate in the setting of severe deformity. Computer-assisted 3D-axis calculation is a novel approach that may allow for more accurate assessment of foot alignment / deformity. The aim of this study was to assess differences in measurements done manually on 2D slices of WBCT versus 3D computer models in normal and cavus feet. Methods. We retrospectively analyzed WBCT scans from 16 normal and 16 cavus feet in patients with Charcot-Marie Tooth. Eight measurements were assessed: Talus-1. st. metatarsal angle (axial plane), Forefoot arch angle (coronal plane), and Meary's angle, calcaneal pitch, cuneiform to floor, cuneiform to skin, navicular to floor and navicular to skin distance (sagittal plane). 2D measurements were performed manually and 3D measurements were performed using specialised software (BoneLogic, DISIOR). Results. There was no significant difference in the measured variables (2D manual versus 3D automated) in normal feet. In the cavus group, 3D assessment calculated increased values for the sagittal angles: Meary's 7.3 degrees greater (p = 0.004), calcaneal pitch 2.4 degrees greater (p = 0.011)), and lower values for the axial talus-1. st. MT angle, 10.6 degrees less (p = 0.001). Conclusion. There were no significant differences in the normal group. This suggests 3D automated techniques can reliably assess the alignment of bony axes. However, the 3D axis calculations suggest there may be greater sagittal and lesser axial deformity in cavus feet than measured by 2D techniques. This discrepancy may be on account of the rotation seen in cavovarus feet, which may not be readily assessed manually. 3D automated measurements may therefore have a role in better assessing and classifying the cavus foot which may ultimately help inform treatment algorithms


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 117 - 117
1 Feb 2020
Wankier Z Sinclair S Drew A Taylor C Kubiak E Agarwal J
Full Access

Introduction. Direct skeletal attachment of prosthetic limbs, commonly known as osseointegration (“OI”), is being investigated by our team with the goal of safely introducing this technology into the United States for human use. OI technology allows for anchorage of prosthetic devices directly to bone using an intramedullary stem. For OI to be effective and secure, bone ingrowth and remodeling around the implant must be achieved. Physicians need an effective way to measure bone remodeling in order to make informed decisions on prescribed loading. This work describes methodology that was developed that utilizes computed tomography (CT) imaging as a tool for analyzing bone remodeling around an osseointegrated implant. Method. A subject implanted with a new Percutaneous Osseointegrated Prosthesis (POP) (DJO Surgical, Austin, TX) had CTs taken of their residual femur at 6-weeks and 12-months post-op in a FDA Early Feasibility Study with Institutional Review Board approval. Three-dimensional models of the femur were created from dicom files of the CT slices using Mimics (v21.0, Materialise, Leuven, Belgium). Each scan was segmented into four objects: cortical bone, medullary cavity, total volume (cortical bone plus the medullary cavity) and endoprosthetic stem (Fig. 1). Following segmentation, models were uploaded to 3-Matic Research (v13.0, Materialise, Leuven, Blegium) in STL format for alignment to a common world coordinate system (Fig. 2). A common origin was set by taking the average distance between planes of the femoral head and the greater trochanter. Once aligned to the coordinate system, biomechanical length (BML) was calculated from the proximal origin to the distal end of the amputated femur. BML and STLs of the aligned medullary cavity and femur volume were entered into custom Matlab code designed to measure cortical and medullary morphology in transverse cross sections of the femur. Morphology data from 6-weeks and 12-month time points were compared in order to determine if bone remodeling around the POP implant could be detected using these methods. Results. Comparing longitudinal data from post-operative visits suggests that important indicators of bone remodeling around the device could be detected (Fig 3). One year after implantation of the POP device the medullary perimeter and area had minimal % differences (−1.5 and 2.2) from the 6-week visit, validating that consistent alignment of the femoral model was achieved between scans from different time points. The cortical area, cortical perimeter, and cortical thickness around the POP implant showed positive percent changes at the 12-months of 19.44%, 4.04% and 14.36% respectively, with the largest increases observed at the the distal end for each parameter. These increases in cortex morphology values indicate bone changes were identified around the endoprosthetic stem of the implant. Discussion/Conclusion. This pilot study utilized CT imaging as a tool for analyzing bone remodeling around a new osseointegrated device. These methods can be performed quickly and accurately and have the potential for use in monitoring bone remodeling. CT scans from additional subjects are being analyzed to further validate and optimize these methods for clinical use. This study described an investigational device, limited by federal law to investigational use. No long-term data exists about its performance. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 112 - 112
1 Dec 2020
Meynen A Verhaegen F Mulier M Debeer P Scheys L
Full Access

Pre-operative 3D glenoid planning improves component placement in terms of version, inclination, offset and orientation. Version and inclination measurements require the position of the inferior angle. As a consequence, current planning tools require a 3D model of the full scapula to accurately determine the glenoid parameters. Statistical shape models (SSMs) can be used to reconstruct the missing anatomy of bones. Therefore, the objective of this study is to develop and validate an SSM for the reconstruction of the inferior scapula, hereby reducing the irradiation exposure for patients. The training dataset for the statistical shape consisted of 110 CT images from patients without observable scapulae pathologies as judged by an experienced shoulder surgeon. 3D scapulae models were constructed from the segmented images. An open-source non-rigid B-spline-based registration algorithm was used to obtain point-to-point correspondences between the models. A statistical shape model was then constructed from the dataset using principal component analysis. Leave-one-out cross-validation was performed to evaluate the accuracy of the predicted glenoid parameters from virtual partial scans. Five types of virtual partial scans were created on each of the training set models, where an increasing amount of scapular body was removed to mimic a partial CT scan. The statistical shape model was reconstructed using the leave-one-out method, so the corresponding training set model is no longer incorporated in the shape model. Reconstruction was performed using a Monte Carlo Markov chain algorithm, random walk proposals included both shape and pose parameters, the closest fitting proposal was selected for the virtual reconstruction. Automatic 3D measurements were performed on both the training and reconstructed 3D models, including glenoid version, inclination, glenoid centre point position and glenoid offset. In terms of inclination and version we found a mean absolute difference between the complete model and the different virtual partial scan models of 0.5° (SD 0.4°). The maximum difference between models was 3° for inclination and 2° for version. For offset and centre point position the mean absolute difference was 0 mm with an absolute maximum of 1 mm. The magnitude of the mean and maximum differences for all anatomic measurements between the partial scan and complete models is smaller than the current surgical accuracy. Considering these findings, we believe a SSM based reconstruction technique can be used to accurately reconstruct the glenoid parameters from partial CT scans


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 84 - 84
1 Dec 2018
Lemans J Hobbelink M IJpma F van den Kieboom J Bosch P Leenen L Kruyt M Plate J Glaudemans A Govaert G
Full Access

Aim. Diagnosing Fracture-Related Infections (FRI) is challenging. White blood cell (WBC) scintigraphy is considered the best nuclear imaging technique to diagnose FRI; a recent study by our group found a diagnostic accuracy of 92%. However, many centers use . 18. F-fluorodeoxyglucose positron emission tomography/computed tomography (. 18. F-FDG-PET/CT) which has several logistic advantages. Whether . 18. F-FDG-PET/CT has better diagnostic performance than white blood cell (WBC) scintigraphy is uncertain. Therefore, we aimed: 1) to determine the diagnostic performance of . 18. F-FDG-PET/CT for diagnosing FRI (defined as infection following an open fracture or fracture surgery) and 2) to determine cut-off values of standardized uptake values (SUV) that result in optimal diagnostic performance. Method. This retrospective cohort study included all consecutive patients who received . 18. F-FDG-PET/CT to diagnose FRI in two level 1 trauma centers. Baseline demographic- and surgical characteristics were retrospectively reviewed. The reference standard consisted of at least 2 representative microbiological culture results or the presence or absence of clinical confirmatory FRI signs in at least 6 months of clinical follow-up. A nuclear medicine specialist, blinded to the reference standard, re-reviewed all scans. Additionally, SUVs were measured using the “European Association of Nuclear Medicine Research Ltd. (EARL)” reconstructed . 18. F-FDG-PET/CT scans. Volume of interests were drawn around the suspected- and corresponding contralateral area to obtain the absolute values (SUVmax) and the ratio between suspected and contralateral area (SUVratio). Diagnostic accuracy of the re-reviewed scans was calculated (sensitivity and specificity). Additionally, diagnostic characteristics of the SUV measurements were plotted in the area under the receiver operating characteristics curve (AUROC). The sensitivity and specificity at the optimal threshold was deducted from the AUROC with the Q-point method. Results. 158 . 18. F-FDG-PET/CTs were included. Mean age was 46.2 years, 71.5% was male. Most cases (56.3%) were tibial shaft- or ankle fractures. Sixty patients (38.0%) had FRI. The sensitivity and specificity of the FDG-PET/CT scan was 70.0% (95% CI 56.8–81.2) and 79.6% (95% CI 70.3–87.1) respectively. Diagnostic accuracy was 76.0% (95% CI 68.5–82.4). AUROCs of SUVmax and SUVratio were 0.80 (95% CI 0.73–0.87) and 0.73 (95% CI 0.64–0.81), respectively. The optimal SUVmax threshold of 4.2 resulted in 80.0% sensitivity and 71.3% specificity, while an SUVratio of 2.9 resulted in 58.3% sensitivity and 80.9% specificity. Conclusions. The . 18. F-FDG-PET/CT has a sensitivity of 70.0%, specificity of 79.6% and a diagnostic accuracy of 76.0%. This makes . 18. F-FDG-PET/CT less accurate than WBC scintigraphy in diagnosing FRI, although adding SUV measurements may possibly increase its diagnostic accuracy


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 938 - 944
1 Jul 2018
Karayiannis PN Hill JC Stevenson C Finnegan S Armstrong L Beverland D

