header advert
Results 1 - 75 of 75
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 4 - 4
1 Jun 2021
Jenny J Banks S Baldairon F
Full Access

INTRODUCTION

The restoration of physiological kinematics is one of the goals of a total knee arthroplasty (TKA). Navigation systems have been developed to allow an accurate and precise placement of the implants. But its application to the intraoperative measurement of knee kinematics has not been validated. The hypothesis of this study was that the measurement of the knee axis, femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps during continuous passive knee flexion by the navigation system would be different from that by fluoroscopy taken as reference.

MATERIAL – METHODS

Five pairs of knees of preserved specimens were used. The e.Motion FP ® TKA (B-Braun Aesculap, Tuttlingen, Germany) was implanted using the OrthoPilot TKA 4.3 version and Kobe version navigation system (B-Braun Aesculap, Tuttlingen, Germany). Kinematic recording by the navigation system was performed simultaneously with fluoroscopic recording during a continuous passive flexion-extension movement of the prosthetic knee. Kinematic parameters were extracted from the fluoroscopic recordings by image processing using JointTrack Auto ® software (University of Florida, Gainesville, USA). The main criteria were the axis of the knee measured by the angle between the center of the femoral head, the center of the knee and the center of the ankle (HKA), femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps. The data analysis was performed by a Kappa correlation test. The agreement of the measurements was assessed using the intraclass correlation coefficient (ICC) and its 95% confidence interval.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 3 - 3
1 Feb 2020
Jenny J
Full Access

Introduction

Accurate diagnosis of peri-prosthetic joint infection is critical to allow adequate treatment. Currently, the criteria of the Musculo-Skeletal Infection Society (MSIS) serve as a validated reference tool. More recently, these criteria have been modified for better accuracy. The goal of this study was to compare retrospectively the diagnostic accuracy of these two different tools in cases of known peri-prosthetic hip or knee infection or in aseptic cases and to analyze one additional criterion: presence of an early loosening (prior to 2 years after implantation).

Material – Methods

All cases of hip or knee prosthesis exchange operated on at our department during the year 2017 have been selected. There were 130 cases in 127 patients: 67 men and 60 women, with a mean age of 69 years − 69 total hip (THA) and 61 total knee (TKA) arthroplasties. 74 cases were septic and 53 cases were aseptic.

All criteria included in both classifications were collected: presence of a fistula, results of bacteriological samples, ESR and CRP levels, analysis of the joint fluid, histological analysis. Additionally, the presence of an early loosening was recorded.

The diagnosis accuracy of the classical MSIS classification and of the 2018 modification were assessed and compared with a Chi-square test at a 0.05 level of significance.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 5 - 5
1 Feb 2020
Jenny J Guillotin C Boeri C
Full Access

Introduction

Chronic ruptures of the quadriceps tendon after total knee arthroplasty (TKA) are rare but are a devastating complication. The objective of this study was to validate the use of fresh frozen total fresh quadriceps tendon allografts for quadriceps tendon reconstruction. The hypothesis of this work was that the graft was functional in more than 67% of cases, a higher percentage than the results of conventional treatments.

Material – methods

We designed a continuous monocentric retrospective study of all patients operated on between 2009 and 2017 for a chronic rupture of the quadriceps tendon after TKA by quadriceps allograft reconstruction. The usual demographic and perioperative data and the rehabilitation protocols followed were collected. Initial and final radiographs were analyzed to measure patellar height variation. The main criterion was the possibility of achieving an active extension of the knee with a quadriceps contraction force greater than or equal to 3/5 or the possibility of lifting the heel off the ground in a sitting position.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 2 - 2
1 Feb 2020
Jenny J De Ladoucette A
Full Access

Introduction

Deep venous thrombosis (DVT) is a potentially serious complication after total hip (THA) and knee (TKA) arthroplasty, traditionally justifying aggressive prophylaxis with low molecular weight heparin (LMWH) or direct oral anticoagulants (DOA) at the cost of an increased risk of bleeding. However, fast-track procedures might reduce the DVT risk and decrease the cost-benefit ratio of the current recommendations. The objective of this study was to compare thrombotic and bleeding risk in an unselected population of elective THA and TKA with a fast-track procedure.

MATERIAL - METHODS

A series of 1,949 patients were analyzed prospectively. There were 1,136 women and 813 men, with a mean age of 70 years. In particular, 16% were previously treated by antiplatelet agents and 8% by anticoagulants. All patients followed a fast-track procedure including early walking within 24 hours of surgery, and 80% of patients returned home after surgery, with a mean length of stay of 3 days (THA) or 4 days (TKA). The occurrence of a thromboembolic event or hemorrhagic complication has been identified.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 83 - 83
1 Dec 2018
Lemaignen A Astagneau P Marmor S Ferry T Seng P Mainard D Jenny J Laurent F Grare M Jolivet-Gougeon A Senneville E Bernard L
Full Access

Aim

Bone and joint infections (BJI) are associated with a heavy morbidity and high health costs. Comorbidities, device associated infections and complicated journeys are associated with increased mortality, treatment failures and costs. For this reason, 24 referral centers (RC) have been created in 2009 in order to advise about management of “complex” BJI in weekly multidisciplinary meetings (MM). Since end of 2012, data from these meetings are gathered in a national database. We aimed to describe the data from this French registry of BJI and determine factors associated with the definition of “complex” BJI.

Method

Demographic, clinical, microbiologic and therapeutic characteristics of patients are systematically recorded in the database. Data from the first presentation in RC for each adult patients are presented. Complexity of BJI is recorded after each meeting according to 4 criteria (first failure, complex antibiotic therapy, precarious underlying conditions or complex surgical procedure). Part of unavailable data have been completed by pattern extraction from text-encoded commentaries. Factors associated with complexity were determined by multivariate logistic regression.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 37 - 37
1 Apr 2018
Jenny J Dillman G
Full Access

INTRODUCTION

Navigation systems have proved allowing performing measurement of the lower limb axis with a good accuracy, but the mandatory use of reference pins or screws limit their use to the operating room. The use of non-invasive navigation systems has been suggested to overcome this limitation. We conducted a prospective study to assess the validity of such a measurement system with non-invasive fixation of the reference arrays. The main goal was to compare this method with a standard, invasive navigation system requiring bony fixation of the arrays. The following hypothesis was tested: there will be a significant difference between the simultaneous measurement of the mechanical femoro-tibial angle by a standard navigation system and by the non-invasive navigation system.

MATERIAL AND METHODS

20 patients scheduled for total or partial knee arthroplasty were included after giving their informed consent. There were 7 men and 13 women with a median age of 65 years (range, 55 to 90). The median coronal deformation measured by X-rays was 8° of varus (range, 5° valgus to 22 ° varus). The same navigation system was used for both invasive and non-invasive measurements, but the basic algorithms were adapted for the non-invasive technique. For the non-invasive technique, metallic plates were strapped on the thigh and the calf to allow arrays fixation (fig. 1). Coronal femoro-tibial mechanical angle (CMFA) in maximal extension without stress was recorded by the non invasive system. This non-invasive analysis was immediately followed by surgery, and the same angle was measured intra-operatively with the invasive system. Comparisons between non-invasive and invasive measurements were performed using a Wilcoxon test, after checking that their distribution followed a normal distribution, and an equivalence testing with limits of ±3°. The correlation between the two sets of measurements was analyzed using a correlation test Spearman rank. The analysis of the concordance of the two sets of measurements was performed using Bland and Altman tests. The significance level p was set at 0.05.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 38 - 38
1 Apr 2018
Jenny J
Full Access

INTRODUCTION

Total knee arthroplasty (TKA) is considered a highly successful procedure. Survival rates of more than 90% after 10 years are generally reported. However, complications and revisions may still occur for many reasons, and some of them may be related to the operative technique. Computer assistance has been suggested to improve the accuracy of implantation of a TKA (Jenny 2005). Short term results are still controversial (Roberts 2015). However, few long term results have been documented (Song 2016). The present study was designed to evaluate the long-term (more than 10 years) results of a TKA which was routinely implanted with help of a non-image based navigation system. The 5- to 8-year of this specific TKA has already been documented (Jenny 2013).

The hypothesis of this study will be that the 10 year survival rate of this TKA will be improved in comparison to historical papers when analyzing survival rates and knee function as evaluated by the Knee Society Score (KSS).

MATERIAL AND METHODS

All patients operated on between 2001 and 2004 for implantation of a navigated TKA were eligible for this study. Usual demographic and peri-operative items have been record. All patients were prospectively followed with clinical and radiological examination. All patients were contacted after the 10 year follow-up for repeat clinical and radiological examination (KSS, Oxford knee questionnaire and knee plain X-rays). Patients who did not return were interviewed by phone call. For patients lost of follow-up, family or general practitioner was contacted to obtain relevant information about prosthesis survival. Survival curve was plotted according to Kaplan-Meier.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 39 - 39
1 Apr 2018
Jenny J De Gori M
Full Access

INTRODUCTION

The goal of the study was to perform quality control with a commercially available navigation system when introducing PST technique at our academic department. The learning curve was assessed by the Cumulative Sum (CUSUM) test. We hypothesized that the PST process for TKA was immediately under control after its introduction when analyzed with the CUSUM technique.

MATERIAL AND METHODS

The first 50 TKAs implanted with the use of PST at an academic department were scheduled to enter in a prospective, observational study. All TKAs were implanted by an experienced, high volume senior consultant with high experience in knee navigation. PSTs were carefully positioned over the bone and articular surfaces to the best fit position, without any navigated information. Then the 3D femoral and tibia PSTs positioning were recorded. The surgical procedure was then completed following the routine navigated procedure with standard navigated templates.

To assess the 3D positioning of each template individually and of both templates together as a surrogate of the final TKA positioning, one point was given for each item inside the target, giving a maximal femur and tibia scores of 4 points, and a maximal knee score of 8 points, when all items were fulfilled. Following dataset was used for CUSUM chart plotting: allowable slack = 0.5SD, acceptable limit score = 6 points for knee score and 2 points for femur and tibia scores. For each measurement Mx, two CUSUMs (upper and lower CUSUMs) were calculated. These sums were plotted against the rank of the observation i. A trend in the process results in a change in the slope of the CUSUM, whereas the values are expected to fluctuate around a horizontal line if the process is in control. The process was considered out of control if upper CUSUM or lower CUSUM is outside the acceptable deviation interval.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 4 - 4
1 Dec 2017
Jenny J De Gori M
Full Access

INTRODUCTION

The patient-specific templates (PST) for total knee arthroplasty (TKA) have been developed to improve accuracy of implantation, decrease operating time and decrease costs. There remains controversy about the accuracy of PST in comparison with either navigated or conventional instruments. Furthermore, the learning curve after introducing PST has not been well defined. The goal of the present study was to perform quality control with a commercially available navigation system and the CUCUM test when introducing PST technique at our academic department.

MATERIAL AND METHODS

The first 50 TKAs implanted with the use of PST at an academic department were scheduled to enter in a prospective, observational study. PSTs were designed to obtain a neutral coronal alignment. All TKAs were implanted by an experienced, high volume senior consultant with high experience in knee navigation. PSTs were carefully positioned over the bone and articular surfaces to the best fit position, without any navigated information. Then the 3D femoral and tibia PSTs positioning were recorded by the navigation system. The difference between expected and achieved position was calculated, and an accuracy score was calculated and plotted according to the rank of observation into a CUSUM test.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 3 - 3
1 Dec 2017
Jenny J
Full Access

INTRODUCTION

Unicompartmental knee arthroplasty (UKA) is considered a highly successful procedure. However, complications and revisions may still occur, and some may be related to the operative technique. Computer assistance has been suggested to improve the accuracy of implantation of a UKA. The present study was designed to evaluate the long-term (more than 10 years) results of an UKA which was routinely implanted with help of a non-image based navigation system.

