header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 33 - 33
11 Apr 2023
Ruksakulpiwat Y Numpaisal P Jeencham R
Full Access

Currently, fibrin glue obtained from fibrinogen and thrombin of human and animal blood are widely investigated to use as injectable hydrogel for tissue engineering which contributes to minimally invasive surgery, superior biodegradability, cell attachment, proliferation and regenerating new tissue. However, most of them fail to achieve to be used for tissue engineering application because of a risk of immune response and poor mechanical properties. To overcome the limitation of fibrin glue and to reduce the usage of products from human and animal blood, the artificial fibrin glue materials were developed. Recently, cellulose nanofiber (CNF) as reinforcing agent has been explored for many tissue engineering applications such as bone and cartilage due to its impressive biological compatibility, biodegradability and mechanical properties. CNF was extracted from cassava pulp. PEO-PPO-PEO diacrylate block copolymer is a biodegradable synthetic polymers which is water insoluble hydrogel after curing by UV light at low intensity. To enhance the cell adhesion abilities, gelatin methacrylate (GelMA), the denature form of collagen was used to incorporate into hydrogel. The aim of this study was to develop the artificial fibrin glue from CNF reinforced PEO-PPO-PEO diacrylate block copolymer/GelMA injectable hydrogel.

CNF/PEO-PPO-PEO diacrylate block copolymer/GelMA injectable hydrogels were prepared with 2-hydroxy-1-(4-(hydroxy ethoxy) phenyl)-2-methyl-1-propanone (Irgacure 2959) as a photoinitiator. The physicochemical properties were investigated by measuring various properties such as thickness, gel fraction, mechanical properties and water uptake.

At optimal preparation condition, CNF reinforced injectable hydrogel was successful prepared after curing with UV light within 7 minutes. This hydrogel showed gel fraction and water uptake of 81 and 85%, respectively. The cytotoxicity, cell adhesion and proliferation of CNF reinforced injectable hydrogel was presented.

Cellulose nanofiber from casava pulp was successfully used to prepare injectable hydrogel as artificial fibrin glue for tissue engineering. The hydrogel showed good physical properties which can be applied to use for tissue engineering application.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 75 - 75
4 Apr 2023
Numpaisal P Khatsee S Arunsan P Ruksakulpiwat Y
Full Access

Silk fibroin (SF) has been used as a scaffold for cartilage tissue engineering. Different silkworms strain produced different protein. Also, molecular weight of SF depends on extraction method. We hypothesised that strain of silkworm and method of SF extraction would effect biological properties of SF scaffold. Therefore, cell viability and chondrogenic gene expression of human chondrogenic progenitor cells (HCPCs) treated with SF from 10 silkworm strains and two common SF extraction methods were investigate in this study.

Twenty g of 10 strains silk cocoons were separately degummed in 0.02M Na2CO3 solution and dissolved in 100๐C for 30 minutes. Half of them were then dissolved in CaCl2/Ethanol/H2O [1:2:8 molar ratio] at 70±5๐C (method 1) and other half was dissolved in 46% w/v CaCl2 at 105±5๐C (method 2) for 4 hours. HCPCs were cultured in SF added cultured medial according to strain and extraction method. Cell viability at day 1, 3, and 7, were determined. Expression of collagen I, collagen II, and aggrecan at day 7 and 14, was studied. All experiment were done in triplicated samples.

Generally, method 1 SF extraction showed higher cell viability in all strains. Cell viability from Nanglai Saraburi, Laung Saraburi and Nangtui strains were higher than those without SF in every time point while Wanasawan and J108 had higher viability at day 1 and decreased by time. Expression in collagen 1, collagen 2 and aggrecan in method 1 are higher at day 7 and day 14. Collagen 1 expression was highest in Nangnoi Srisaket, followed by Laung Saraburi and Nanglai Saraburi in day 7. Nangnoi Srisaket also had highest expression at day 14, followed by Nanglai Saraburi and Laung Saraburi respectively. Nangseaw had highest collagen 2 expression, follow by Laung Saraburi and Nangnoi Srisaket respectively. Higher aggrecan gene expression of Tubtimsiam, Wanasawan, UB 1 and Nangnoi Srisaket was observed at day 7 and increased expression of all strains at day 14.

SF extraction using CaCl2/Ethanol/H2O offered better cell viability and chondrogenic expression. Nangseaw, Laung Saraburi and Nangnoi Srisaket strains expressed more chondrogenic phenotype.