Aims. The aims of this study were to determine the indications and frequency of ordering a CT pulmonary angiography (CTPA) following primary arthroplasty of the hip and knee, and to determine the number of positive scans in these patients, the location of emboli and the outcome for patients undergoing CTPA. Patients and Methods. We analyzed the use of CTPA, as an inpatient and up to 90 days as an outpatient, in a cohort of patients and reviewed the medical records and imaging for each patient undergoing CTPA. Results. Out of 11 249 patients, scans were requested in 229 (2.04%) and 86 (38%) were positive. No patient undergoing CTPA died within 90 days. The rate of mortality from pulmonary embolism (PE) overall was 0.08%. CTPA was performed twice as often following total knee arthroplasty (TKA) compared with total hip arthroplasty (THA), and when performed was twice as likely to be positive. Hypoxia was the main indication for a scan, being the indication in 149 scans (65%); and in 23% (11 of 47), the PE was peripheral and unilateral. Three patients suffered complications resulting from therapeutic anticoagulation for possible PE, two of whom had a negative CTPA. Conclusion. CTPA is more likely to be performed following TKA compared with THA. Hypoxia was the main presenting feature of PE. A quarter of PEs which were diagnosed were unilateral and peripheral. Further study may indicate which patients who have a PE after lower limb arthroplasty require treatment, and which can avoid the complications associated with anticoagulation. Cite this article: Bone Joint J 2018;100-B:938–44


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 15 - 15
1 Sep 2021
Kawsar KA Gill S Ajayi B Lupu C Bernard J Bishop T Minhas P Crocker M Lui D
Full Access

Background. Carbon fibre (CF) instrumentation is known to be radiolucent and has a tensile strength similar to metal. A specific use could be primary or oligometastatic cancer where regular surveillance imaging and Stereotactic Radiotherapy are required. CT images are inherently more prone to artefacts which affect Hounsfield unit (HU) measurements. Titanium (Ti) screws scatter more artefacts. Until now it has been difficult to quantify how advantageous the radiolucency of carbon fibre pedicle screws compared to titanium or metallic screws actually is. Methodology. In this retrospective study, conducted on patients from 2018 to 2020 in SGH, we measured the HU to compare the artifact produced by CF versus Ti pedicle screws and rods implanted in age and sex matched group of patients with oligometastatic spinal disease. Results. Eleven patients were included in each group. We compared the change of HU between preoperative and postoperative cases of both CF & Ti screws, which clearly shows Ti screws scatter lot more artefacts than CF screws. We are proposing a CT artefact grading system from grade 0 to grade 4 based on the percentage change of HU for unequivocal understanding of the CT artefacts. Conclusion. This study clearly shows the artefacts produced by the metallic implants are significantly higher than the carbon fibre implants. Considering the efficacy of the RT and the increased life expectancy as a consequence, carbon instrumentation MAY BE superior to titanium or metallic instrumentation. The artefact grading system will help the clinicians in describing and planning where the artefacts need to be factorized


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 348 - 352
1 Mar 2019
Patel S Malhotra K Cullen NP Singh D Goldberg AJ Welck MJ

Aims. Cone beam CT allows cross-sectional imaging of the tibiofibular syndesmosis while the patient bears weight. This may facilitate more accurate and reliable investigation of injuries to, and reconstruction of, the syndesmosis but normal ranges of measurements are required first. The purpose of this study was to establish: 1) the normal reference measurements of the syndesmosis; 2) if side-to-side variations exist in syndesmotic anatomy; 3) if age affects syndesmotic anatomy; and 4) if the syndesmotic anatomy differs between male and female patients in weight-bearing cone beam CT views. Patients and Methods. A retrospective analysis was undertaken of 50 male and 50 female patients (200 feet) aged 18 years or more, who underwent bilateral, simultaneous imaging of their lower legs while standing in an upright, weight-bearing position in a pedCAT machine between June 2013 and July 2017. At the time of imaging, the mean age of male patients was 47.1 years (18 to 72) and the mean age of female patients was 57.8 years (18 to 83). We employed a previously described technique to obtain six lengths and one angle, as well as calculating three further measurements, to provide information on the relationship between the fibula and tibia with respect to translation and rotation. Results. The upper limit of lateral translation in un-injured patients was 5.27 mm, so values higher than this may be indicative of syndesmotic injury. Anteroposterior translation lay within the ranges 0.31 mm to 2.59 mm, and -1.48 mm to 3.44 mm, respectively. There was no difference between right and left legs. Increasing age was associated with a reduction in lateral translation. The fibulae of men were significantly more laterally translated but data were inconsistent for rotation and anteroposterior translation. Conclusion. We have established normal ranges for measurements in cross-sectional syndesmotic anatomy during weight-bearing and also established that no differences exist between right and left legs in patients without syndesmotic injury. Age and gender do, however, affect the anatomy of the syndesmosis, which should be taken into account at time of assessment. Cite this article: Bone Joint J 2019;101-B:348–352


Aims. The aim of this study was to assess the reproducibility and validity of cross table radiographs for measuring the anteversion of the acetabular component after total hip arthroplasty (THA) and to compare it with measurements using CT scans. Patients and Methods. A total of 29 patients who underwent THA between June 2010 and January 2016 were included. There were 17 men and 12 women. Their mean age was 43 years (26 to 65). Seven patients underwent a bilateral procedure. Thus, 36 THAs were included in the study. Lateral radiographs and CT scans were obtained post-operatively and radiographs repeated three weeks later. The anteversion of the acetabular component was measured using the method described by Woo and Morrey and the ischiolateral method described by Pulos et al and these were compared with the results obtained from CT scans. Results. The mean anteversion was 18.35° (3° to 38°) using Woo and Morrey’s method, 51.45° (30° to 85°) using the ischiolateral method and 21.22° (2° to 48°) using CT scans. The Pearson correlation coefficient was 0.754 for Woo and Morrey’s method and 0.925 for the ischiolateral method. There was a linear correlation between the measurements using the ischiolateral method and those using CT scans. We derived a simple linear equation between the value of the CT scan and that of ischiolateral method to deduce the CT scan value from that of ischiolateral method and vice versa. . Conclusion. The anteversion of the acetabular component measured using both plain radiographic methods was consistently valid with good interobserver reproducibility, but the ischiolateral method which is independent of pelvic tilt was more accurate. As CT is costly, associated with a high dose of radiation and not readily available, the ischiolateral method can be used for assessing the anteversion of the acetabular component. Cite this article: Bone Joint J 2017;99-B:1006–11


Bone & Joint Research
Vol. 6, Issue 6 | Pages 376 - 384
1 Jun 2017
Stentz-Olesen K Nielsen ET De Raedt S Jørgensen PB Sørensen OG Kaptein BL Andersen MS Stilling M

Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Methods. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs. Results. Results showed a mean difference between the two methods in all six degrees of freedom for static RSA to be within -0.10 mm/° and 0.08 mm/° with a 95% limit of agreement (LoA) ranging from ± 0.49 to 1.26. Dynamic RSA had a slightly larger range in mean difference of -0.23 mm/° to 0.16 mm/° with LoA ranging from ± 0.75 to 1.50. Conclusions. In a laboratory-controlled setting, the CT model method combined with dynamic RSA may be an alternative to previous marker-based methods for kinematic analyses. Cite this article: K. Stentz-Olesen, E. T. Nielsen, S. De Raedt, P. B. Jørgensen, O. G. Sørensen, B. L. Kaptein, M. S. Andersen, M. Stilling. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone Joint Res 2017;6:376–384. DOI: 10.1302/2046-3758.66.BJR-2016-0113.R3


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 915 - 921
1 Aug 2019
Beckers L Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims. Altered alignment and biomechanics are thought to contribute to the progression of osteoarthritis (OA) in the native compartments after medial unicompartmental knee arthroplasty (UKA). The aim of this study was to evaluate the bone activity and remodelling in the lateral tibiofemoral and patellofemoral compartment after medial mobile-bearing UKA. Patients and Methods. In total, 24 patients (nine female, 15 male) with 25 medial Oxford UKAs (13 left, 12 right) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively and at one and two years postoperatively, along with standard radiographs and clinical outcome scores. The mean patient age was 62 years (40 to 78) and the mean body mass index (BMI) was 29.7 kg/m2 (23.6 to 42.2). Mean osteoblastic activity was evaluated using a tracer localization scheme with volumes of interest (VOIs). Normalized mean tracer values were calculated as the ratio between the mean tracer activity in a VOI and background activity in the femoral diaphysis. Results. Significant reduction of normalized tracer activity was observed one year postoperatively in tibial and femoral VOIs adjacent to the joint line in the lateral compartment. Patellar VOIs and remaining femoral VOIs demonstrated a significant, diminished normalized tracer activity at final follow-up. Conclusion. The osteoblastic bone activity in the native compartments decreased significantly after treatment of medial end-stage OA with a UKA, implying reduced stress to the subchondral bone in the retained compartments after a UKA. Cite this article: Bone Joint J 2019;101-B:915–921


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1176 - 1179
1 Sep 2012
Zlotorowicz M Czubak J Kozinski P Boguslawska-Walecka R

The femoral head receives its blood supply primarily from the medial femoral circumflex artery, with its deep branch being the most important. In a previous study, we performed classical anatomical dissections of 16 hips. We have extended our investigation with a radiological study, in which we aimed to visualise the arteries supplying the femoral head in healthy individuals. We analysed 55 CT angiographic images of the hip. Using 64-row CT angiography, we identified three main arteries supplying the femoral head: the deep branch of the medial femoral circumflex artery and the posterior inferior nutrient artery originating from the medial femoral circumflex artery, and the piriformis branch of the inferior gluteal artery. CT angiography is a good method for visualisation of the arteries supplying the femoral head. The current radiological studies will provide information for further investigation of vascularity after traumatic dislocation of the hip, using CT angiography


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 87 - 87
1 Apr 2017
Simpson A Dattani R Sankey R
Full Access