MATERIAL AND METHODS

All patients operated on between 2004 and 2005 for implantation of a navigated UKA were included. Usual demographic and peri-operative items have been record. All patients were prospectively followed with clinical and radiological examination. All patients were contacted after the 10 year follow-up for repeat clinical and radiological examination (KSS, Oxford knee questionnaire and knee plain X-rays). Patients who did not return were interviewed by phone call. For patients lost of follow-up, family or general practitioner was contacted to obtain relevant information about prosthesis survival. Survival curve was plotted according to Kaplan-Meier.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 13 - 13
1 Dec 2017
Jenny J Matter-Parrat V Ronde-Oustau C
Full Access

Aim

Whether pre-operative microbiological sampling contributes to the management of chronic peri-prosthetic infection remains controversial. We assessed agreement between the results of pre-operative and intra-operative samples in patients undergoing single-stage prosthesis exchange to treat chronic peri-prosthetic infection. The tested hypothesis was that agreement between pre-operative and intra-operative samples exceeds 75% in patients undergoing single-stage exchange of a hip or knee prosthesis to treat chronic peri-prosthetic infection.

Method

This single-centre retrospective study included 85 single-stage prosthesis exchange procedures in 82 patients with chronic peri-prosthetic infection at the hip or knee. Agreement between pre-operative and intra-operative sample results was evaluated. Changes to the initial antibiotic regimen made based on the intra-operative sample results were recorded. Associations between sample agreement and infection-free survival were assessed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 12 - 12
1 Dec 2017
Jenny J Adamczewski B Thomasson ED Gaudias J
Full Access

Aim

The diagnosis of peri-prosthetic infection is sometimes difficult to assess, and there is no universal diagnostic test. The recommendations currently accepted include several diagnostic criteria, and are based mainly on the results of deep bacteriological samples, which only provide the diagnosis after surgery. A predictive score of the infection might improve the peri-operative management before repeat surgery after total hip arthroplasty (THA). The goal of this study was to attempt defining a composite score using conventional clinical, radiological and biological data that can be used to predict the positive and negative diagnosis of peri-prosthetic infection before repeat surgery after THA. The tested hypothesis was that the score thus defined allowed an accurate differentiation between infected and non-infected cases in more than 75% of the cases.

Method

104 cases of repeat surgery for any cause after THA were analyzed retrospectively: 61 cases of infection and 43 cases without infection. There were 54 men and 50 women, with a mean age of 70 ± 12 years (range, 30 to 90 years). A univariate analysis looked for individual discriminant factors between infected and uninfected case file records. A multivariate analysis integrated these factors concomitantly. A composite score was defined, and its diagnostic effectiveness was assessed by the percentage of correctly classified cases and by sensitivity and specificity.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 19 - 19
1 May 2016
Angibaud L Dai Y Jenny J Cross M Hamad C Jung A
Full Access

Introduction

Total knee arthroplasty (TKA) can effectively treat end-stage knee osteoarthritis. For cruciate-retaining (CR) TKA, the posterior tibial slope (PTS) of the reconstructed proximal tibia plays a significant role in restoring normal knee kinematics as it directly affects the tension of the posterior cruciate ligament (PCL) [1]. However, conventional cadaveric testing of the impact of PTS on knee kinematics may damage/stretch the PCL, therefore impact the test reproducibility. The purpose of this study was to assess the reproducibility of a novel method for the evaluation of the effects of PTS on knee kinematics.

Materials and Methods

Cemented CR TKAs (Logic CR, Exactech, Gainesville, FL, USA) were performed using a computer-assisted surgical guidance system (ExactechGPS®, Blue-Ortho, Grenoble, FR) on six fresh frozen non-arthritic knees (PCL presumably intact). The tibial baseplate was specially designed (Fig. 1) with a mechanism to modify the PTS in-situ. Knee kinematics, including anteroposterior (AP) translation, internal/external (IE) rotation, and hip-knee-ankle angles, were evaluated by performing a passive range of motion from extension up to ∼110° of flexion, three separate times at 5 PTSs: 10°, 7°, 4°, 1°, and then 10° again. The repeatability of the test was investigated by comparing the kinematics between the first and the last 10° tests. Any clinically relevant deviation (1.5° for the hip knee ankle angle, 1.5mm for anterior-posterior translation and 3° for internal-external rotation) would reflect damage to the soft-tissue envelope or the PCL during the evaluation. Potential damage of PCL was investigated by comparing the kinematic parameters from the first and last 10° slope tests at selected flexion angles (Table 1) by paired t-test, with statistical significance defined as p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 61 - 61
1 May 2016
Jenny J Honecker S Diesinger Y
Full Access

INTRODUCTION

One of the main goals of total knee arthroplasty (TKA) is to restore an adequate range of motion. The posterior femoral offset (PFO) may have a significant influence on the final flexion angle after TKA. The purpose of the present study was to compare the conventional, radiologic measurement of the PFO before and after TKA to the intra-operative, navigated measurement of the antero-posterior femoral dimension before and after TKA implantation.

MATERIAL

100 consecutive cases referred for end-stage knee osteo-arthritis have been included. Inclusion criteria were the availability of pre-TKA and post-TKA lateral X-rays and a navigated TKA implantation. There was no exclusion criterion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 21 - 21
1 May 2016
Hamad C Jung A Jenny J Cross M Angibaud L Hohl N Dai Y
Full Access

Introduction

While total knee arthroplasty (TKA) improves postoperative function and relieves pain in the majority of patients with end stage osteoarthritis, its ability to restore normal knee kinematics is debated. Cadaveric studies using computer-assisted orthopaedic surgery (CAOS) system [1] are one of the most commonly used methods in the assessment of post-TKA knee kinematics. Commonly, these studies are performed with an open arthrotomy; which may impact the knee kinematics. The purpose of this cadaveric study was to compare the knee kinematics before and after (open or closed) arthrotomy.

Materials and Methods

Kinematics of seven non-arthritic, fresh-frozen cadaveric knees (PCL presumably intact) was evaluated using a custom software application in an image-free CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR). Prior to the surgical incision, one tracker was attached to the diaphysis of each tibia and femur. Native intact knee kinematics was then assessed by performing passive range of motion (ROM) three separate times, from full extension to at least 110 degrees of flexion, with the CAOS system measuring and recording anatomical values, including flexion angle, internal-external (IE) rotation and anterior-posterior (AP) translation of the tibia relatively to the femur, and the hip-knee-ankle (HKA) angle. Next, an anterior incision with a medial parapatellar arthrotomy was performed, followed by acquisition of the anatomical landmarks used for establishing an anatomical coordinate system in which all the anatomical values were evaluated [2]. The passive ROM test was then repeated with closed and then open arthrotomy (patella manually maintained in the trochlea groove). The anatomical values before and after knee arthrotomy were compared over the range of knee flexion using the native knee values as the baseline.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 20 - 20
1 May 2016
Dai Y Angibaud L Hamad C Jung A Jenny J Cross M
Full Access

INTRODUCTION

Cemented total knee arthroplasty (TKA) is a widely accepted treatment for end-stage knee osteoarthritis. During this procedure, the surgeon targets proper alignment of the leg and balanced flexion/extension gaps. However, the cement layer may impact the placement of the component, leading to changes in the mechanical alignment and gap size. The goal of the study was to assess the impact of cement layer on the tibial mechanical alignment and joint gap during cemented TKA.

MATERIAL

Computer-assisted TKAs (ExactechGPS®, Blue-Ortho, Grenoble, FR) were performed by two fellowship trained orthorpaedic surgeons on five fresh-frozen non-arthritic pelvis-to-ankle cadaver legs. All the surgeries used a cemented cruciate retaining system (Optetrak Logic CR, Exactech, Gainesville, FL). After the bony resection, the proximal tibial resection plane was acquired by manually pressing an instrumented checker onto the resected tibial surface (resection plane). Once the prosthesis was implanted through standard cementing techniques, the top surface of the implanted tibial component was probed and recorded using an instrumented probe. A best fit plane was then calculated from the probed points and offset by the thickness of the prosthesis, representing the bottom plane of the component (component plane).

The deviation of component alignment caused by the cement layer was calculated as the coronal and sagittal projection of the three-dimensional angle between the resection plane and the component plane. The deviation of the component height, reflecting a change in the joint gap, was assessed as the distance between the two planes calculated at the lowest points on the medial and lateral compartments of the proximal tibial surface. Statistical significance was defined as p≤0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 63 - 63
1 May 2016
Jenny J Bureggah A Diesinger Y
Full Access

INTRODUCTION

Measurement of range of motion is a critical item of any knee scoring system. Conventional measurements used in the clinical settings are not as precise as required. Smartphone technology using either inclinometer application or photographic technology may be more precise with virtually no additional cost when compared to more sophisticated techniques such as gait analysis or image analysis. No comparative analysis between these two techniques has been previously performed. The goal of the study was to compare these two technologies to the navigated measurement considered as the gold standard.

MATERIAL

Ten patients were consecutively included. Inclusion criterion was implantation of a TKA with a navigation system.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 65 - 65
1 May 2016
Jenny J Cross M Hamad C Bertrand F Angibaud L Dai Y
Full Access

INTRODUCTION

Total knee arthroplasty (TKA) is an effective technique to treat end-stage osteoarthritis of the knee. One important goal of the procedure is to restore physiological knee kinematics. However, fluoroscopy studies have consistently shown abnormal knee kinematics after TKA, which may lead to suboptimal clinical outcomes. Posterior slope of the tibial component may significantly impact the knee kinematics after TKA. There is currently no consensus about the most appropriate slope. The goal of the present study was to analyze the impact of different prosthetic slopes on the kinematics of a PCL-preserving TKA. The tested hypothesis was that the knee kinematics will be different for all tested tibial slopes.

MATERIAL

PCL-retaining TKAs (Optetrak Logic CR, Exactech, Gainesville, FL) were performed by fellowship trained orthopedic surgeons on six fresh frozen cadaver with healthy knees and intact PCL. The TKA was implanted using a computer-assisted surgical navigation system (ExactechGPS®, Blue-Ortho, Grenoble, FR). The implanted tibial baseplate was specially designed (figure 1) to allow modifying the posterior slope without repeatedly removing/assembling the tibial insert with varying posterior slopes, avoiding potential damages to the soft-tissue envelope.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 60 - 60
1 May 2016
Jenny J Gaudias J Boeri C Diesinger Y
Full Access

INTRODUCTION

Peri-prosthetic fungal infection is generally considered more difficult to cure than a bacterial infection. Two-stage exchange is considered the gold standard of surgical treatment. A recent study, however, reported a favorable outcome after one stage exchange in selected cases where the fungus was identified prior to surgery.

The routine one stage exchange policy for bacterial peri-prosthetic infection involves the risk of identifying a fungal infection mimicking bacterial infection solely on intraoperative samples, i.e. after reimplantation, realizing actually a one stage exchange for fungal infection without pre-operative identification of the responsible fungus, which is considered to have a poor prognosis. We report two such cases of prosthetic hip and knee fungal infection. Despite this negative characteristic, no recurrence of the fungal infection was observed.

CASE N°1: A 78 year old patient was referred for loosening of a chronically infected total hip arthroplasty (Staphylococcus aureus and Streptococcus dysgalactiae). One stage exchange was performed. Intraoperative bacterial cultures remained sterile. Two fungal cultures were positive for Candida albicans. Antifungal treatment was initiated for three months. No infection recurrence was observed at three year follow up.