Background. Radiological and clinical results of total shoulder arthroplasty are dependent upon ability to accurately measure and correct glenoid version. There are a variety of imaging modalities and computer-assisted reconstruction programmes that are employed with varying degrees of success. We have compared three freely available modalities: unformatted 2D CT; formatted 2D CT; and 3D CT reconstructions. Methods. A retrospective analysis of 20 shoulder CT scans was performed. Glenoid version was measured at the estimated mid-point of the glenoid from unformatted 2D CT scans (Scapula body method) and again following formatting of 2D CT scans in the plane of the scapula (Friedman method). 3D scapula reconstructions were also performed by downloading CT DICOM images to OSIRIX 6 and plotting ROI points on Friedman's axis to most accurately define glenoid version. Both measurements taken from 2D CT were compared to those from 3D CT. Eleven CT scans were of male patients, 9 female. Mean age was 55.2 years (Range: 23–77 years). Fourteen scans were performed for trauma, 6 for arthroplasty. Twelve scans were of the left shoulder. Results. Mean glenoid version as measured on: unformatted 2D CT was −4.51 degrees (−29.67 – 7.22 degrees); formatted 2D CT was −2.04 degrees (−36.96 – 9.72 degrees); and on 3D reconstructions was −3.01 degrees (−32.57 – 14.33 degrees). Sixty percent of measurements taken on formatted 2D CT were within 3 degrees of those taken on 3D reconstructions, with 85% within 5 degrees. This proportion fell to 30% and 50% respectively on unformatted 2D CT. Discussion. In this small study measurements of glenoid version taken on formatted 2D CT demonstrated greater accuracy than unformatted 2D CT when comparing to 3D reconstruction measurements as the gold standard. Although we demonstrated no significant statistical difference between measurements in this pilot study we believe significance will be obtained as we increase our sample size


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 23 - 23
1 Oct 2014
Taki N Mitsugi N Mochida Y Aratake M Ota H Shinohara K Saito T
Full Access

Imageless navigation is useful in acetabular cup orientation during total hip arthroplasty (THA). There is a limitation of accuracy in the imageless navigation system because of the registration method, that is, to palpate bony landmarks over the skin. To improve this limitation, ultrasound-based navigation was introduced for more precise registration of bony landmarks. We evaluated the accuracy of placement of the implant, which was measured by CT in 66 patients. 22 patients underwent THA with imageless navigation, and 44 patients underwent THA with ultrasound-based navigation. The accuracy was evaluated by comparison of the navigation values obtained during surgery with the CT measured values. For the 44 patients with ultrasound-based navigation system, the mean CIA was 39.6+4.1 degrees (mean+SD) and the CAA was 18.5+6.1 degrees with CT evaluation. Ultrasound-based navigation showed 39.0+3.2 degrees in CIA and 18.8+5.9 degrees in CAA during surgery. The mean absolute difference in cup inclination angle (CIA) between ultrasound-based navigation and CT was 2.4+2.1 degrees (range 0.1–9.2 degrees). The mean absolute difference in cup anteversion angle (CAA) between navigation and CT was 2.2+2.7 degrees (0.04–12.2 degrees). The rasp ante-torsion angle was 28.6+10.0 degrees in the ultrasound-based navigation system. The mean SAA was 28.8+9.3 degrees in CT. Strong correlation was found between the rasp ante-torsion angle and SAA (r=0.858). The mean absolute difference between the rasp ante-torsion angle and SAA was 4.3+3.6 degrees (0.2-17.2 degrees). For the 22 patients with imageless navigation system, the mean absolute difference between imageless navigation and CT in CIA, CAA, and SAA were 2.5+1.8 degrees (0.1–5.8 degrees), 5.4+3.8 degrees (0.1–17.2 degrees), and 5.2+3.0 degrees (1.1-12 degrees) respectively. The thickness of subcutaneous tissue at the pubic symphysis was correlated to the difference in CAA between the imageless navigation and CT (r=0.456). Ultrasound-based navigation showed higher accuracy in CAA compare to imageless navigation. Moreover, ultrasound-based navigation showed almost the same accuracy of placement of the implant compare to the reported accuracy with CT-based navigation. Ultrasound-based navigation system improved the limitation of accuracy in the imageless navigation system


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_2 | Pages 1 - 1
1 Jan 2014
Wong F Mushtaq N Jones I Singh S Abbasian A
Full Access

Introduction:. Recent published studies have examined the normal dimensions of the syndesmosis on CT. However, previous anatomical studies have shown variations of the articulating facets within the tibialae fibularis and may contribute to the false appearance of increased spacing within the syndesmosis. In this study, we measured and compared anterior and posterior distances of the distal tibiofibular(DTF) syndesmosis on MRI and CT imaging. Methods:. We identified adult patients who had had both a CT scan and an MRI scan of their ipsilateral ankle to investigate symptoms unrelated to the DTF syndesmosis. The anterior and the posterior DTF dimensions were measured on CT and MRI axial images, at the level of the distal tibial physeal scar. This was taken from anterior tubercle of tibia and from the most anterior aspect of the posterior tibial tubercle to the nearest point of medial aspect of the fibula. The geometrical shapes of the syndesmosis and the anterior tibial tubercle were also recorded. Results:. 16 ankles in 15 patients were included. The mean age was 34.6+/−8.8 years. The mean (SD) for the anterior DTF distance was 2.0 mm (0.7 mm) on MRI and 2.9 mm (0.9 mm) on CT whilst the mean posterior DTF distance was 3.2 mm (1.1 mm) on MRI and 4.3 mm (1.0 mm) on CT. This difference reached statistical significance (p < 0.001, paired T-test). When examining the shape of the syndesmosis on MRI, 56% were crescent and 44% rectangular, this was compared to 69% and 31%, respectively, on CT. There was, however, no statistical difference in the shape of the syndesmosis between the two radiological modalities (p=0.625, McNemar test). Conclusion:. CT appears to over-estimate the distal tibiofibular separation and may lead to a false positive diagnosis. Further studies are needed to establish the reliability in the use of CT scans to investigate normal and abnormal syndesmosis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 112 - 112
1 Feb 2020
Kreuzer S Madurawe C Pierrepont J Jones T
Full Access

Introduction. In total hip arthroplasty, correct sizing is critical for fixation and longevity of cementless components. Previously, three-dimensional CT templating has been shown to be more accurate than using 2D radiographs. The accuracy of the Optimized Positioning System (OPS. TM. ) planning software has not been reported. The aim of this study was to measure the accuracy of the OPS planning software in predicting the implanted acetabular cup and femoral stem size when used with the direct anterior approach. Method. Between October 2018 and March 2019, 95 patients received a bone preserving cementless MiniHip stem (Corin, UK). Sixty-three of these patients also received a cementless Trinity cup (Corin, UK). All patients were sent for OPS. TM. pre-operative planning, a patient-specific dynamic modelling software used to determine the optimal acetabular and femoral component size and positions. Average age was 57 (28 to 78) and 44% were female. All cases were performed using the direct anterior approach. The sizes of implants used were retrospectively compared to the planned OPS. TM. sizes. Results. Of the 95 cases, 98% (n=93) of MiniHip stems were within one size of that predicted, and 66% (n=63) matched exactly the predicted size. Of the 63 Trinity cups, 98% (n=62) were within one size of that predicted and 48% (n=30) matched exactly the predicted size. All stems and cups were within 2 sizes of plan [Fig. 1]. Conclusion. The OPS. TM. planning software successfully predicted more than 95% of implanted cup and stems within one size, with 100% implants being within 2 sizes. There is significant value in accurately predicting implant sizes preoperatively, both as an indicator to the surgeon as to the size expected, and for reducing the inventory supplied to the hospitals. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 19 - 19
1 Oct 2014
Venne G Pickell M Pichora D Bicknell R Ellis R
Full Access

Reverse shoulder arthroplasty has a high complication rate related to glenoid implant instability and screw loosening. Better radiographic post-operative evaluation may help in understanding complications causes. Medical radiographic imaging is the conventional technique for post-operative component placement analysis. Studies suggest that volumetric CT is better than use of CT slices or conventional radiographs. Currently, post-operative CT use is limited by metal-artifacts in images. This study evaluated inter-observer reliability of pre-operative and post-operative CT images registration to conventional approaches using radiographs and CT slices in measuring reverse shoulder arthroplasty glenoid implant and screw percentage in bone. Pre-operative and post-operative CT scans, and post-operative radiographs were obtained from six patients that had reverse shoulder arthroplasty. CT scans images were imported into a medical imaging processing software and each scapula, glenoid implant and inferior screw were reconstructed as 3D models. Post-operative 3D models were imported into the pre-operative reference frame and matched to the pre-operative scapula model using a paired-point and a surface registration. Measurements on registered CT models were done in reference to the pre-operative scapula model coordinate frame defined by a computer-assisted designed triad positioned in respect to the center of the glenoid fossa and trigonum scapulae (medial-lateral, z axis) and superior and inferior glenoid tubercle (superior-inferior, y axis). The orthogonal triad third axis defined the anterior-posterior axis (x axis). A duplicate triad was positioned along the central axis of the glenoid implant model. Using a virtual protractor, the glenoid implant inclination was measured from its central axis and the scapula transverse plane (x - z axes) and version from the coronal plane (y - z axes). Inferior screw percentage in bone was measured from a Boolean intersection operation between the pre-operative scapula model and the inferior screw model. For CT slices and radiographic measurements, a first 90-degree Cobb angle, from medical records software, was positioned from the trigonum scapulae to the centre of the central peg. Using the 90-degree line as reference, a second Cobb angle was drawn from the most superior to the most inferior point of the glenoid implant for inclination and from of the most anterior to the most posterior point for version. Version can only be measured using CT slices. Screw percentage in bone was calculated from screw length measures collected with a distance-measuring tool from the software. For testing the inter-observer reliability of the three methods, measures taken by three qualified observers were analysed using an intra-class correlation coefficient (ICC) method. The 3D registration method showed excellent reliability (ICC > 0.75) in glenoid implant inclination (0.97), version (0.98) and screw volume in bone (0.99). Conventional methods showed poor reliability (ICC < 0.4); CT-slice inclination (0.02), version (0.07), percentage of screw in bone (0.02) and for radiographic inclination (0.05) and percentage screw in bone (0.05). This CT registration of post-operative to pre-operative novel method for quantitatively assessing reverse shoulder arthroplasty glenoid implant positioning and screw percentage in bone, showed excellent inter-observer reliability compared to conventional 2D approaches. It overcomes metal-artifact limitations of post-operative CT evaluation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 23 - 23
1 May 2017
Jordan R Jones A Malik S
Full Access

Introduction. The stability of the elbow joint following an acute elbow dislocation is dependent on associated injuries. The ability to identify these concomitant injuries correctly directs management and improves the chances of a successful outcome. Interpretation of plain radiographs in the presence of either a dislocation or post-reduction films with plaster in-situ is difficult. This study aimed to assess the ability of orthopaedic registrars to accurately identify associated bony injuries on initial plain radiographs using CT as the gold standard for comparison. Methods. Patients over the age of 16 years undergoing an elbow CT scan within one week of a documented elbow dislocation between 1st June 2010 and 1st June 2014 were included in the study. Three orthopaedic registrars independently reviewed both the initial dislocation and immediate post reduction plain radiographs to identify any associated bony injuries. This radiograph review was repeated by each registrar after two weeks. The incidence of associated injuries as well as the inter- and intra-observer variability was calculated. Results. 28 patients were included in the study. 54% of the patients were female and the mean age was 45 years (range 16 to 90 years). The incidence of a radial head fracture was 54%, coronoid fracture 43% and epicondyle avulsion 18% on CT. The inter-observer reliability was only shown to be fair amongst registrars and the intra-observer variability moderate. Conclusions. Computerised tomography is a useful adjunct in the assessment of associated osseous injuries following an elbow dislocation due to the presence of a high number of injuries. Plain radiographs alone have been shown to have only a fair and moderate inter and intra-observer variability respectively, therefore a low threshold to obtain further 3D imaging should be practised. Level of Evidence. IV


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 70 - 70
1 Jan 2017
Peters M Brans B Wierts R Jutten L Weijers T Broos W Mottaghy F van Rhijn L Willems P
Full Access

The clinical success of posterior lumbar interbody fusion (PLIF) may be limited by pseudarthrosis, defined as the absence of solid fusion 1 year after surgery. Currently, CT is used to diagnose pseudarthrosis but is not able to be conclusive earlier than 1 year after surgery. No non-invasive technique is available to reliably assess bone graft incorporation in the early phase after PLIF. Positron Emission Tomography (PET) is a nuclear imaging modality that is able to identify changes at the cellular and molecular level in an early stage, well before manifestation of anatomical changes. PET/CT with the bone seeking tracer . 18. F-fluoride allows localization and quantification of bone metabolism. This study investigates whether an . 18. F-fluoride PET/CT scan early after PLIF is able to predict the fusion status at 1 year postoperative on CT. Twenty patients after PLIF were enrolled after written informed consent. At 6 weeks and at 1 year after PLIF, intravenous injection of . 18. F-fluoride was followed by a static scan at 60 minutes (Philips, Gemini TF PET/CT). Processing of images resulted in a bone metabolism parameter i.e. standardized uptake value (SUV). This parameter was determined for 3 regions of interest (ROIs): the intervertebral disc space (IDS) and the upper and lower endplate (UE and LE, respectively) of the operated segment. Interbody fusion was scored on a diagnostic CT scan made 1 year postoperatively and was defined as the amount of complete bony bridges between vertebrae, i.e 0, 1 or 2. Based on these scores, patients were divided in either the pseudarthrosis group (score 0) or the fusion group (scores 1 and 2). Differences between groups were analyzed using the independent samples Mann-Whitney U-test. Ten patients were classified as pseudarthrosis (0 bridges: n=10) and 10 patients as fused (1 bridge: n=5, 2 bridges: n=5). Patients in the pseudarthrosis group showed significantly lower bone metabolism values in the IDS on the 6 weeks PET/CT scan compared to patients in the fusion group (SUV. IDS,6w. 13.3±5.62 for pseudarthrosis and 22.6±6.42 for the fusion group, p=0.003), whereas values at the endplates were similar (SUV. UE,6w. 20.3±5.85 for pseudarthrosis and 21.6±4.24 for the fusion group, p=0.282). Furthermore, only in the pseudarthrosis group, bone metabolism in the IDS was significantly lower than at the endplates (p=0.006). In the fusion group, bone metabolism in the IDS and at the endplates was similar (p=0.470). The PET/CT scan at 1 year postoperative showed that in the pseudarthrosis group, bone metabolism of the IDS remained lower compared to the endplates (SUV. IDS,1y. 13.2±4.37, SUV. UE,1y. 16.4±5.33, p=0.004), while in the fusion group, IDS and endplate bone metabolism was similar (SUV. IDS,1y. 13.6±2.91, SUV. UE,1y. 14.4±3.14, p=0.397). This study shows that low bone metabolism values in the IDS of the operated segment as seen on . 18. F-fluoride PET/CT 6 weeks after PLIF, is related to development of pseudarthrosis 1 year postoperatively. These results suggest that . 18. F-fluoride PET/CT might be an early diagnostic tool to identify patients prone to develop pseudarthrosis after PLIF


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 48 - 48
1 Dec 2017
Verstraete M Arnout N De Baets P Vancouillie T Van Hoof T Victor J
Full Access

INTRODUCTION. To assess and compare the effect of new orthopedic surgical procedures, in vitro evaluation remains critical during the pre-clinical validation. Focusing on reconstruction surgery, the ability to restore normal kinematics and stability is thereby of primary importance. Therefore, several simulators have been developed to study the kinematics and create controlled boundary conditions. To simultaneously capture the kinematics in six degrees of freedom as outlined by Grood & Suntay, markers are often rigidly connected to the moving bone segments. The position of these markers can subsequently be tracked while their position relative to the bones is determined using computed tomography (CT) of the test specimen with the markers attached. Although this method serves as golden standard, it clearly lacks real-time feedback. Therefore, this paper presents the validation of a newly developed real-time framework to assess knee kinematics at the time of testing. MATERIALS & METHODS. A total of five cadaveric fresh frozen lower limb specimens have been used to quantitatively assess the difference between the golden standard, CT based, method and the newly developed real-time method. A schematic of the data flow for both methods. Prior to testing, both methods require a CT scan of the full lower limb. During the tests, the proximal femur and distal tibia are necessarily resected to fit the knees in the test setup, thus also removing the anatomical landmarks needed to evaluate their mechanical axis. Subsequently, a set of three passive markers are rigidly attached to the femur and tibia, referred to as M3F and M3T respectively. For the CT based method, the marker positions are captured during the tests and a second CT scan is eventually performed to link the marker positions to the knee anatomy. Using in-house developed software, this allowed to offline evaluate the knee kinematics in six degrees of freedom by combining both CT datasets with the tracked marker positions. For the newly developed real-time method, a calibration procedure is first performed. This calibration aims to link the position of the 3D reconstructed bone and landmarks with the attached markers. A set of bone surface points is therefore registered. These surface points are obtained by tracking the position of a pen while touching the bone surface. The pen's position is thereby tracked by three rigidly attached markers, denoted M3P. The position of the pen tip is subsequently calculated from the known pen geometry. The iterative closest point (ICP) algorithm is then used to match the 3D reconstructed bone to the registered surface points. Two types of 3D reconstructions have therefore been considered. First, the original reconstructions were used, obtained from the CT data. Second, a modified reconstruction was used. This modification accounted for the finite radius (r = 1.0 mm) of the registration pen, by shifting the surface nodes 1.0 mm along the direction of the outer surface normal. During the tests, the positions of the femur and tibia markers are tracked and streamed in real-time to an in-house developed, Matlab based software framework (MathWorks Inc., Natick, Massachussets, USA). This software framework simultaneously calculates the bone positions and knee kinematics in six degrees of freedom, displaying this information to the surgeons and operators. To assess the accuracy, all knee specimens have been subjected to passive flexion-extension movement ranging from 0 to 120 degrees of flexion. For each degree of freedom, the average root mean square (RMS) difference between both measurement methods has been evaluated during this movement. In addition, the distribution of the registered surface points has been assessed along the principal directions of the uniformly meshed 3D reconstructions (average mesh size of 1.0 mm). RESULTS. The root mean square difference between both measurements indicates a strong dependency on the variance of the registered points. This dependency is particularly pronounced when using the original 3D reconstructions in combination with the ICP algorithm, with an R. 2. = 0.76 and 0.85 for the translational and rotational degrees of freedom respectively. When using the modified 3D reconstructions, which compensates for the finite radius of the marker tip, this dependency becomes negligible (R. 2. = 0.10 and 0.05). Using this modified 3D reconstruction, the average difference between both measurements is also reduced to an average value of 1.20 degrees and 1.47 mm. DISCUSSION. The difference in kinematic parameters between both measurement techniques is an order of magnitude lower than the claimed accuracy of the motion tracking cameras. However, the difference is in line with the inter- and intra- observer variability when identifying bony landmarks around the knee. Since these landmarks are essential to calculate knee kinematics, it is understood that the proposed real-time system is sufficiently accurate to study these kinematics


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 76 - 76
1 Dec 2017
Murphy WS Borchard K Kowal JH Murphy SB
Full Access

Introduction. Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly mal-positioned and that intra-operative radiographic assessment is unreliable. The current study uses postoperative CT to assess the accuracy of a smart mechanical navigation instrument system for cup alignment. Patients and Methods. Thirty seven hip replacements performed using a smart mechanical navigation device (the HipXpert System) had post-operative CT studies available for analysis. These post-operative CT studies were performed for pre- operative planning of the contralateral side, one to three years following the prior surgery. An application specific software module was developed to measure cup orientation using CT (HipXpert Research Application, Surgical Planning Associates Inc., Boston, Massachusetts). The method involves creation of a 3D surface model from the CT data and then determination of an Anterior Pelvic Plane coordinate system. A multiplaner image viewer module is then used to create an image through the CT dataset that is coincident with the opening plane of the acetabular component. Points in this plane are input and then the orientation of the cup is calculated relative to the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. The actual cup orientation was then compared to the goal of cup orientation recorded when the surgery was performed using the system for acetabular component alignment. Results. For the thirty seven hips replacements, mean operative anteversion error was 1.1 degrees (SD 3.6, range −5.5 to 8.2). Mean operative inclination error was − 1.7 degrees (SD 3.0, range −8.0 to 5.6). There were no outliers in either anteversion or inclination. Conclusion. The current study demonstrates that the mechanical navigation system produces accurate cup alignment results as measured by post-operative CT and confirms the prior accuracy study performed using 2D/3D matching. This improved accuracy compared to robotic systems may be due to the wide-based nature of the docking mechanism and the elimination of the cumulative errors of registration and tracking inherent to more complex systems