CASE N° 2: A 53-year-old patient was referred for loosening of a chronically infected total knee prosthesis (Staphylococcus aureus methicillin susceptible, Klebsiella pneumoniae and Staphylococcus epidermidis). One stage exchange was performed. Intraoperative bacterial cultures remained sterile. Five fungal cultures were positive for Candida albicans. Antifungal treatment was initiated for three months. No infection recurrence was observed at two-year follow-up.

DISCUSSION

This experience suggests that eradication of fungal infection of a total hip or knee arthroplasty may be possible after one stage exchange even in cases where the diagnosis of fungal infection was not known before surgery, when the fungus was not identified and its antifungal susceptibility has not been evaluated before surgery. It is however not possible to propose this strategy as a routine procedure.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 62 - 62
1 May 2016
Jenny J Adamczewski B Godet J De Thomasson E
Full Access

INTRODUCTION

The diagnosis of peri-prosthetic infection may be difficult. But this diagnosis can guide antibiotic prophylaxis and implementation of intraoperative bacteriological samples. The hypothesis of this study was that a composite score using clinical, radiological and biological data could be used for positive and negative diagnostic of infection before reoperation on prosthetic hip or knee.

MATERIAL

200 reoperations on hip and knee arthroplasty for any cause were analyzed retrospectively. 100 cases concerned infected cases, while the diagnosis of infection was excluded in the other 100 cases.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 64 - 64
1 May 2016
Jenny J Bahlau D Wiesniewski S
Full Access

INTRODUCTION

The efficacy and safety of the tourniquet are discussed, in particular with regard to the blood saving and tissue damage induced by ischemia. The quality of exsanguination and tissue necrosis in the compression zone are significant prognostic factors. The objective of this study was to evaluate the efficacy and safety of a new tourniquet system combining efficient and controlled exsanguination (figure 1) and ischemia maintained by pressure on a minimal surface (figure 2). The hypothesis tested was that the new system allowed tourniquet to reduce blood loss compared to conventional withers without increasing the risk of complications.

MATERIAL

Two groups of 30 patients undergoing total knee arthroplasty (TKA) were compared. There were 39 women and 21 men with a mean age of 67 years and a mean BMI of 34. The study group was operated with the innovative tourniquet and followed prospectively. The control group was operated with the traditional tourniquet and analyzed retrospectively.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 40 - 40
1 Feb 2016
Jenny J Diesinger Y de Gori M
Full Access

Introduction

An appropriate positioning of a total knee replacement (TKR) is a prerequisite for a good functional outcome and a prolonged survival. Navigation systems may facilitate this proper positioning. Patient specific templates have been developed to achieve at least the same accuracy than conventional instruments at a lower cost. We hypothesised that there was no learning curve at our academic department when using patient specific templates for TKR instead of the routinely used navigation system.

Material

The first 20 patients operated on for TKR at our academic department using a patient specific template entered the study. All patients had a pre-operative CT-scan planning with a dedicated software.

The patient specific templates were positioned on the bone according to the best fit technique. The position of the templates was controlled at each step of the procedure by the navigation system, and eventually corrected to achieve the expected goal. The discrepancy between the initial and the final positioning was recorded. The paired difference between each set of measurement was analysed with appropriate statistical tests at a 0.05 level of significance.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 34 - 34
1 Feb 2016
Hamad C Bertrand F Jenny J Cross M Angibaud L Hohl N Dai Y
Full Access

Although total knee arthroplasty (TKA) is a largely successful procedure to treat end-stage knee osteoarthritis (OA), some studies have shown postoperative abnormal knee kinematics. Computer assisted orthopaedic surgery (CAOS) technology has been used to understand preoperative knee kinematics with an open joint (arthrotomy). However, limited information is available on the impact of arthrotomy on the knee kinematics. This study compared knee kinematics before and after arthrotomy to the native knee using a CAOS system.

Kinematics of a healthy knee from a fresh frozen cadaver with presumably intact PCL were evaluated using a custom software application in an image-free CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR). At the beginning of the test, four metal hooks were inserted into the knee away from the joint line (one on each side of the proximal tibia and the distal femur) for the application of 50N compressive load to simulate natural knee joint. Prior to incision, one tracker was attached to each tibia and femur on the diaphysis. Intact knee kinematics were recorded using the CAOS system by performing passive range of motion 3 times. Next, a computer-assisted TKA procedure was initiated with acquisition of the anatomical landmarks. The system calculated the previously recorded kinematics within the coordinate system defined by the landmarks. The test was then repeated with closed arthrotomy, and again with open arthrotomy with patella maintained in the trochlea groove. The average femorotibial AP displacement and rotation, and HKA angle before and after knee arthrotomy were compared over the range of knee flexion. Statistical analysis (ANOVA) was performed on the data at ∼0° (5°), 30°, 60°, 90° and 120° flexion.

The intact knee kinematics were found to be similar to the kinematics with closed and open arthrotomy. Differences between the three situations were found, in average, as less than 0.25° (±0.2) in HKA, 0.7mm (±0.4) in femorotibial AP displacement and 2.3° (±1.4) in femorotibial rotation. Although some statistically significant differences were found, especially in the rotation of the tibia for low and high knee flexion angles, the majority is less than 1°/mm, and therefore clinically irrelevant.

This study suggested that open and closed arthrotomy do not significantly alter the kinematics compared to the native intact knee (low RMS). Maintaining the patella in the trochlea groove with an open arthrotomy allows accurate assessment of the intact knee kinematics.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 12 - 12
1 Feb 2016
Jenny J Cross M Hamad C Bertrand F Angibaud L Dai Y
Full Access

Total knee arthroplasty (TKA) is an effective technique to treat end-stage knee osteoarthritis, targeting the restore a physiological knee kinematics. However, studies have shown abnormal knee kinematics after TKA which may lead to suboptimal clinical outcomes. Posterior slope of the tibial component may significantly impact the knee kinematics. There is currently no consensus about the most appropriate slope. The goal of the present study was to analyse the impact of different prosthetic slopes on the kinematics of a PCL-preserving TKA, with the hypothesis that posterior slopes can alter the knee kinematics.

A PCL-retaining TKA (Optetrak CR, Exactech, Gainesville, FL) was performed by a board-certified orthopaedic surgeon on one fresh frozen cadaver that had a non arthritic knee with an intact PCL. Intact knee kinematic was assessed using a computer-assisted orthopaedic surgery (CAOS) system (ExactechGPS®, Blue-Ortho, Grenoble, FR) Then, TKA components were implanted using the guidance of the CAOS system. The implanted tibial baseplate was specially designed to allow modifying the posterior slope without repeatedly removing/assembling the tibial insert with varying posterior slopes, avoiding potential damages to the soft-tissue envelope. Knee kinematic was evaluated by performing a passive range of motion 3 separate times at each of the 4 posterior slopes: 10°, 7°, 4° and 1°, and recorded by the navigation system. Femorotibial rotation, antero-posterior (AP) translation and hip-knee-ankle (HKA) angle were plotted with regard to the knee flexion angle.

Tibial slopes of 1° and 4° significantly altered the normal rotational kinematics. Tibial slopes of 7° and 10° led to a kinematics close to the original native knee. All tibial slopes significantly altered the changes in HKA before 90° of knee flexion, without significant difference between the different slopes tested. The magnitude of change was small. There was no significant change in the AP kinematics between native knee and all tested tibial slopes.

Changing the tibial slope significantly impacted the TKA kinematics. However, in the implant studied, only the rotational kinematics were significantly impacted by the change in tibial slope. Tibial slopes of 7° and 10° led rotational kinematics that were closest to that of a normal knee. Alterations in knee kinematics related to changing tibial slope may be related to a change in the PCL strain. However, these results must be confirmed by other tests involving more specimens.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 80 - 80
1 Jan 2016
Jenny J Diesinger Y
Full Access

Objectives

How to position a unicompartmental knee replacement (UKR) remains a matter of debate. We suggest an original technique based on the intra-operative anatomic and dynamic analysis of the operated knee by a navigation system, with a patient-specific reconstruction by the UKR. The goal of the current study was to assess the feasibility of the new technique and its potential pitfalls.

Methods

100 patients were consecutively operated on by implantation of a UKR with help of a well validated, non-image based navigation system, by one single surgeon. There were 41 men and 59 women, with a mean age of 68 years (range, 51 to 82 years). After data registration, the navigation system provided the dynamic measurement of the coronal tibio-femoral mechanical angle in full extension. The reducibility of the deformation was assessed by a manually applied torque in the valgus direction. The patient-specific analysis was based on the following hypotheses: 1) The normal medial laxity in full extension is 2° (after previous studies), 2) there was no abnormal medial laxity (which may be routinely accepted for varus knees) and 3) the total reducibility is the sum of the patient's own medial laxity and of the bone and cartilage loss. We assumed that the optimal correction may be calculated by the angle of maximal reducibility, less 2° to respect the normal medial laxity. The bone resections were performed accordingly to this calculated goal. No ligamentous balance or retension was performed. The fine tuning of the remaining laxity was performed by adapting the height of polyethylene component with a 1 mm step. The final measurements (coronal tibio-femoral angle in full extension and medial laxity in full extension) were performed with the navigation system after the final components fixation. The implantation had to fulfill these two parameters: optimal correction as defined previously, and a 2 ± 1° of medial laxity.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 81 - 81
1 Jan 2016
Jenny J Antoni M Noll E
Full Access

Objectives

The goal of this retrospective study was to compare two different processes of pain control after total knee arthroplasty (TKA): local anesthesia versus femoral nerve block. The tested hypothesis was that the patient's ability to be discharged was obtained sooner with the local anesthesia process.

Methods

110 patients consecutively operated on for TKA by a single surgeon without any selection criterion were included. The study group included 58 patients operated on under general anesthesia with infiltration of the surgical field with local anesthesia. The control group included 52 patients operated on under general anesthesia and continuous femoral nerve block. In the study group, 200 ml of ropivacaïne 5% were injected into the surgical field, and an intra-articular catheter was left to allow continuous infusion of ropivacaïne (20 ml/h during 24 hours). The control group was treated by a femoral nerve block with ropivacaïne during 24 hours. Discharge was considered allowed when the patient was able to walk independently, go upstairs and downstairs independently, when the knee flexed over 90° and if the subjective pain assessment (VAS) was under 3/10.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 79 - 79
1 Jan 2016
Jenny J Diesinger Y
Full Access

Objectives

An optimal reconstruction of the joint anatomy and physiology during revision total knee replacement (RTKR) is technically demanding. The standard navigation systems were developed for primary procedures, and their adaptation to RTKR is difficult. We present a new navigation software dedicated to RTKR. The rationale of this new software was to allow a virtual planning of the joint reconstruction just after removal of the primary prosthesis.

Methods

The new software was developed on the basis of a non-image based navigation system which has been extensively validated for implantation of a primary TKR. Following changes have been implemented: 1) to define and control the vertical level of the joint space on both tibia and femoral side; 2) to measure the tibio-femoral gaps independently in flexion et en extension on both medial and lateral tibio-femoral joints; 3) to virtually plan and control the vertical level and the orientation of the tibia component; 4) to virtually plan and control the sizing and the 3D positioning of the femoral component (figure 1); 5) to virtually plan and control the potential bone resection; 6) to virtually plan and control the potential bone defects and their reconstruction (bone graft or augments) (figure 2); 7) to virtually plan and control the size, the length and the orientation of the stems extensions independently on the femoral and on the tibia side (figure 3).