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 107 - 107
1 Feb 2017
Eftekhary N Vigdorchik J Yemin A Bloom M Gyftopoulos S
Full Access

Introduction. In the evaluation of patients with pre-arthritic hip disorders, making the correct diagnosis and identifying the underlying bone pathology is of upmost importance to achieve optimal patient outcomes. 3-dimensional imaging adds information for proper preoperative planning. CT scans have become the gold standard for this, but with the associated risk of radiation exposure to this generally younger patient cohort. Purpose. To determine if 3D-MR reconstructions of the hip can be used to accurately demonstrate femoral and acetabular morphology in the setting of femoroacetabular impingement (FAI) and development dysplasia of the hip (DDH) that is comparable to CT imaging. Materials and Methods. We performed a retrospective review of 14 consecutive patients with a diagnosis of FAI or DDH that underwent both CT and MRI scans of the same hip with 3D reconstructions. 2 fellowship trained musculoskeletal radiologists reviewed all scans, and a fellowship trained hip preservation surgeon separately reviewed scans for relevant surgical parameters. All were blinded to the patients' clinical history. The 3D reconstructions were evaluated by radiologists for the presence of a CAM lesion and acetabular retroversion, while the hip preservation surgeon also evaluated CAM extent using a clock face convention of a right hip, location of femoral head blood supply, and morphological anterior inferior iliac spine (AIIS) variant. The findings on the 3D CT reconstructions were considered the reference standard. Results. Of 14 patients, there were 9 females and 5 males with a mean age 32 (range 15–42). There was no difference in the ability of MRI to detect the presence of a CAM lesion (100% agreement between 3D-MR and 3D-CT, p=1), AIIS morphology (p=1, mode=type 1 variant), or acetabular retroversion (85.7%, p=0.5). 3D-MR had a sensitivity and specificity of 100 in detecting a CAM lesion relative to 3D-CT. Four CT studies were inadequate to adequately evaluate for presence of a CAM. Five CT studies were inadequate to evaluate for location of the femoral head vessels, while MRI was able to determine location in those patients. In the 10 remaining patients for presence of CAM, and nine patients for femoral head vessel location, there was no statistically significant difference between 3D-MR and 3D-CT in determining the location of CAM lesion on a clock face (p=0.8, mean MRI = 12:54, mean CT: 12:51, SD = 66 mins MR, 81 mins CT) or in determining vessel location (p=0.4, MR mean 11:23, CT mean 11:36, SD 33 mins for both). Conclusion. 3D MRI reconstructions are as accurate as 3D CT reconstructions in evaluating osseous morphology of the hip, and may be superior to CT in determining other certain clinically relevant hip parameters. 3D-MR was equally useful in determining the presence and extent of a CAM lesion, acetabular retroversion, and AIIS morphologic variant, and more useful than 3D CT in determining location of the femoral head vessels. In evaluating FAI or hip dysplasia, a 3D-MR study is sufficient to evaluate both soft tissue and osseous anatomy, sparing the need for a 3D CT scan and its associated radiation exposure and cost


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 184 - 184
1 Apr 2005
Di Lazzaro A Falciglia F Guzzanti V Demaio P
Full Access

In recent years, the use of computed tomography (CT) has made it possible to obtain without distortion images of axial sections of the patella with the knee in the first 15°–20° of flexion. We performed CT examinations on 27 patients aged between 11 and 17 years. We considered patients who had anterior knee pain with or without a feeling of patellar instability. CT examinations were performed with the knee flexed to 15° with and without quadriceps contraction. The tomograms obtained were analysed considering: (1) the congruence angle (CA), (2) the patellar tilt angle (PTA), (3) the sulcus angle (SA) and (4) trochlear depth (TD). We performed CT examinations on a control group of 20 patients aged between 11 to 17 years. Statistical analysis was performed by using the analysis of variation (ANOVA) test or the Student’s t-test on paired or unpaired data. The difference between control knees and symptomatic knees was significant for all of the CT variables (unpaired t-test). Malalignment detected with the quadriceps relaxed was typed according to the classification of Schutzer et al. as follows: type I – lateralised patella, 13 knees (24.1%); type II – lateralised and tilted patella, 24 knees (44.4%); and type III – tilted patella, 12 knees (22.2%). In 26 knees (48.2%), CT examination with quadriceps in contraction gave the same findings as CT examination with the quadriceps relaxed, i.e. type and severity of malalignment were identical. In the remaining 28 knees (51.8%), CT examination with the quadriceps in contraction gave different results from the CT examination with the quadriceps relaxed. The greater sensitivity and specificity of CT as compared with conventional radiographic methods in the diagnosis of patellofemoral malalignment have been demonstrated. Our results show that there is a relationship between clinical findings and CT data. CT assessment with the quadriceps relaxed permitted us to divide the knees into three types of patellofemoral malalignment. To our knowledge, not many studies have been performed with the quadriceps contracted. In the present study, in 48.2% of knees there were no differences between CT assessment with the quadriceps relaxed and with the quadriceps contracted in either type or severity of malalignment. In contrast, in the remaining 51.8% of symptomatic knees we found differences. Before planning an operation in patients with anterior knee pain with or without patellar instability, CT assessment both with the quadriceps relaxed and contracted permits a reliable documentation of malalignment, permitting the surgeon to select the optimal treatment


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 60 - 60
1 Mar 2021
Munford M Ng G Jeffers J
Full Access

Abstract. Objectives. This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups. Methods. 7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically compression tested. Modulus was estimated from a load cycle hysteresis loop, between 40% and 20% of yield stress. Sequential testing order in 3 orthogonal directions was randomised. Group differences were identified via an analysis of variance for the factors density, age, gender, testing order, subchondral depth, condyle and sub-meniscal location. Regression models were fit for significant factor sub-groups, predicting properties from density. Results. Axial modulus was 1.5 times greater than the two transverse directions (p<0.001), between which no difference was found. For all test directions, differences were quantified for density and modulus across all subchondral depths (p<0.001). 60% of transverse modulus variation was explained by density within subgroups for each subchondral depth. Medial axial modulus was 1.3 times greater than the lateral side (p = 0.011). Lateral axial modulus halved over a 25mm depth whilst remaining constant for the medial side. Density explained 75% of variation when grouped by subchondral depth and condyle. Yield strength was well predicted across all test directions, with density explaining 81% of axial strength variation and no differences over subchondral depth. Conclusions. The quantification of bone multiaxial modulus based on condyle and subchondral depth has been shown for the first time in a clinically viable protocol using conventional CT. Accounting for spatial variation improves upon literature property prediction models. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 226 - 226
1 Sep 2012
Shyamsundar S Jeyapalan K Dias J
Full Access

Aim. This study reviewed the efficacy of a CT arthrogram in clinical decision making for wrist disorders. Methods. Sixty four consecutive CT arthrograms done in a three year period at Glenfield Hospital were selected. All patients were referred by hand consultants at the Glenfield Hospital and all investigations were performed by a single senior musculoskeletal radiologist. CT arthrograms focussed on the following areas: scapholunate interosseous ligament (SLIL), lunotriquetral interosseous ligament (LTIL), peripheral and central triangular fibrocartilage complex (TFCC) tears, and articular surface disorders. Referral and clinic letters for all patients were obtained. We collected patient demographic detail, prescan diagnosis and clinical plan, CT arthrogram findings, postscan diagnosis and clinical plan and the final outcome. A decision was made whether the scan helped in the clinician's management plan and if so how it helped. Results. There were 35 male and 29 female patients with a mean age of 44.1 years. The right wrist was involved in 42 and the left in 22 patients. Sixty three of the 64 patients had their management based on the CT scan. In 54 of these the CT arthrogram either confirmed and calibrated the diagnosis or identified a new diagnosis. In 10 patients the scan was normal and allowed patient reassurance. Thirty six patients had ulnar sided problems, 20 had radial sided disorders and eight had midcarpal abnormality. The most common abnormality noted was a TFCC tear (24). The next most common was chondral damage/arthritis (14) followed by scapholunate interosseous ligament tear (12). The diagnosis was either confirmed and its extent established (31) or identified in addition to the primary diagnosis (19). Conclusions. The CT arthrogram is a helpful tool in the management of intra-articular wrist pathology. We found it to be useful in both confirming and calibrating the diagnosis and also diagnosing occult patho


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 334 - 334
1 May 2006
Melamed E Keidar Z Militianu D Bar-Shalom R Israel O Zinman C
Full Access

Background: The occurrence of osteomyelitis in diabetic foot often dictates different treatment approach. The diagnosis of osteomyelitis, though, is sometimes difficult. When X rays are not diagnostic or equivocal, a nuclear medicine studies are often performed. In common practice bone scan with Tc. 99. m-MDP combined with In. 111. labeled leucocytes scintigraphy are used. Although highly sensitive, these procedures may be hampered by coexisting pathological processes such as neuroarthropathy, trauma, or cellulites. In addition, poor resolution of the In. 111. images, complicates the interpretation weather the observed uptake (e.g. infection) is in the soft tissue or within the bone. Positron emission tomography (PET) using 2-Deoxy-2-[18F]-Fluoro-D-Glucose (FDG) is a useful clinical tool for the assessment of malignancies. FDG, a nonspecific tracer of increased intracellular glucose metabolism, accumulates in sites of infection and inflammation as well. PET is highly sensitive but may lack the ability to define the anatomic location of a focus of increased FDG accumulation. The hybrid PET/CT technology, providing precise registration of metabolic and structural imaging data, obtained in one session on a single device, may improve diagnosis and localization of infection. Goals: The present study assesses the role of PET/CT imaging using FDG for the diagnosis of diabetic foot osteomyelitis. Methods: Fourteen diabetic patients (M=10, F=4; age range 29–70 years) with 18 clinically suspected sites of infection underwent PET/CT following the injection of 185–370 MBq FDG for suspected osteomyelitis complicating diabetic foot. PET, CT and hybrid images were independently evaluated for the diagnosis and localization of an infectious process. Additional data provided by PET/CT for localization of infection in the bone or soft tissues was recorded. The final diagnosis was based on histopathological findings and bacteriological assays obtained at surgery or clinical and imaging follow up. Results: PET detected 14 foci of increased FDG uptake suspected as infection in 10 patients. PET/CT correctly localized 8 foci in 4 patients to bone, indicating osteomyelitis. PET/CT correctly excluded osteomyelitis in 5 foci in 5 patients, with the abnormal FDG uptake limited to infected soft tissues only. One site of mildly increased focal FDG uptake was localized by PET/CT to diabetic osteoarthropathy changes demonstrated on CT. Four patients showed no abnormal increased FDG uptake, and no further evidence for an infectious process in the foot on clinical and imaging follow up. Conclusion: FDG-PET can be used for diagnosis of diabetes-related infection. The precise anatomic localization of increased FDG uptake provided by PET/CT enables accurate differentiation between osteomyelitis and soft tissue infection