The validity of the concept has been tested by 20 patients operated on for RTKR for any reason, with a routine reconstruction with a cemented, unconstrained revision implant. The accuracy of the experimental software was assessed 1) during the procedure after implantation of the RTKR by measuring the medial and lateral laxity in full extension and 90° of knee flexion with the navigation system, and 2) on post-operative radiographs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 82 - 82
1 Jan 2016
Jenny J Massin P Barbe B
Full Access

Objectives

The appropriate treatment for chronically infected TKR is controversial. One-stage exchange is believed to be possible only in selected cases, but the respective indications and contra-indications and the criteria of selection are not fully validated. We wanted to test the relevance of the commonly used selection criteria by comparing two groups of patients: the control group operated on with a routine one-stage exchange without selection criteria, and the study group operated on by one stage exchange on selected patients only. We hypothesized that selected one-stage exchange gives fewer failures than routine one-stage exchange procedure.

Methods

We performed a retrospective study of 108 cases selected in a database of 600 patients with an infected total knee arthroplasty. The database resulted from a French multicenter trial of specialized surgeons in reference institutions, including all consecutive cases operated on between 2000 and 2010. There were 64 women and 44 men with a mean age of 69 years. All patients were followed-up for a minimal period of two years or when septic failure occurred. The patients were divided into two groups: patients operated on in a center using a routine one-stage exchange policy, and patients operated on in a center using a selected one-stage exchange policy. Patients were matched in the two groups according to body mass index and the aspect of the wound at the initial examination (one scar, several scars, presence of a fistula). The results were expressed as: free of infection, relapse or persistence of the index infection, occurrence of a new infection. The repartition was compared in the two groups by a Chi² test at a 0.05 level of significance. The cumulative survivorship was plotted with infection recurrence for any reason as the end point.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 2 - 2
1 Oct 2014
Jenny J Diesinger Y
Full Access

Quantification of the anterior and rotational laxity of the knee allows recognising an anterior cruciate ligament (ACL) insufficiency and assessing the severity of the lesion. The new GNRB system has demonstrated an improved accuracy and precision in the assessment of the anterior laxity. However, it is not known if this pre-operative measurement is a good predictor of the intra-operative measurement of the knee laxity, especially in the rotational plane. We tested the following hypotheses: 1) the pre-operative anterior knee laxity measured with the GNRB system is predictive for the intra-operative measurement of the anterior knee laxity by a navigation system, and 2) the pre-operative anterior knee laxity measured with the GNRB system is predictive for the intra-operative measurement of the rotational knee laxity by a navigation system,

40 patients operated on for ACL reconstruction were included. The anterior knee translation was assessed before the operation with the GNRB system with a force of 250 N at 25° of knee flexion. The anterior knee translation and the internal-external range of rotation was measured intra-operatively before and after ACL reconstruction with the navigation system. The correlation between 1) the measurements of the anterior laxity by the GNRB system and the navigation system, and 2) the measurements of the anterior translation by the GNRB system and the rotational knee motion measured by the navigation system, were assessed.

There was a significant difference between the measurements of the mean knee anterior laxity by the GNRB system (9.1 ± 2.9 mm) and by the navigation system (11.3 ± 4.0 mm) (p<0.001). There was no significant correlation between the two techniques (R2 = 0.01). However, a satisfactory agreement between the two techniques was observed (R2 = 0.03), with a systematic bias of −3.3 mm for GNRB measurements in comparison to navigated measurements. There was neither significant correlation nor satisfactory agreement between the two techniques when predicting the rotational motion of the knee.

When used prior to ACL reconstruction, the GNRB system underestimates the anterior laxity of the knee that will be measured during the reconstruction by a navigation system, and does not predict the amount of rotational laxity. It is difficult to predict accurately the anterior and rotational knee laxity by pre-operative measurements.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 4 - 4
1 Oct 2014
Jenny J Diesinger Y Firmbach F
Full Access

Modern total knee replacements aim to reconstruct a physiological kinematic behaviour, and specifically femoral roll-back and automatic tibial rotation. A specific software derived from a clinically used navigation system was developed to allow in vivo registration of the knee kinematics before and after total knee replacement. The study was designed to test for the feasibility of the intra-operative registration of the knee kinematics during standard, navigated total knee replacement.

The software measures the respective movement of the femur and the tibia, and specially antero-posterior translation and tibial rotation during passive knee flexion. Kinematic registration was performed twice during an usual procedure of navigated total knee replacement: 1) Before any bone resection or ligamentous balancing; 2) After fixation of the final implants. 200 cases of total knee replacement have been analysed. Post-operative kinematic was classified as following: 1) Occurrence of a normal femoral roll-back during knee flexion, no roll-back or paradoxical femoral roll-forward. 2) Occurrence of a normal tibial internal rotation during knee flexion, no tibial rotation or paradoxical tibial external rotation. All patients were followed up for a minimal period of 12 months, and reevaluated at the latest follow-up visit for clinical and functional results with completion of the Knee Society Scores.

Recording the kinematic was possible in all cases. The results of both pre-operative and post-operative registrations were analysed on a qualitative manner. The results were close to those already published in both experimental and clinical studies. About femoral roll-back, 54% had a normal femoral roll-back during knee flexion after total knee replacement, 13% had no significant roll-back and 33% had a paradoxical femoral roll-forward. About tibia rotation, 65% had a normal tibia internal rotation during knee flexion, 16% had no significant tibia rotation and 19 had a paradoxical tibia external rotation. The mean Knee Score was 92/100 ± 10 points. There was a significant correlation between the post-operative kinematic behaviour and the Function Score, with better score for the patients having a physiological femoral roll-back and a physiological tibial internal rotation during knee flexion (p<0.01).

Intra-operative analysis of the kinematic of the knee during total knee replacement may offer the chance to modify the kinematic behaviour of the implant and to choose the best fitted constraint to the patient's native knee in order to impact positively the functional result.


To restore a physiologic kinematic is one of the goals of total knee replacement (TKR). This study compared the intra-operative registration of the knee kinematics during standard, navigated TKR performed either with a well validated floating platform design with posterior cruciate (PCL) preservation, or with a newly designed TKR with a rotating platform and PCL substitution. It was hypothesised that this new design will significantly alter the kinematic recorded after TKR implantation in comparison to the conventional design.

A standard navigation software has been modified to allow the intra-operative registration of the knee kinematic during a flexion-extension movement before and after implantation. Kinematic registration was performed twice: 1) before any bone resection or ligamentous balancing; 2) after fixation of the final implants. Post-operative kinematic was classified as following: 1) Occurrence of a normal femoral roll-back during knee flexion, no roll-back or paradoxical femoral roll-forward. 2) Occurrence of a normal tibial internal rotation during knee flexion, no tibial rotation or paradoxical tibial external rotation. 20 patients were operated on with either the PCL preserving or sacrificing designs. The kinematic behaviour was compared on a patient specific basis before and after the TKR.

About femoral roll-back, 54% had a normal femoral roll-back during knee flexion after total knee replacement, 13% had no significant roll-back and 33% had a paradoxical femoral roll-forward. About tibia rotation, 65% had a normal tibia internal rotation during knee flexion, 16% had no significant tibia rotation and 19 had a paradoxical tibia external rotation. There was no difference of repartition between the two designs.

The new software allows actually validating new designs of a TKR in terms of intra-operative kinematic behaviour.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 64 - 64
1 Aug 2013
Jenny J Viau A
Full Access

Introduction

Leg length discrepancy is a significant concern after total hip replacement (THR). We hypothesised that the intra-operative use of a navigation system was able to accurately control the leg length during THR.

Material

50 cases have been prospectively analysed. There were 29 men and 21 women, with a mean age of 66.1 years (range, 50 to 80 years), all operated on for THR for end-stage hip osteoarthritis.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 65 - 65
1 Aug 2013
Jenny J
Full Access

Introduction

An optimal reconstruction of the joint anatomy and physiology during revision total knee replacement (RTKR) is technically demanding. A new software was developed to allow a virtual planning of the joint reconstruction just after removal of the primary prosthesis.

Material

Following changes have been implemented to the standard navigation software: 1) to define and control the vertical level of the joint space on both tibia and femoral side, and to allow performing the potential change decided prior to the revision procedure according to the preoperative imaging planning; 2) to measure the tibio-femoral gaps independently in flexion et en extension on both medial and lateral tibio-femoral joints; 3) to virtually plan and control the vertical level and the orientation of the tibia component; 4) to virtually plan and control the sizing and the 3D positioning of the femoral component; 5) to virtually plan and control the potential bone resection; 6) to virtually plan and control the potential bone defects and their reconstruction (bone graft or augments); 7) to virtually plan and control the size, the length and the orientation of the stems extensions independently on the femoral and on the tibia side.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 205 - 205
1 Mar 2013
Jenny J Wasser L
Full Access

INTRODUCTION

We wanted to assess the possible correlation between the intra-operative kinematics of the knee and the clinical results after total knee replacement (TKR).

MATERIAL

187 cases of TKR implanted with help of a navigation system for end-stage osteoarthritis have been prospectively analyzed. There were 127 women and 60 men, with a mean age of 71.4 years. Indication for TKR was osteoarthritis in 161 cases and inflammatory arthritis in 26 cases.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 206 - 206
1 Mar 2013
Jenny J
Full Access

INTRODUCTION

The magnitude of knee flexion angle is a relevant information during clinical examination of the knee, and this item is a significant part of every knee scoring system. It is generally performed by visual analysis or with manual goniometers, but these techniques may be neither precise nor accurate. More sophisticated techniques are only possible in experimental studies. Smartphone technology might offer a new way to perform this measurement with increased accuracy.

MATERIAL

20 patients operated on for unicompartmental or total knee replacement with help of a navigation system participated to the study. There were 13 women and 7 men with a mean age of 72.1 years.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 86 - 86
1 Mar 2013
Jenny J Miehlke R Saragaglia D
Full Access

INTRODUCTION

Polyethylene wear is one of the reasons for failure of total knee replacement (TKR). There are several reasons for wear, and the femoro-tibial contact area is an important factor. Mobile bearing, highly congruent prostheses might be more resistant to polyethylene wear than fixed bearing, incongruent prostheses. We evaluated the 5- to 8-year experience of three university departments by using an original system with following highlights: implantation with a navigation system, extended congruency up to 90° of flexion, floating polyethylene component with non-limited movements of rotation, antero-posterior translation and medio-lateral translation.

MATERIAL

347 patients have been operated on in the three participating departments with this new prosthesis system between 2001 and 2004, and have been prospectively followed with clinical and radiologic examination with a minimal follow-up time of 5 years. There were 246 women and 101 men, with a mean age of 67 years.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 87 - 87
1 Oct 2012
Jenny J Miehlke R Saragaglia D
Full Access

Polyethylene wear is one of the reasons for failure of total knee replacement (TKR). There are several reasons for wear, and the femoro-tibial contact area is an important factor. Mobile bearing, highly congruent prostheses might be more resistant to polyethylene wear than fixed bearing, incongruent prostheses. We evaluated the five- to eight-year experience of three university departments by using an original system with following highlights: implantation with a navigation system, extended congruency up to 90° of flexion, floating polyethylene component with non-limited movements of rotation, antero-posterior translation and medio-lateral translation.

347 patients have been operated on in the three participating departments with this new prosthesis system between 2001 and 2004, and have been prospectively followed with clinical and radiologic examination with a minimal follow-up time of five years. There were 246 women and 101 men, with a mean age of 67 years.

Clinical and functional results have been analyzed according to the Knee Society scoring system. Accuracy of implantation has been assessed on post-operative long leg antero-posterior and lateral X-rays. Survival rate up to eight years has been calculated according to Kaplan and Meier, with mechanical revision or any revision as end-points.

Complete patient history was obtained by 319 cases (92%). The mean clinical score was 93 points. The mean pain score was 47 points. The mean flexion angle was 118°. The mean functional score was 87 points. An optimal correction of the coronal femoro-tibial axis was obtained in 94% of the cases. Survival rate after eight years was 98.8% for mechanical revisions and 95.5% for all revisions.

We confirmed the influence of the navigation system on the accuracy of implantation. The clinical and functional results after five to eight years are in line with the better results of the current literature after conventional implantation of non-congruent prostheses. The survival rate is comparable to the current standards. The influence of the design on polyethylene wear will need a longer follow-up.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 89 - 89
1 Oct 2012
Jenny J Wasser L
Full Access

We wanted to assess the possible correlation between the intra-operative kinematics of the knee and the clinical results after total knee replacement (TKR).

187 cases of TKR implanted with help of a navigation system for end-stage osteoarthritis have been prospectively analyzed. There were 127 women and 60 men, with a mean age of 71 years. Indication for TKR was osteoarthritis in 161 cases and inflammatory arthritis in 26 cases.

A floating platform, PCL preserving, cemented TKR was implanted in all cases. A non-image based navigation system was used in all cases to help for accuracy of bone resections and ligamentous balancing. The standard navigation system was modified to allow recording the three-dimensional tibio-femoral movement during passive knee flexion during the surgical procedure. Two sets of records have been performed: before any intra-articular procedure and after final implantation. Only antero-posterior femoral translation (in mm) and internal-external femoral rotation (in degrees) have been recorded. Kinematic data have been analyzed in a quantitative manner (total amount of displacement) and in a qualitative manner (restoration of the physiological posterior femoral translation and femoral external rotation during knee flexion). Clinical and functional results have been analysed according to the Knee Society scoring system with a minimal follow-up of one year. Statistical links between kinematic data and Knee Society scores have been analysed with an ANOVA test and a Spearman correlation test at a 0.05 level of significance.

101 knees had a posterior femoral translation during flexion before and after TKR. 18 knees had a paradoxical anterior femoral translation during flexion before and after TKR. 51 knees had the pre-TKR paradoxical anterior femoral translation corrected to posterior femoral translation after TKR. 14 knees had the pre-TKR posterior femoral translation modified to a paradoxical anterior femoral translation after TKR. 91 knees had a femoral external rotation during flexion before and after TKR. 34 knees had a paradoxical femoral internal rotation during flexion before and after TKR. 50 knees had the pre-TKR paradoxical femoral internal rotation corrected to a femoral external rotation after TKR. Nine knees had the pre-TKR femoral external rotation modified to a paradoxical femoral internal rotation after TKR. There was a moderate statistical link between the reconstruction of a physiological kinematics after TKR and the Knee Society scores, with higher scores in the group of physiological kinematics after reconstruction. There was no correlation between the quantitative data and the Knee Society scores.

To record the knee kinematics during TKR is feasible. This information might help the surgeon choosing the optimal reconstruction compromise. However, it is not well defined how to influence final kinematics during knee replacement. The exact influence of the quality of the kinematic reconstruction measured during surgery on the clinical and functional results has to be investigated more extensively.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 80 - 80
1 Sep 2012
Jenny J
Full Access

Surgical navigation in joint replacement has been developed for more than 10 years. After the initial enthusiastic period, it appears that few surgeons have included this technology into their routine practice. The reasons for this backflow are lack of evidence of any clinical superiority for navigation implanted prostheses, higher costs and longer operative time. However, navigation systems have evolved, and might still belong to the future of joint replacement.

Although most studies did not observe clinically relevant differences between navigated and conventional joint replacement, some registry studies identified significant advantages in favor of navigation: less blood loss, less early revision, subtle but relevant functional improvement… If TKR may be more forgiving, there is a trend to use less invasive implants (UKR), which are technically more demanding and may benefit from navigation. Ligamentous balancing may be more accurate and more reproducible with the help of navigation, and in that way patient specific templates may benefit from navigation. New techniques (short stem hip implants, hip resurfacing) have a relevant learning curve which may be fastened with navigation support.

Another key point may be the individual joint reconstruction: anatomy is different from one patient to the other, and navigation may help detecting these subtle differences to adapt a more physiological joint reconstruction, instead reconstructing all joints on the same model.

New navigation systems now available are designed in a more user-friendly style, with more straightforward workflow, and may be adapted to every surgeon's need.

Finally, navigation system may act as documentation and quality control system for health care providers, as well as a very powerful research tool for scientists and manufacturers.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 271 - 271
1 Sep 2012
Jenny J Saussac F Louis P
Full Access

INTRODUCTION

Computer-aided systems have been developed recently in order to improve the precision of implantation of unicompartmental knee replacement (UKR).

Minimal invasive techniques may decrease the surgical trauma related to the prosthesis implantation, but there might be a concern about the potential for a loss of accuracy. Mobile bearing prostheses have been developed to decrease the risk of polyethylene wear, but are technically more demanding. Navigation might help to compensate for these difficulties.

We wanted to combine the theoretical advantages of the three different techniques by developing a navigated, minimal invasive, mobile bearing unicompartmental knee prosthesis.

MATERIAL AND METHODS

160 patients have been operated on at our institution with this system. The 81 patients with more than 2 year follow-up have been re-examined. Complications have been recorded. The clinical results have been analyzed according to the Knee Society Scoring System. The subjective results have been analyzed with the Oxford Knee Questionnaire. The accuracy of implantation has been analyzed on post-operative antero-posterior and lateral long leg X-rays. The 2-year survival rate has been calculated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 46 - 46
1 Jun 2012
Jenny J Schoenahl J Louis P Diesinger Y
Full Access

INTRODUCTION

Computer-aided systems have been developed recently in order to improve the precision of implantation of a total knee replacement (TKR). Several authors demonstrated that the accuracy of implantation of TKR was higher with the help of a navigation system in comparison to the conventional, manual technique. Theoretically, the clinical results and the survival rates should be improved. Our team was one of the first all over the world which decided to use routinely a navigation system for TKR.

Prostheses designed with a mobile bearing polyethylene component allow an increased congruence between femoral and tibial gliding surface, and should decrease the risk of long-term polyethylene wear. We designed a prosthetic system with one of the highest congruence on the current market. These prostheses might be technically more demanding than more conventional designs, and involve specific complications like bearing luxation. Navigation systems might be helpful in this was as well.

In the present study, we wanted to test clinically the theoretic advantages of these three specific points of our system (navigated implantation, mobile bearing and increased congruence) with a five-year clinical and radiological follow-up.

MATERIAL AND METHODS

128 patients were operated on at our Department with this TKR system between 2000, and were contacted for a five-year clinical and radiological follow-up. The clinical and functional results were evaluated according to the Knee Society Scoring System (KSS). The subjective results were analyzed with the Oxford Knee Score. The accuracy of implantation was assessed on post-operative long leg antero-posterior and lateral X-rays. The survival rate after 5 years was calculated according to the Kaplan-Meier technique.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 47 - 47
1 Jun 2012
Jenny J Saussac F Louis P Diesinger Y
Full Access

INTRODUCTION

Computer-aided systems have been developed recently in order to improve the precision of implantation of a total knee replacement (TKR). Several authors demonstrated that the accuracy of implantation of an unicompartmental knee replacement (UKR) was also improved.

Minimal invasive techniques have been developed to decrease the surgical trauma related to the prosthesis implantation. The benefits of minimal-incision surgery might include less surgical dissection, less blood loss and pain, an earlier return to function, a smaller scar, and subsequently lower costs. However, there might be a concern about the potential of minimal invasive techniques for a loss of accuracy. Navigation might help to compensate for these difficulties.

Mobile bearing prostheses have been developed to decrease the risk of polyethylene wear. The benefits might be a better survival and less bone loss during revisions. However, these prosthesis are technically more demanding, and involve the specific risk of bearing luxation. Again, navigation might help to compensate for these difficulties.

MATERIAL AND METHODS

We wanted to combine the theoretical advantages of the three different techniques by developing a navigated, minimal invasive, mobile bearing unicompartmental knee prosthesis. 160 patients have been operated on at our institution with this system. The 81 patients with more than 2 year follow-up have been re-examined. Complications have been recorded. The clinical results have been analyzed according to the Knee Society Scoring System. The subjective results have been analyzed with the Oxford Knee Questionnaire. The accuracy of implantation has been analyzed on post-operative antero-posterior and lateral long leg X-rays. The 2-year survival rate has been calculated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 48 - 48
1 Jun 2012
Jenny J Diesinger Y
Full Access

INTRODUCTION

Revision total knee replacement (TKR) is a challenging procedure, especially because most of the standard bony and ligamentous landmarks used during primary TKR are lost due to the index implantation. However, as for primary TKR, restoration of the joint line, adequate limb axis correction and ligamentous stability are considered critical for the short- and long- term outcome of revision TKR. Navigation system might address this issue.

MATERIAL AND METHODS

We are using an image-free system (ORTHOPILOT TM, AESCULAP, FRG) for routine implantation of primary TKR. The standard software was used for revision TKR. Registration of anatomic and cinematic data was performed with the index implant left in place. The components were then removed. New bone cuts as necessary were performed under the control of the navigation system. The system did not allow navigation for intra-medullary stem extensions and any bone filling which may have been required. This technique was used for 37 patients. The accuracy of implantation was assessed by measuring following angles on the post-operative long-leg radiographs: mechanical femoro-tibial angle, coronal orientation of the femoral component in comparison to the mechanical femoral axis, coronal orientation of the tibial component in comparison to the mechanical tibial axis, sagittal orientation of the tibial component in comparison to the proximal posterior tibial cortex.

Individual analysis was performed as follows: one point was given for each fulfilled item, giving a maximal accuracy note of 4 points. Prosthesis implantation was considered as satisfactory when the accuracy note was 4 (all fulfilled items). The rate of globally satisfactory implanted prostheses and the rate of prostheses implanted within the desired range for each criterion were recorded. The results of the 37 navigated revision TKR were compared to 26 cases of revision TKR performed with conventional intramedullary guiding systems.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 436 - 436
1 Nov 2011
Jenny J
Full Access

Revision total knee replacement (TKR) is a challenging procedure, especially because most of the standard bony and ligamentous landmarks used during primary TKR are lost due to the index implantation. One might also assume that the conventional instruments, which rely on visual or anatomical alignments or intra-or extramedullary rods, are associated with significant higher variation of the leg axis correction, especially in cases with significant bone loss which prevents to control the exact location of the usual, relevant landmarks. Navigation system might address this issue.

We are using an image-free system (ORTHOPILOT TM, AESCULAP, FRG) for routine implantation of primary TKR. The standard software was used for revision TKR. Registration of anatomic and cinematic data was performed with the index implant left in place. The components were then removed. New bone cuts as necessary were performed under the control of the navigation system. The size of the implants and their thickness was chosen after simulation of the residual laxities, and ligament balance was adapted to the simulation results.

The system did not allow navigation for intramedullary stem extensions and any bone filling which may have been required. 60 navigated cases were compared with 30 conventional cases.

We observed a significant improvement of all radiological items by navigated cases. Limb alignment was restored in 88% of the navigated cases and 73% of the conventional cases. The coronal orientation of the femoral component was acceptable in 92% of the navigated cases and 81% of the conventional cases. The coronal orientation of the tibial component was acceptable in 89% of the navigated cases and 73% of the conventional cases.