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 15 - 15
1 Nov 2018
Van Oevelen A van Ovost E E De Mits S Bodere I Leenders T Clockaerts S Victor J Burssens A
Full Access

An adult acquired flatfoot deformity (AAFD) is a complex 3D deformity. Surgical correction consists of a medial calcaneal osteotomy (MCO) but shows limitations due to the current 2D assessment. Therefore, the aim is to determine the influence of an MCO on the longitudinal foot arch assessed by 2D and 3D weightbearing CT (WBCT). Seventeen patients with a mean age of 44,5 years (range 18–66 yrs) were retrospectively included. MCO was indicated in a stage II AAFD (N=15) and a post-traumatic valgus deformity (N=2). Pre- and post-operative imaging was obtained from a WBCT. The height of the longitudinal foot arch was measured as the distance from the navicular tuberositas to the floor (Navicular Height, NH) on 2D CT images (NH. 2D. ) and computed on 3D CT data (NH. 3D. ). Additionally, 3D assessment could compute the degree of exorotation (α) of the navicular bone towards the vertical axis. The mean pre-operative NH. 2D. and NH. 3D. were respectively 29.57mm ± 7.59 and 28.34mm ± 6.51. These showed to be statistically different from the mean post-operative NH. 2D. and NH. 3D. , respectively 31.62mm ± 6.69 and 31.67mm ± 6.47 (p < 0,001). A statistical difference was also found when comparing the mean degree of exorotation in pre- and post-operative, respectively: α. pre. =14.08° ± 4,92 and the α. post. =19,88° ± 3.50 (p < 0,001). This study demonstrates a significant correction of the longitudinal foot arch after a MCO. The novelty is attributed to the accurate degree of rotation assessment using WBCT. This information could be assistive to optimise a pre-operative planning


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 376 - 376
1 Jul 2011
Senthi S Stott S Blyth P Metcalfe R
Full Access

Unrecognized pin penetrance in the treatment of SCFE by percutaneous pinning has been shown to be under-reported with serious long-term sequelae. The purpose of this study was to use post-operative CT to determine the true position of the screw tip when compared to intra-operative x-rays. Twenty-four patients were offered post operative CT scans in the acute and clinic setting. Intra-operative plain films (AP and lateral) were compared to post operative CT scans (coronal and axial) to determine. the distance of the screw tip from the particular surface of the hip joint,. the number of screw threads across the physis and. the three dimensional placement of the screw tip in the femoral head relative to the physis. The positions of a total of 38 screws were measured. Plain x-rays where shown to consistently underestimate the distance to the articular surface. There were significant differences in the distance to the articular surface in the AP (5.5 mm) vs. coronal (3.4 mm) and lateral (4.7 mm) and vs. axial CT (4.1 mm) planes (p < 0.01). The average number of screw threads across the articular surface on the lateral x-ray was 6.7 vs. 8.1 in the coronal CT (p< 0.05). Four of the screws were shown to penetrate the joint surface in CT not shown on plain film. This study has found that CT scans show screws are closer to the joint surface in the axial and coronal plane on CT when compared to plain x-ray in the AP and lateral plane. CT scans also show that there are more screw threads across the epiphysis than shown on plain x-ray. Placement of the screw within specific quadrants of the femoral head was found to be similar on CT and x-ray. CT scans identified pin penetrance not seen on intra-operative images


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 42 - 42
1 Mar 2017
Murphy S Murphy W Borchard K Kowal J
Full Access

Introduction. Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly malpositioned. 1. The current study uses postoperative CT to assess the accuracy of a smart mechanical navigation instrument system for cup alignment. Patients and Methods. Thirty seven hip replacements performed using a smart mechanical navigation device (the HipXpert System) had post-operative CT studies available for analysis. These post-operative CT studies were performed for pre-operative planning of the contralateral side, one to three years following the prior surgery. An application specific software module was developed to measure cup orientation using CT (HipXpert Research Application, Surgical Planning Associates Inc., Boston, Massachusetts). The method involves creation of a 3D surface model from the CT data and then determination of an Anterior Pelvic Plane coordinate system. A multiplaner image viewer module is then used to create an image through the CT dataset that is coincident with the opening plane of the acetabular component. Points in this plane are input and then the orientation of the cup is calculated relative to the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. The actual cup orientation was then compared to the goal of cup orientation recorded when the surgery was performed using the system for acetabular component alignment. Results. For the thirty seven hips replacements, mean operative anteversion error was 1.1 degrees (SD 3.6, range −5.5 to 8.2). Mean operative inclination error was −1.7 degrees (SD 3.0, range −8.0 to 5.6). There were no outliers in either anteversion or inclination. Conclusion. The current study demonstrates that the mechanical navigation system produces accurate cup alignment results as measured by post-operative CT and confirms the prior accuracy study performed using 2D/3D matching. This improved accuracy compared to robotic systems. 4. may be due to the wide-based nature of the docking mechanism and the elimination of the cumulative errors of registration and tracking inherent to more complex systems


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 824 - 828
1 Jun 2005
Charousset C Bellaïche L Duranthon LD Grimberg J

CT arthrography and arthroscopy were used to assess tears of the rotator cuff in 259 shoulders. Tear size was determined in the frontal and sagittal planes according to the classification of the French Arthroscopy Society. CT arthrography had a sensitivity of 99% and a specificity of 100% for the diagnosis of tears of supraspinatus. For infraspinatus these figures were 97.44% and 99.52%, respectively and, for subscapularis, 64.71% and 98.17%. For lesions of the long head of the biceps, the sensitivity was 45.76% and the specificity was 99.57%. Our study showed an excellent correlation between CT arthrography and arthroscopy when assessing the extent of a rotator cuff tear. CT arthrography should, therefore, be an indispensable part of pre-operative assessment. It allows determination of whether a tear is reparable (retraction of the tendon and fatty degeneration of the corresponding muscle) and whether this is possible by arthroscopy (degree of tendon retraction and extension to subscapularis)


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 62 - 62
1 Mar 2009
GORVA AD METCALFE J FLOWERS M FERNANDES J JONES S
Full Access

Introduction: Ankle fractures accounts for 25% to 38% of all physeal fractures. An accurate diagnosis is the key to the appropriate management of these fractures. Traditionally the management decisions have been based on x-ray findings. We have used computed tomograpy (CT) scans in additon to x-rays in the management of these fractures. Objective: To determine the usefulness of computed tomograpy (CT) scans in the management of ankle fractures in children. Materials and Methods: Between 2001 to 2005, 53 patients with ankle fractures who were managed in our unit had CT scans in addition to plain radiographs. The mean age was 12.3 years (+/− 2.1). The radiographs were reviewed by senior paediatric orthopaedic surgeon who classified the fractures and formulated treatment plans (operative/non-operative). The CT scans were then reviewed by the respective surgeon and a similar exercise undertaken. A Radiologist confirmed that the fractures were classified accurately. Results: In 47% (25 fractures) the x-ray diagnosis/classification tallied with the CT scans whilst in 53% (28 fractures) the CT scans showed the fractures were more extensive/serious than noticed on the x-rays. The management was changed in 34% after reviewing the CT scans, In 9 from operative to non-operative treatment and in the other 9 from non-operative to operative treatment. Conclusion: We have found CT scans to be more useful than plain radiographs in making an accurate diagnosis of ankle fractures in children and thus planning appropriate management


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 70 - 70
1 May 2016
Borchard K Murphy W Kowal J Murphy S
Full Access

Introduction. Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly malpositioned1. The current study uses postoperative CT to assess the accuracy of a smart mechanical navigation instrument system for cup alignment. Patients and Methods. Twenty nine hip replacements performed using the HipXpert Navigation System had post-operative CT studies available for analysis. These post-operative CT studies were performed for pre-operative planning of the contralateral side, one to three years following the prior surgery. The patients included 17 men and 11 women. An application specific software module was developed to measure cup orientation using CT (HXR Application 1.3 Surgical Planning Associates Inc., Boston, Massachusetts). The method involves creation of a 3D surface model from the CT data and then determination of an Anterior Pelvic Plane coordinate system. A multiplaner image viewer module is then used to create an image through the CT dataset that is coincident with the opening plane of the acetabular component. Points on this plane are input and then the orientation of the cup is calculated relative to the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. The actual cup orientation was then compared to the goal of cup orientation recorded when the surgery was performed using the HipXpert navigation system for acetabular component alignment. Results. Mean operative anteversion error was 1.7 degrees (SD 3.4, range −6.5 to 8.5). Mean operative inclination error was −2.3 degrees (SD 3.1, range −8.9 to 3.9). There were no outliers in either anteversion or inclination. Conclusion. The current study demonstrates that the mechanical navigation system produces accurate cup alignment results as measured by post-operative CT and confirms the prior accuracy study performed using 2D/3D matching. This accuracy, compared to traditional navigation and robotic systems, may be due to the wide-based nature of the docking mechanism and the elimination of the cumulative errors of registration and tracking inherent to more complex systems


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 86 - 86
1 May 2016
Kasparek M Lazar M Weber M Ringl H Herold C Kasparek M Kubista B Windhager R Toepker M
Full Access

Introduction. Computer Tomography (CT) imaging has been limited to beam hardening artefacts until now. Literature has failed to describe sensitivity and specifity for loosening of endoprothesis in CTs, as metal artefacts have always influenced the diagnostic value of CTs. In recent years a new technology has been developed, the Dual Energy CT. Dual Energy CT scanners simultaneously scan with two tubes at different energy levels, most commonly 100kVp and 140kVp. Furthermore pictures gained from Dual Energy CTs are post-processed with monoenergetic reconstruction, which increases picture quality while further reducing metal artefacts. This promising technology has increased the diagnostic value preventing more radiation for the patients, for example in detection of kidney stones or to map lung perfusion. In the musculoskeletal imaging it has not been established yet and further clinical investigations are necessary. Thus the aim of this study is to describe sensitivity and sensibility for endoprothesis loosening of this novel technology. Material and Methods. 53 prospective patients (31 total hip- and 22 total knee-arthoplasties) who were planned for revision surgery underwent preoperative Dual Energy CT examination. All scans were performed with a second-generation, dual-energy multi-detector CT scanner. And all pictures were post-processed with monoenergetic reconstruction. Radiologists were blinded for patient´s history. Senior consultants, who are specialized in arthroplasty of the hip and the knee, performed surgery. Intraoperative information was used as gold standard. Results. We pressent the results of the current status of our study. In total hip athroplasty Dual Energy CTs showed a high sensitivity and specifity for cup loosening as well as shaft loosening. In total knee arthroplasty, sensitivity and specifity for the femoral and tibial component also showed high results. Conclusion. Dual Energy CTs provide high sensitivity and specifity for detection of loosening of endoprosthesis. This novel technology has made it possible for the first time to overcome the problem with metal artefacts in CT imaging in the assessment of endoprosthesis. Furthermore, Dual Energy CTs offer a new diagnostic manner for endoprothesis in the future


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1416 - 1422
1 Nov 2019
Rohilla R Sharma PK Wadhwani J Rohilla S Beniwal R Singh R Devgan A

Aims. In this randomized study, we aimed to compare quality of regenerate in monolateral versus circular frame fixation in 30 patients with infected nonunion of tibia. Patients and Methods. Both groups were comparable in demographic and injury characteristics. A phantom (aluminium step wedge of increasing thickness) was designed to compare the density of regenerate on radiographs. A CT scan was performed at three and six months postoperatively to assess regenerate density. A total of 30 patients (29 male, one female; mean age 32.54 years (18 to 60)) with an infected nonunion of a tibial fracture presenting to our tertiary institute between June 2011 and April 2016 were included in the study. Results. The regenerate mineralization on radiographs was comparable in both groups at two, four, six, and ten months’ follow-up but the rail fixator group had statistically significant higher grades of mineralization when compared with the circular frame group at eight and 12 months’ follow-up. The regenerate mineralization was also higher in the rail fixator group than in the circular frame group on CT at three and six months, although this difference was not statistically significant. Conclusion. Overall, the regenerate mineralization was higher in the monolateral than the circular frame group. A monolateral fixator may be preferred in patients with infected nonunion of the tibia with bone defects up to 7 cm. Cite this article: Bone Joint J 2019;101-B:1416–1422


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1510 - 1516
1 Nov 2016
Suter T Henninger HB Zhang Y Wylie JD Tashjian RZ

Aims. The aim of this study was to analyse the effect of altered viewing perspectives on the measurement of the glenopolar angle (GPA) and the differences between these measurements made on 3D CT reconstructions and anteroposterior (AP) scapular view radiographs. . Materials and Methods. The influence of the viewing perspective on the GPA was assessed, as were the differences in the measurements of the GPA between 3D CT reconstructions and AP scapular view radiographs in 68 cadaveric scapulae. Results. The median GPA in 3D reconstructions and AP scapular views were 42.7° (95% confidence intervals (CI), 42.0° to 43.5°) and 41.3° (95% CI 40.4° to 42.0°) respectively (p < 0.001). All but five of 20 malpositions demonstrated a significant difference in GPA compared with the respective AP scapular view (p ≤ 0.005). The GPA was most susceptible to malposition in retroversion/anteversion. Inter- and intra-observer reliability for all measurements of the GPA was excellent for 3D CT reconstructions (intraclass correlation (ICC) 0.93 (95% CI 0.87 to 0.96) and 0.94 (95% CI 0.89 to 0.97), respectively) and higher than on AP scapular radiographs (p < 0.001). The intra- and inter-observer reliability was excellent in AP scapular views and malpositions in extension/flexion (ICC ≥ 0.84) but tended to decrease with increasing viewing angle in retroversion/anteversion. Conclusion. These data suggest that 3D reconstructions are more reproducible than AP scapular radiographs in the assessment of the GPA and should be used to compare data in different studies, to predict outcome, define malunion, and act as an indication for surgery in patients with a scapular fracture. Cite this article: Bone Joint J 2016;98-B:1510–16


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 61 - 61
1 Jan 2017
Gueorguiev B Hagen J Klos K Lenz M Richards R Simons P
Full Access

Injury to the syndesmosis occurs in 10–13% of all operative ankle fractures and there is evidence that both incomplete treatment and malreduction of the syndesmosis can lead to poor clinical outcomes. Much attention has been given to post–operative malreduction documented by computer tomography (CT), however, there is limited data about the intact positioning and relative motion of the native syndesmosis. The aim of this study is to elucidate more detailed information on the position of the fibula in the syndesmosis during simulated weight–bearing in intact state, with sequential ligament sectioning and following two reconstructive techniques. Fourteen paired, fresh–frozen human cadaveric limbs were mounted in a weight–bearing simulation jig. CT scans were obtained under simulated foot–flat loading (75 N) and in single–legged stance (700 N), in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. The elements of the syndesmosis and the deltoid ligament were sequentially sectioned. One limb of each pair was then reconstructed via one of two methods: Achilles autograft and peroneus longus ligamentoplasty. The specimens were rescanned in all 5 foot positions following each ligament resection and reconstruction. Measurements of fibular diastasis, rotation and anterior–posterior translation were performed on the axial cuts of the CT scans, 1 cm proximal to the roof of the plafond. Multiple measurements were made to define the position of the fibula in the incisura. Clinically relevant deformity patterns were produced. The deformity at the incisura was consistent with clinical injury, and the degree of displacement in all ligament states was dependent on the foot position. The most destructive state resulted in the most deformity at the syndesmosis. Differences between the intact and reconstructed states were found with all measurements, especially when the foot was in external rotation and dorsiflexion. There was no significant difference with direct comparison of the reconstructions. This study has detailed the motion of the fibula in the incisura and its variation with foot position. Neither reconstruction was clearly superior and both techniques had difficulty in the externally rotated and dorsiflexed foot positions. This study design can serve as a model for future ex–vivo testing of reconstructive techniques


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 88 - 88
1 Apr 2018
Jeuken R Roth A Peters M van Rietbergen B Emans P
Full Access

INTRODUCTION. Adequate osseointegration of knee resurfacing implants for the treatment of focal cartilage defects is an important prerequisite for good clinical outcomes. Inadequate initial fixation and sustained micromotion may lead to osteolysis and ultimately implant failure. PET/CT with the bone seeking tracer 18F-sodium fluoride (18F-NaF) allows for localisation and quantification of abnormalities in bone metabolism. 18F-NaF PET/CT has been shown to correlate with loosening of implants in the hip and spine. Here, we asses osseointegration of the knee resurfacing implants using micro-computed tomography (µCT) and correlate µCT parameters to 18F-NaF uptake on PET/CT scans taken 3 and 12 weeks after surgery. We hypothesize that 18F-NaF uptake at 12 weeks and its relative decrease between 3 and 12 weeks correlates with osseointegration at 12 weeks postoperatively. Polymer implants with Young”s moduli approximately equal to- and below the Young's modulus of bone, with- and without surface modification were used in this study next to a control metal implant. METHODS. Five different osteochondral implants were implanted bilaterally in critically-sized osteochondral defects in 16 goats. At 3 and 12 weeks postoperatively, a 10-minute static PET/CT-scan (Philips, Gemini TF PET/CT) was made 60 minutes after intravenous injection of 18F-NaF. Image processing resulted in an overall bone metabolism parameter, i.e. standardized uptake value (SUV). A cylindrical region of interest was drawn around each implant to obtain the maximum SUV (SUVmax). Bone quality parameters were quantified in a cylinder surrounding the implant using µCT after sacrifice as a measure for osseointegration. The in vivo 18F-NaF PET/CT uptake parameters were correlated to the bone quality parameters. RESULTS. Implant osseointegration strongly varied for the different implants. Some implant groups exhibited very poor osseointegration with clear signs of osteolysis, while titanium implants exhibited good osseointegration. A strong correlation was observed between bone quality parameters as determined using µCT and SUVmax at 12 weeks. The SUVmax of the implants with poor osseointegration remained high, while implants with good osseointegration showed a relative decrease in SUVmax between 3 and 12 weeks. CONCLUSION. This study suggests that the SUVmax of PET/CT 12 weeks after surgery correlates well for the quality of osseointegration assessed on µCT 12 weeks after surgery. De relative decrease of SUVmax between the given time points had a strong correlation with the degree of osseointegration. In this study, large differences in the quality of osseointegration were observed. The role of surface modification, elasticity and micromotion still remain to be determined as well as if 18F-NaF is sensitive enough to discriminate between smaller differences and what the optimum time point would be to predict the ultimate osseointegration


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 56 - 56
1 Mar 2013
Papagapiou H Ramguthy Y Firth G
Full Access

Purpose. Following closed or open reduction for developmental dysplasia of the hip (DDH), assessment of reduction is essential. With potentially poor accuracy in confirming reduction, the risk of abnormal hip development and ultimately poor outcome exists if reduction is not achieved. Computed tomography (CT) has been used in recent years to assess reduction. The aim of this study was to compare the accuracy in confirming hip reduction following closed or open reduction in children with DDH, using CT and plain radiographs and to decide whether CT scans improved the assessment of reduction. Methods. We retrospectively reviewed 6 patients treated for DDH at an Academic Hospital. The patients were treated with either closed or open reduction. Post operatively radiographs and CT scans were obtained to assess reduction. Reduction was assessed using Shenton's line, medial joint space, a femoral mid-cervical line through the tri-radiate cartilage and a tri-radiate intersectional line on axial CT. The CT scans were analyzed using Osirix on an Apple Macintosh computer. Results. We were able to obtain measurements in all parameters in only one radiograph, whereas in the CT images all parameters were determined. One patient had radiographs in which no values could be measured. The CT scan however confirmed reduction of that hip. In one patient we assessed a hip as reduced using all the parameters, whereas the tri-radiate intersectional line on axial CT and the Shenton's line on the coronal slice showed that in fact the head was posteriorly subluxed. Conclusion. We conclude that although CT scans did not change our management in this small patient series, CT scans did provide a better means of confirming hip reduction than plain radiographs for patients with DDH following closed or open reduction in a hip spica. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 141 - 141
1 Feb 2012
Reynolds J Murray J Mandalia V Sinha M Clark G Jones A Ridley N Lowdon I Woods D
Full Access