The sagittal orientation of the tibial component was acceptable in 87% of the navigated cases and 71% of the conventional cases. Overall, 78% of the implants were oriented satisfactorily for the four criteria for navigated cases, and only 58% for conventional cases.

The navigation system enables reaching the implantation goals for implant position in the large majority of cases, with a rate similar to that obtained for primary TKA.

The rate of optimally implanted prosthesis was significantly higher with navigation than with conventional technique. The navigation system is a useful aid for these often difficult operations, where the visual information is often misleading.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 462 - 462
1 Nov 2011
Jenny J Firmbach F
Full Access

Navigation systems have proved to improve the accuracy of the bone resection during total knee replacement (TKR). They might also be helpful to assess intra-operatively the knee kinematics before and after prosthesis implantation.

We are using the OrthoPilot® system (Aesculap, Tuttlingen, FRG) on a routine basis for TKR. The current standard version of the software helps the surgeon orienting the bone resections and allows measuring the ligamentous balancing. This version was modified to allow a continuous tracking of the 3D tibio-femoral movement during passive knee flexion and extension. The kinematics was assessed by measuring the tibial movement in these three planes with the femur as reference.

For the purpose of the study, following data were registered before and after implanting the prosthesis: flexion-extension angle, varus-valgus angle, rotational angle, antero-posterior translation. Additionally, the gap between the contact point of the femoral component and the corresponding point of the tibial resection was measured after prosthesis implantation. Two successive registrations were performed by each of the 100 patients of the study before and after prosthesis implantation. The pre-and post-implantation kinematic curves were respectively compared by each patient to assess reproducibility. The pre-and postimplantation kinematic curves were compared by each patient to assess the modification due to prosthesis implantation. The results were compared to the current available literature.

The kinematic curves were plotted from maximal extension to maximal flexion. The observed 3D kinematics seem to be in agreement with the current literature in both in-vitro and in-vivo studies. We could observe the tibial internal rotation and the femoral roll-back during flexion. Some patients experienced paradoxical movement, both before and after implantation. However the post-implantation kinematics was generally closer to the expected one than the pre-implantation kinematics.

The software has definitely the potential to assess the intra-operative knee kinematics during various surgical procedures. It might help to try several solutions (orientation of the resections, implant combination or design, ligamentous balancing… ) before final implantation, in order to choose the best individual compromise. The actual relevance of such a study remains to be defined. It might be interesting to compare these data with in-vivo kinematic studies by the same patients.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 528 - 528
1 Nov 2011
Jenny J Barbe B
Full Access

Purpose of the study: It has been demonstrated that navigation systems improve the quality of implantation of total knee arthroplasty (TKA). The definitions of the reference alignment for the femur are not however consensual. We wanted to define the different alignments of the femur on the lateral view, including the femoral head and comparing the alignments with those defined by the measured axes during navigated implantation.

Material and methods: We analysed 30 navigated TKA or unicompartmental prosthesis implantations. The following lines were drawn on the pre and postoperative lateral telemetric views: anatomic axis aligned on the anterior cortical of the femur, mechanical alignment n°1 (centre of the femoral head to the most distal point of the Blumensaat line), mechanical alignment n°2 (centre of the femoral head to the junction between the anterior two-thirds and the posterior third of the femoral condyles). The anatomic diaphyseal alignment was taken as the reference and the angles between this reference line and the other lines was measure. In addition, the sagittal orientation of the femoral component measured during the operation by the navigation system in relation to the n°2 mechanical alignment was noted; this orientation was also measured on the postoperative lateral telemetric views in relation to this same mechanical alignment.

Results: The mean difference between the anatomic cortical alignment and the reference was 0.3 (−1 to +). The mean difference between the n°1 mechanical alignment and the reference was −1.1 (−5 to +3). The mean difference between the mechanical alignment n°2 and the reference was 0.8 (−4 to 4). The mean intraoperative sagittal orientation of the femoral component was 0.0 (−2 to 2). The mean postoperative sagittal orientation of the femoral component was 1.1 (−4 to 6).

Discussion: The differences between the orientations of the different sagittal alignments of the femur were minimal. The cortical axis has a smaller variance and could be considered as the most reliable reference, but this alignment does not include the femoral anteversion. The difference between the sagittal orientation of the femoral component as measured by the navigation system and as measured on the postoperative x-rays was also minimal, and probably of no significance clinically.

Conclusion: The choice of the sagittal alignment of the femur is of little importance. The intraoperative navigated measurement of the sagittal orientation of the femoral component is reliable.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 505 - 505
1 Nov 2011
Jenny J Robial N Boéri C
Full Access

Purpose of the study: Leg length discrepancy (LLD) can be a common reason for patient dissatisfaction after implantation of a total hip arthroplasty (THA). The failure rate is non negligible for conventional implantation techniques. Navigation systems might be able to improve precision.

Material and method: We used an imageless navigation system (Orthopilot™, Aesculap, FRG) for routine first-intention THA. LLD was determined on the AP view of the pelvis in the upright position to determine the desired correction. Captors were screwed onto the homolateral iliac crest and femur. The system analysed their respective positions at the beginning of the procedure thus defining the reference length. During implantation, the size and the height of the femoral implant and the length of the prosthetic neck were programmed virtually by the navigation system in order to obtain the desired correction which was then reproduced on the definitive implants. At the end of the operation, the final length of the limb was measured the same way as initially. The result of the correction was measured on the AP view of the pelvis in the upright position under the same conditions as initially. We compared 30 navigated THA with 30 THA implanted with the conventional technique. We analysed the residual length discrepancy and the percentage of the cases where the desired correction was achieved. Student’s t test and the chi-square test were used for the statistical analysis taking p< 0.05 as significant.

Results: Residual length discrepancy was 5 mm for the navigated THA and 9 mm for the conventional THA. The mean difference between the desired correction and the final correction was 2 mm for the navigated THA and 6 mm for the conventional THA. The desired length was obtained in 26 hips with navigated THA and in 17 with conventional THA. Residual LLD > 10mm was observed in 2 navigated THA and 9 conventional THA. All differences were significant.

Discussion: The navigation system used in this study enabled improved quality correction of lower limb length after implantation of a THA. Patient satisfaction should be globally improved.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 508 - 508
1 Nov 2011
Jenny J Ehlinger M Bonnomet F Jaeger J Kempf J
Full Access

Purpose of the study: Revision total knee arthroplasty (rTKA) is becoming a routine procedure. The technical problems are greater than with a first-intention implantation because of the potential malposition of the initial implants, loss of bone stock, and prior ligament injury. It could be hypothesised that as for implantation of a primary TKA, navigation might improve the quality of the implantation.

Material and methods: We used the Orthopilot™ (Aesculap, RFA) navigation system for first-intention TKA. The standard software was used for revisions. The acquisition of the anatomic and kinematic data was performed while the initial implants in situ. The implants were then removed. Any bone recuts required were done under navigation control. The size of the implants and their thickness were determined after digital simulation of residual laxity; ligament balance was adapted from this data. The system does not allow navigation for centromedullary stem extensions nor for filling potential bone defects. Sixty patients underwent the procedure. There was a comparative series of 30 patients who underwent manual conventional revision using an instrumentation guided by the centromedullary femoral and tibial stems. The quality of the implantation was determined by measuring the alignment of the limb and the orientation of the implants on the postoperative x-rays. Outcome was analysed with Student’s t test and the chi-square test with p< 0.05 taken as significant.

Results: There was a significant improvement in quality of the implantation for all radiographic criteria in the navigation group. Limb alignment was restored in 88% of the navigated cases and 73% of the conventional cases. Similar differences were observed for femoral and tibial implant position on the lateral and AP views.

Discussion: The objectives set for implant orientation and ligament balance can be met with the navigation system for the majority of knees, with a rate similar to that achieved with primary implantation. The navigation system is an appreciable aid for these often difficult procedures where visual information can be misleading.

Conclusion: The navigation system used here facilitated revision TKA.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 92 - 92
1 May 2011
Jenny J
Full Access

Introduction: Navigation system might help improving the quality of implantation of a revision total knee replacement (TKR).

Methods: 30 cases of revision TKR were operated on with an image-free system, and matched to 30 cases of conventional revision TKR. Quality of implantation was analyzed in both groups on post-operative long-leg X-rays. Following items were recorded: coronal femoro-tibial angle, coronal and sagittal orientation of femoral and tibial implants. The rate of globally satisfactory implanted prostheses and the rate of prostheses implanted within the desired range for each criterion were recorded in both groups and compared with a Chi2 test and an ANOVA test at a 5% level of significance.

Results: We observed a significant improvement of all radiological items by navigated cases. Limb alignment was restored in 88% of the navigated cases and 73% of the conventional cases. Similar differences were observed for the coronal and sagital orientation of the femoral and tibial implants. Overall, 78% of the implants were oriented satisfactorily for the four criteria for navigated cases, and only 58% for conventional cases.

Discussion: The navigation system enables reaching the implantation goals for implant position in the large majority of cases, with a rate similar to that obtained for primary TKA. The rate of optimally implanted prosthesis was significantly higher with navigation than with conventional technique. The navigation system is a useful aid for these often difficult operations, where the visual information is often misleading.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 92 - 92
1 May 2011
Jenny J
Full Access

Introduction: Data about sagittal orientation of the femoral component of a total knee replacement (TKR) are scarce, mainly because the definition of the femur axes on the lateral plane is not fully validated.

Methods: We analyzed 60 patients scheduled for TKR. Following axes were drawn on pre-operative long leg lateral X-rays: distal anterior cortex axis, anatomic diaphyseal axis, and three different mechanical axes from the center of the femoral head: #1 to the lowest point of the Blumensaat line, #2 to the midportion of the femoral condyles, #3 to the junction between the anterior two-third and the posterior third of the femoral condyles. The cortical axis was considered as the reference, and the angles between this reference and the other axes were recorded (more fiexion was considered positive).

Results: The mean orientation of the diaphyseal axis and the reference was +0.6°±3° (range, −1° to +3°). The mean orientation of the mechanical axis 1 was −0.8°±2.1° (range, −5° to +4°). The mean orientation of the mechanical axis 2 was −0.6°±2.1° (range, −5° to +4°). The mean orientation of the mechanical axis 3 was +0.8°±2.1° (range, −3° to +5°).

Discussion: There were few differences between the orientation of the different axes of the femur on the lateral view. The cortical axis has the lowest variance and may be the more reliable to document the femoral orientation on the lateral view. However this axis does not take into account the anteversion of the femoral neck.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 538 - 538
1 Oct 2010
Jenny J Boeri C Ciobanu E
Full Access

We are using a non image based navigation system on a routine basis for unicompartmental knee replacement (UKR). We prospectively studied 60 patients who underwent navigated minimally invasive UKR for primary medial osteoarthritis at our hospital between October 2005 and October 2006. We established a navigated control group of 60 patients who underwent conventional implantation of a UKA at our hospital between April 2004 and September 2005. There were 42 male and 78 female patients with a mean age of 65 years (range, 44–87 years). There were no differences in all preoperative parameters between the two groups.

The accuracy of implant positioning was determined using predischarge standard anteroposterior and lateral radiographs. The following angles were measured: femorotibial angle, coronal and sagittal orientation of the femoral component, coronal and sagittal orientation of the tibial component. When the measured angle was in the expected range, one point was given. The accuracy was defined as the sum of the points given for each angle, with a maximum of five points (all items fulfilled) and a minimum of 0 point (no item fulfilled). Our primary criterion was the radiographic accuracy index on the postoperative radiograph evaluation. All other items were studied as secondary criteria.