Background. In suspected scaphoid fracture the initial scaphoid series plain radiographs are 84-94% sensitive for scaphoid fractures. Patients are immobilised awaiting diagnosis. Unnecessary lengthy immobilisation leads to lost productivity and may leave the wrist stiff. Early accurate diagnosis would improve patient management. Although Magnetic Resonance Imaging (MRI) has come to be regarded as the gold standard in identifying occult scaphoid injury, recent evidence suggests Computer Tomography (CT) to be more accurate in identifying scaphoid cortical fracture. Additionally CT and USS are frequently a more available resource than MRI. We hypothesised that 16 slice CT is superior to high spatial resolution Ultrasonography (USS) in the diagnosis of radiograph negative suspected cortical scaphoid fracture and that a 5 point clinical examination will help to identify patients most likely to have sustained a fracture within this group. Methods. 100 patients with two negative scaphoid series and at least two out of five established clinical signs of scaphoid injury (anatomical snuffbox tenderness (AST), scaphoid tubercle tenderness (STT), effusion, pain on circumduction and pain on axial loading) were prospectively investigated with CT and USS. MRI was arranged for patient with persistent symptoms but negative CT/USS. Results. CT demonstrated 8 scaphoid fractures. 17 other fractures (1st metacarpal, trapezium, trapezoid, distal radius, hook of hammate and triquetral) were also found. USS diagnosed 2/8 scaphoid fractures, raised suspicion in 5/8 and completely missed 1/8. Combining AST, STT with pain on circumduction improved accuracy (sensitivity 87.5% and Specificity 36%). No further fractures were identified on MRI. Conclusions. - CT remains superior to USS for the exclusion of cortical scaphoid fracture. There remains a role for USS if resources are limited. - Combining signs of ASB and tubercle tenderness with pain on circumduction assists in the identification of a ‘fracture likely’ subgroup


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 93 - 93
1 Dec 2013
Jun BJ Li Z Iannotti J
Full Access

Background:. Glenoid component loosening remains as an unsolved clinical problem in total shoulder arthroplasty. Current clinical assessment relies on subjective quantification using a two-dimensional plane X-ray image with arbitrarily defined criteria. There is a need to develop a readily usable clinical tool to accurately and reliably quantify the glenoid component motion over time after surgery. A high-resolution clinical CT has the potential to quantify the glenoid motion, but is challenged by metal artifact from the prosthetic humeral components. The objective of this study is to demonstrate the feasibility of using a clinical CT reconstruction to quantify the glenoid implant motion with the aid of tantalum markers. Methods:. Three spherical tantalum markers of 1.0 mm in diameter were inserted into three peripheral pegs of an all polyethylene glenoid component. The glenoid component was implanted in a sawbone scapula. To determine the effect of metal artifact on quantification of glenoid implant motion, two sawbone humerii were used: one without the prosthetic humeral components and the other with the prosthetic humeral head and stem. Three custom-made translucent spacers with the uniform thickness were placed between the glenoid component and the scapula to produce a gradual translation of the glenoid component from 1 mm to 3 mm. Before and after inserting each spacer, the surface of the glenoid component was digitized by a MicroScribe. The surface points were used to fit a sphere and the corresponding center of the sphere was calculated. The actual translation of the glenoid component was measured as the three-dimensional (3D) distance between the center of the sphere before and after insertion of each spacer. Then, the shoulder model was scanned by a clinical CT with and without the spacers for both humerii conditions. Velcro straps were used to secure the humerus to the glenoid component between the trials. All CT scans were reconstructed in VolNinja software to superimpose the scapula positions (Figure 1). The three tantalum markers were visualized and the center coordinates of the markers were used to measure the 3D distance before and after insertion of each spacer. The accuracy was defined by the difference between the averaged 3D distance measured by CT reconstruction and that measured by the MicroScribe. The standard deviation of the 3D distance measured by each tantalum marker was calculated to evaluate the reliability of the tantalum marker visualization. Results:. Without metal artifact, the accuracy and reliability of quantifying glenoid implant motion using a clinical CT were 0.4 mm and 0.2 mm, respectively (Figure 2). With the presence of metal artifact, the accuracy and reliability were 0.5 mm and 0.4 mm, respectively. The largest difference in quantifying the glenoid component motion with and without the metal artifact was only 0.12 mm. Conclusion:. The current study demonstrated the feasibility of using a clinical CT to quantify glenoid implant motion. With the aid of tantalum markers, a clinical CT can be readily used to quantify the glenoid implant motion accurately and reliably even with the presence of metal artifact from the humeral components


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 28 - 28
1 Jan 2016
Stirling P Mannambeth RV Soler JA Batta V Malhotra RK Kalairajah Y
Full Access

Introduction. Increased accuracy of pre-operative imaging in patient-specific instrumentation (PSI) can result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging or revision surgery. The benefits and drawbacks of CT vs MRI for use in PSI is a source of ongoing debate. This study reviews all currently available evidence regarding accuracy of CT vs MRI for pre-operative imaging in PSI. Methods. The MEDLINE and EMBASE databases were searched between 1990 and 2013 to identify relevant studies. As most studies available focus on validation of a single technique rather than a direct comparison, the data from several clinical studies was assimilated to allow comparison of accuracy. Overall accuracy of each modality was calculated as proportion of outliers >3 % in the coronal plane. Results. Seven studies matched our inclusion criteria. Outlier incidence was 12.5% (9.27–17.4%) with CT and 16.96% (1.2–44%) with MRI (p>0.05). Conclusions. Current evidence shows comparable accuracy with both imaging modalities for PSI. Outlier incidence is slightly lower in the CT group with lower variation but this was not significant. At present there is not enough published data to convincingly conclude in favour of CT or MRI for accuracy of component alignment. It is our conclusion that CT is more favourable at present due to reduced scanning times, increased availability, and cheaper cost


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 26 - 26
1 Jan 2016
Stevens A Hussenbocus S Wilson C Mercer G Krishnan J
Full Access

Introduction. Total hip replacement (THR) is a very common procedure performed for the treatment of osteoarthritis of the hip. The aim of THR is to restore function and quality of life of the patients, by restoring femoral offset, leg length, centre of rotation, and achieving stability, to avoid dislocation postoperatively. Method. We aimed to perform preoperative assessment of femoral offset on anteroposterior (AP) radiographs of the hip, and on corresponding CT scans, for patients undergoing primary THR. Patients were positioned according to a standardised protocol prior to obtaining radiographs of the hip and CT scan. Inter- and intra-observer reliability was evaluated between 3 observers of differing levels of seniority – an orthopaedic trainee, a fellow, and a consultant. CT scan measurements of offset were performed by one consultant radiologist. The researchers measuring radiographic offset were blinded to the results of the CT measurements. Results. In the entire cohort of 50 patients, the mean femoral offset was 44 mm on AP radiographs of the hip and 45 mm on CT scans. No significant difference in mean femoral offset was seen between AP radiographs of the hip and CT. There was good inter and intra-observer reliability in the measurement of femoral offset on AP radiographs of the hip. There was no difference in the radiographic measurements between observers of differing levels of seniority. Conclusions. Accurate restoration of femoral offset is very important in the good functioning of THR. AP radiographs of the hip are accurate, and should be routinely obtained preoperatively for templating, prior to THR


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 18 - 18
17 Jun 2024
Andres L Donners R Harder D Krähenbühl N
Full Access

Background

Weightbearing computed tomography scans allow for better understanding of foot alignment in patients with Progressive Collapsing Foot Deformity. However, soft tissue integrity cannot be assessed via WBCT. As performing both WBCT and magnetic resonance imaging is not cost effective, we aimed to assess whether there is an association between specific WBCT and MRI findings.

Methods

A cohort of 24 patients of various stages of PCFD (mean age 51±18 years) underwent WBCT scans and MRI. In addition to signs of sinus tarsi impingement, four three-dimensional measurements (talo-calcaneal overlap, talo-navicular coverage, Meary's angle axial/lateral) were obtained using a post processing software (DISIOR 2.1, Finland) on the WBCT datasets. Sinus tarsi obliteration, spring ligament complex and tibiospring ligament integrity, as well as tibialis posterior tendon degeneration were evaluated with MRI. Statistical analysis was performed for significant (P<0.05) correlation between findings.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_17 | Pages 15 - 15
1 Nov 2014
Prior C Wellar D Widnall J Wood E
Full Access

Introduction:. Fibular malreduction is a common and important cause of pain after surgical fixation following a syndesmosis injury, but it is unclear which components of malreduction correspond to clinical outcome. Plain radiographs have been shown to be unreliable at measuring malreduction when compared to CT scans. A number of published methods for measuring fibular position rely on finding the axis of the fibula. Elgafy demonstrated that fibular morphology varies greatly, and some studies have demonstrated difficulty finding the fibular axis. Methods:. We developed a new method of measuring the distal fibular position on CT images. We used CT studies in 16 normal subjects. Two assessors independently measured the ankle syndesmosis using the Davidovitch method, and our new protocol for fibular AP position, diastasis and fibular length. Results:. We demonstrated that after statistical analysis (Pearson Product Moment Correlation) our method showed improved inter-observer reliability (r = 0.99 and 0.95 vs 0.59 and 0.78 respectively) for diastasis and AP translation, and improved intra-observer reliability (r = 0.99 and 0.99 vs 0.91 and 0.97 respectively). We found inter and intra observer reliability of 0.80 and 0.91 respectively for fibular length, but were unable to find a novel, accurate method for measuring fibular rotation. Conclusions:. Our method is a new, simple, accurate and reproducible system for measuring the ankle syndesmosis. We believe that this method could be used to assess fibular reduction after obtaining CT images of the uninjured side for comparison