The mean accuracy index was similar in the two groups: 4.1 ± 0.8 in the study group and 4.2 ± 1.2 in the control group. 36 patients (60%) in the control group and 37 patients (62%) in the study group had the maximum accuracy index of five points. All measured angles were similar in the two groups. There were no differences between the percentages of patients in the two groups achieving the desired implant positions. Mean operating time was similar in the two groups. There were no intraoperative complications in either group. The groups had similar major postoperative complication rates during hospital stay (3% for both).

The used navigation system is based on an anatomic and kinematic analysis of the knee joint during the implantation. The modification of the existing software for minimal invasive approach has been successful. It enhances the quality of implantation of the prosthetic components and avoids the inconvenient of a smaller incision with potential less optimal visualization of the intra-articular reference points. However, all centers observed a significant learning curve of the procedure, with a significant additional operative time during the first implantations. The postoperative rehabilitation was actually easier and faster, despite the additional percutaneous fixation of the navigation device. This system has the potential to allow the combination of the high accuracy of a navigation system and the low invasiveness of a small skin incision and joint opening.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 536 - 536
1 Oct 2010
Giurea A Holinka J Jenny J Kotz R Kubista B Lass R Miehlke R Pfeiffer M
Full Access

Introduction: Total knee arthroplasty in obese patients remains a challenge to most surgeons. Surgical complication rates as well as perioperative morbidity are higher than total knee arthroplasty in the nonobese. The purpose of this paper is to review our experience with total knee arthroplasty in superobese patients (BMI> 50).

Methods: From 1998–2005, 84 patients underwent 148 knee arthroplasties. Sixty-four patients underwent simultaneous bilateral total knee arthroplasties and 20 patients underwent unilateral knee arthroplasties. They were compared with similar group of nonobese patients who underwent knee arthroplasties during the same time period. All patients received combined regional and general anesthesia.

Results: Mean follow-up was 3.8 years (2–7). Knee society scores improved by 36 points in the superobese (pre-op 47 to 83 post-op) and by 45 points in the non-obese (pre-op 47 to 93 post-op) (p< .05). There was a greater incidence of complications in the superobese group, namely superficial wound infections and deep vein thrombosis. There was late loosening in three tibial components and instability in two patients that required revision in the superobese group. No reoperations in the nonobese group.

Conclusion: Although total knee arthroplasty may be safely performed in the superobese, it may be complicated by infection, loosening, instability, and lower knee scores.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 173 - 173
1 Mar 2010
Jenny J Boeri C Diesinger Y Ciobanu E
Full Access

Revision total knee replacement (TKR) is a challenging procedure, especially because most of the standard bony and ligamentous landmarks used during primary TKR are lost due to the index implantation. However, as for primary TKR, restoration of the joint line, adequate limb axis correction and ligamentous stability are considered critical for the short- and long- term outcome of revision TKR. There is no available data about the range of tolerable leg alignment after revision TKR. However, it is logical to assume that the same range than after primary TKR might be accepted, that is ± 3° off the neutral alignment. One might also assume that the conventional instruments, which rely on visual or anatomical alignments or intra- or extra-medullary rods, are associated with significant higher variation of the leg axis correction, especially in cases with significant bone loss which prevents to control the exact location of the usual, relevant landmarks. Navigation system might address this issue.

We used an image-free system (ORTHOPILOT TM, AESCULAP, FRG) for routine implantation of primary TKR. The standard software was used for revision TKR. Registration of anatomic and cinematic data was performed with the index implant left in place. The components were then removed. New bone cuts as necessary were performed under the control of the navigation system. The size of the implants and their thickness was chosen after simulation of the residual laxities, and ligament balance was adapted to the simulation results. The system did not allow navigation for intra-medullary stem extensions and any bone filling which may have been required. This technique was used for 54 patients. The accuracy of implantation was assessed by measuring following angles on the post-operative long-leg radiographs: mechanical femoro-tibial angle (normal = 0°, varus deformation was described with a positive angle); coronal orientation of the femoral component in comparison to the mechanical femoral axis (normal = 90°, varus deformation was described with an angle < 90°); coronal orientation of the tibial component in comparison to the mechanical tibial axis (normal = 90°, varus deformation was described with an angle < 90°); sagittal orientation of the tibial component in comparison to the proximal posterior tibial cortex (normal = 90°, flexion deformation was described with angle < 90°).

Individual analysis was performed as follows: one point was given for each fulfilled item, giving a maximal accuracy note of 4 points. Prosthesis implantation was considered as satisfactory when the accuracy note was 4 (all fulfilled items). The rate of globally satisfactory implanted prostheses and the rate of prostheses implanted within the desired range for each criterion were recorded.

Limb alignment was restored in 88%. The coronal orientation of the femoral component was acceptable in 92% of the cases. The coronal orientation of the tibial component was acceptable in 89% of the cases. The sagittal orientation of the tibial component was acceptable in 87% of the cases. Overall, 78% of the implants were oriented satisfactorily for the four criteria.

The navigation system enables reaching the implantation objectives for implant position and ligament balance in the large majority of cases, with a rate similar to that obtained for primary TKA. The navigation system is a useful aid for these often difficult operations, where the visual information is often misleading.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 172 - 172
1 Mar 2010
Jenny J Diesinger Y Boeri C Ciobanu E
Full Access

Navigation systems are able to measure very accurately the movement of bones, and consequently the knee laxity, which is a movement of the tibia under the femur. These systems might help measuring the knee laxity during the implantation of a total (TKR) or a unicompartmental (UKR) knee replacement.

20 patients operated on for TKR (13 cases) or UKR (7 cases) because of primary varus osteoarthritis have been analyzed. Pre-operative examination involved varus and valgus stress X-rays at 0 and 90° of knee flexion. The intra-operative medial and lateral laxity was measured with the navigation system at the beginning of the procedure and after prosthetic implantation. Varus and valgus stress X-rays were repeated after 6 weeks. X-ray and navigated measurements before and after knee replacement were compared with a paired Wilcoxon test at a 0.05 level of significance.

The mean pre-operative medial laxity in extension was 2.3° (SD 2.3°). The mean pre-operative lateral laxity in extension was 5.6° (SD 5.1°). The mean pre-operative medial laxity in flexion was 2.2° (SD 1.9°). The mean pre-operative lateral laxity in flexion was 6.7° (SD 6.0°). The mean intra-operative medial laxity in extension at the beginning of the procedure was 3.6° (SD 1.7°). The mean intra-operative lateral laxity in extension at the beginning of the procedure was 3.0° (SD 1.3°). The mean intra-operative medial laxity in flexion at the beginning of the procedure was 1.9° (SD 2.6°). The mean intra-operative lateral laxity in flexion at the beginning of the procedure was 3.5° (SD 2.7°). The mean intra-operative medial laxity in extension after implantation was 2.1° (SD 0.9°). The mean intra-operative lateral laxity in extension after implantation was 1.9° (SD 1.1°). The mean intra-operative medial laxity in flexion after implantation was 1.9° (SD 2.5°). The mean intra-operative lateral laxity in flexion after implantation was 3.0° (SD 2.8°). The mean post-operative medial laxity in extension was 2.4° (SD 1.1°). The mean post-operative lateral laxity in extension was 2.0° (SD 1.7°). The mean post-operative medial laxity in flexion was 4.4° (SD 3.3°). The mean post-operative lateral laxity in flexion was 4.7° (SD 3.2°).

There was a significant difference between navigated and radiographic measurements for the pre-operative medial laxity in extension (mean = 1.4° – p = 0.005), the pre-operative lateral laxity in extension (mean = 2.6° – p = 0.01), the pre-operative lateral laxity in flexion (mean = 3.3° – p = 0.005). There was no significant difference between navigated and radiographic measurements for the pre-operative medial laxity in flexion (mean = 0.3° – p = 0.63). There was a significant difference between navigated and radiographic measurements for the postoperative medial laxity in flexion (mean = 2.5° – p = 0.004). There was no significant difference between navigated and radiographic measurements for the postoperative medial laxity in extension (mean = 0.3° – p = 0.30), the post-operative lateral laxity in extension (mean = 0.2° – p = 0.76), the post-operative lateral laxity in flexion (mean = 1.7° – p = 0.06). These differences were less than 2 degrees in most of the cases, and then considered as clinically irrelevant.

The navigation system used allowed measuring the medial and lateral laxity before and after TKR. This measurement was significantly different from the radiographic measurement by stress X-rays for pre-operative laxity, but not statistically different from the radiographic measurement by stress X-rays for post-operative laxity. The differences were mostly considered as clinically irrelevant. The navigated measurement of the knee laxity can be considered as accurate. The navigated measurement is valuable information for balancing the knee during TKR. The reproducibility of this balancing might be improved due to a more objective assessment.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 391 - 391
1 Sep 2009
Jenny J Boeri C Diesinger Y Ciobanu E
Full Access

Revision TKR is a challenging procedure, especially because most of the standard bony and ligamentous landmarks are lost due to the primary implantation. However, as for primary TKR, restoration of the joint line, adequate limb axis correction and ligamentous stability are considered critical for the short- and long-term outcome of revision TKR. There is no available data about the range of tolerable leg alignment after revision TKR. However, it is logical to assume that the same range than after primary TKR might be accepted, that is ± 3° off the neutral alignment. One might also assume that the conventional instruments, which rely on visual or anatomical alignments or intra- or extramedullary rods, are associated with significant higher variation of the leg axis correction.

We used an image-free system (ORTHOPILOT TM, AESCULAP, FRG) for routine implantation of primary TKA. The standard software was used for revision TKA. Registration of anatomic and kinematic data was performed with the index implant left in place. The components were then removed. New bone cuts as necessary were performed under the control of the navigation system. The size of the implants and their thickness was chosen after simulation of the residual laxities, and ligament balance was adapted to the simulation results. The system did not allow navigation for centromedullary stem extension and any bone filling which may have been required. This technique was used for 54 patients. The accuracy of implantation was assessed by measuring the limb alignment and orientation of the implants on the post-operative radiographs.

Limb alignment was restored in 88%. The coronal orientation of the femoral component was acceptable in 92% of the cases. The coronal orientation of the tibial component was acceptable in 89% of the cases. The sagittal orientation of the tibial component was acceptable in 87% of the cases. Overall, 78% of the implants were oriented satisfactorily for the five criteria.

The navigation system enables reaching the implantation objectives for implant position and ligament balance in the large majority of cases, with a rate similar to that obtained for primary TKA. The navigation system is a useful aid for these often difficult operations, where the visual information is often misleading. The navigation system used enables facilitated revision TKA.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 391 - 392
1 Sep 2009
Jenny J Ciobanu E Boeri C
Full Access

Anterior cruciate ligament (ACL) reconstruction allows overall good results, but there is still a significant rate of failure. It is well accepted that the main reason for ACL reconstruction failure is a misplacement of tibial or femoral tunnels. Conventional techniques rely mainly on surgical skill for intra-operative tunnel placement. It has been demonstrated that, even by experienced surgeons, there was a significant variation in the accuracy of tunnel placement with conventional techniques. Navigation systems might enhance the accuracy of ACL replacement.

10 cadaver knees with intact soft-tissue and without any intra-articular abnormalities were studied. We used a non image based navigation system (OrthoPilot ®, Aesculap, Tuttlingen, FRG). Localizers were fixed on bicortical screws on the distal femur and on the proximal tibia. Both kinematic and anatomic registration of the knee joint were performed by moving the knee joint in flexion-extension and palpating relevant intra- and extra-articular landmarks with a navigated stylus. The most anterior, posterior, medial and lateral point of both tibial and femoral attachment of the ACL were marked with metallic pins. The navigated stylus was positioned on these points, and the system recorded its position in comparison to the bone contours. Subsequently, we performed conventional plain AP and lateral X-rays and a CT-scan, and measured the position of the pins in comparison to the bone contours. Finally, all measurements were made again with a caliper after disarticulating the knee joint. We calculated the center of the footprint as the mid-point between the four pins of both tibial and femoral attachment for each measurement technique. All measurements were expressed as percentages of the bone size to compensate for the different sizes.

There were no significant difference in the paired measurements of the location of the ACL footprints on both femur and tibia between anatomic, radiographic, CT-scan and navigated measurements. There was a significant correlation between the paired measurements of the location of the ACL footprints on both femur and tibia with either measurement techniques.

Anatomic measurement is the gold standard experimental technique for the positioning of the ACL foot-print, and CT-scan measurement is currently the gold standard technique in clinical situation. According to this reference, the position of ACL attachments on the tibia and on the femur can be accurately defined by the navigation system. Intra-operative measurement of the location of the bone tunnels during ACL replacement with this navigation system should be accurate as well.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 391 - 391
1 Sep 2009
Jenny J Ciobanu E Boeri C
Full Access

Unicompartmental knee replacement (UKR) is accepted as a valuable treatment for isolated medial knee osteoarthritis. Minimal invasive implantation might be associated with an earlier hospital discharge and a faster rehabilitation. However these techniques might decrease the accuracy of implantation, and it seems logical to combine minimal invasive techniques with navigation systems to address this issue.

The authors are using a non image based navigation system (ORTHOPILOT , AESCULAP, FRG) on a routine basis for UKR. We prospectively studied 60 patients who underwent navigated minimally invasive UKR for primary medial osteoarthritis at our hospital between October 2005 and October 2006. We established a navigated control group of 60 patients who underwent conventional implantation of a UKA at our hospital between April 2004 and September 2005. There were 42 male and 78 female patients with a mean age of 65 years (range, 44–87 years). There were no differences in all preoperative parameters between the two groups.

The accuracy of implant positioning was determined using predischarge standard anteroposterior and lateral radiographs. The following angles were measured: femorotibial angle, coronal and sagittal orientation of the femoral component, coronal and sagittal orientation of the tibial component. When the measured angle was in the expected range, one point was given. The accuracy was defined as the sum of the points given for each angle, with a maximum of five points (all items fulfilled) and a minimum of 0 point (no item fulfilled). Our primary criterion was the radiographic accuracy index on the postoperative radiograph evaluation. All other items were studied as secondary criteria.

The mean accuracy index was similar in the two groups: 4.1 ± 0.8 in the study group and 4.2 ± 1.2 in the control group. 36 patients (60%) in the control group and 37 patients (62%) in the study group had the maximum accuracy index of five points. All measured angles were similar in the two groups. There were no differences between the percentages of patients in the two groups achieving the desired implant positions. Mean operating time was similar in the two groups. There were no intraoperative complications in either group. The groups had similar major postoperative complication rates during hospital stay (3% for both).

The used navigation system is based on an anatomic and kinematic analysis of the knee joint during the implantation. The modification of the existing software for minimal invasive approach has been successful. It enhances the quality of implantation of the prosthetic components and avoids the inconvenient of a smaller incision with potential less optimal visualization of the intra-articular reference points. However, all centers observed a significant learning curve of the procedure, with a significant additional operative time during the first implantations. The postoperative rehabilitation was actually easier and faster, despite the additional percutaneous fixation of the navigation device. This system has the potential to allow the combination of the high accuracy of a navigation system and the low invasiveness of a small skin incision and joint opening.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 390 - 391
1 Sep 2009
Jenny J Miehlke R Giurea A
Full Access

Accuracy of implantation is an accepted prognostic factor for the long term survival of total knee replacement (TKR). The use of navigation demonstrated a significant higher accuracy of implant orientation in comparison to conventional methods. However, these systems are often thought to be technically demanding, to increase operating time and to involve a long learning curve. We performed a prospective, multicenter study to compare the accuracy of implantation of a TKR measured on post-operative X-rays in experienced and less experienced centers.

All centers used the same navigation system (Ortho-Pilot ®, Asculap, Tuttlingen, FRG): 4 had already a significant experience with it (group A – 182 cases), 9 centers were considered as beginners with less than 10 cases performed prior to the study (group B – 221 cases). Accuracy of implantation was measured on post-operative antero-posterior and lateral long leg X-rays with five items: mechanical femoro-tibial angle, coronal orientation of the femoral component, sagittal orientation of the femoral component, coronal orientation of the tibial component, sagittal orientation of the tibial component.

When the measured angle was in the expected range, one point was given. The accuracy note was defined as the sum of all points given for each patient, with a maximum of 5 points (all items fulfilled) and a minimum of 0 point (no item fulfilled). The mean accuracy note was compared in the two groups by a Student t-test at a 0.05 level of significance. Power of the study was 0.80.

There were no significant differences in pre-operative parameters between the two groups, except for the clinical KSS. The mean operative time was significantly longer in group B than in group A (110 minutes vs 90 minutes, p=0.01). However this difference occurred mainly during the first twenty cases in the beginner centres where we observed a clear tendency to achieve the same operative time as the experienced centres at the end of the study. The mean accuracy note was 4.3 ± 0.8 (range, 1 to 5) in the control group and 4.3 ± 0.9 (range, 1 to 5) in the study group (p > 0.05). The power of the study to detect a 0.25 point difference in the post-operative accuracy note was retrospectively calculated to be 0.80. There were no significant differences between the two groups for all individual radiographic items.

This study is, to our knowledge, the first one which investigates the learning curve of navigated TKR The used navigation system allowed a very accurate implantation of a TKR in both experienced and less experienced centers. There was no detectable learning curve with respect to accuracy of TKR implantation, clinical outcome and complication rate. The duration of the learning curve when considering the operating time was 30 cases.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 286 - 286
1 Jul 2008
BOÉRI C JENNY J
Full Access

Purpose of the study: Navigation systems have proven efficacy for the implantation of unicompartmental knee prostheses. Minimally invasive methods, which limit access to non-operated compartments, might compromise system accuracy.

Material and methods: A standard navigation software was used for kinematic acquisition of the lower limb and to acquire anatomic landmarks for both femorotibial compartments. A modified version of the navigation software designed for minimally invasive surgery replaed palpation of the anatomic landmarks of the non-operated compartment by a computation method based on other data. Three groups of patients were analyzed. Group 1 included 64 patients who underwent minimally invasive surgery for implantation of a medial unicompartmental prosthesis. Group B included 60 patients selected randomly among 140 cases of medial unicompartmental prosthesis patients treated with the standard navigation technique. Group C included 30 patients selected randomly among 180 patients who underwent total knee arthroplasty with the standard navigation system. The quality of the implantation was assessed on the postoperative ap and lateral views by comparing five criteria describing the desired prosthetic alignment. The number of criteria describing correct alignment was noted for each patient, thus yielding a quality score from 0 to 5. ANOVA was used to compare the mean scores of the three groups using Boneffini-Dunn correction at the 5% risk level.

Results: The mean quality score was 3.5±1.2 for group A, 4.5±0.8 for group B and 4.2±1.0 for grup C (p< 0.001). Ther was no significant difference between groups B and C (p=0.24). The quality score was significantly lower in group A (A versus B: p=0.015; A versus C: p< 0.001).

Discussion: The minimally invasive approach is proposed to enable more rapid functional recovery after implantation of a unicompartmental knee prosthesis. The long-term outcome however depends on the quality of the implantation. The quality of the implantation with a minimally invasive method should thus be equivalent to that achieved with the standard method. Conventional minimally invasive methods are more difficult. Navigation could be expected to overcome this difficulty without sacrificing implantation quality. However, the version used here did no enable an implantation equal to the quality achieved with the standard navigation system.

Conclusion: The standard navigation system for the conventional access remains the gold standard for implantation quality. Changes resulting from a less invasive approach should be validated before routine use.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 286 - 286
1 Jul 2008
JENNY J BOÉRI C
Full Access

Purpose of the study: Navigation systems have proven their capacity to improve the quuality of total knee arthroplasty (TKA) implantation. The navigation system coud also be used to record knee kinematics intraoperatively.

Material and methods: Twenty TKA implantations were studied. The series included six males and 14 females, mean age 71 years (range 63–78 years). All underwent surgery for overall osteoarthritis. A TKA with a mobile plateau was implanted with preservation of the posterior cruciate ligament. The OrthoPilot® imageless navigation system (Aesculap, Tuttlingen, German) was used. The software was modified to enable recording the relative movement of the femur in relation to the tibia during flexion-extension movements. Infrared locators were fixed on the lower part of the femur and the proximal part of the tibia. After kinematic and anatomic acquisition of conventional navigation data, the kinematic recordings were made during passive flexion-extension before performing any procedures on the bones. The system recorded femur rotation in relation to the tibia in the frontal plane (varus-valgus), in the sagittal plane (flexion-extension), and in the horizontal plane (internal-external rotation) as well as anteroposterior translation of the femur on the tibia. The prosthesis was implanted using the conventional navigation technique. After implantation, the same kinematic recordings were repeated. Each measurement was taken in duplicate to study reproducibility in the same patient. Pre- and postoperative kinematic recordings in the same patient were compared to obtain objective evidence of changes induced by prosthesis implantation. The pre- and postoperative results were compared with those reported to date in the literature.

Results: The recorded kinematic curves, both before and after TKA implantation, were coherent with generally accepted values, particularly for rotation and antero-posterior translation. Paradoxical kinematic recordings were noted after implantation. There was no significant difference between the two recordings in the same patient.

Discussion: The software enables a reliable study of knee kinematics before and after TKA implantation. This could be useful to test new prosthetic solutions, but also to choose for a given patient, the best kinematic compromise. It would be interesting to compare these results with data on in vivo kinematic recordings made in the same patients.

Conclusion: Intraoperative kinematic analysis is a research tool at the present time, but could be useful to improve the quality of TKA implantations.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 285 - 285
1 Jul 2008
JENNY J MIEHLKE RK GIUREA A
Full Access

Purpose of the study: Navigation systems have proven efficacy for implantation of total knee arthroplasty (TKA). Navigations have been accused of being complex, requiring a long learning curve. We compared the results obtained with the same navigation system in centers with experienced operators and centers with new operators.

Material and methods: Thirteen European centers participated in this prospective consecutive study. Inclusion criteria was indication for a TKA using a gliding prostheis with preservation of the posterior cruciate ligament. Four experienced cents(group A) with a mean experience of four years, and nine new centers (group B) with no prior experience participated in the study. The study concerned 403 TKA (182 in group A and 221 in group B). The main indications were primarily lateralized osteoarthritis. The navigation system was an imageless system based on intaoperative kinematic anatomic and kinematic analysis. A mobile plateau prosthesis was inserted. The following items were compared between the two groups: overall operative time and its variation over time, postoperative HKA, orientation of the femoral and tibial components in the ap and lateral views, complications and revisions.

Results: No significant difference was observed between the two groups for the preoperative items so comparison between the groups was licit. Correction of the frontal mechanical axis was satisfactory in 90% of patients in group A and 88% in group B (p> 0.05). There was no difference between the groups in quality of implantation for each prosthetic element on the ap and lateral views. There was no difference for rate of complications or reoperations. Longer operative time in group B disappeared after 15 implantations.

Discussion: The results from centers using navigation systems for prosthetic implantations shows that the performance in centers starting use is the same as in experienced centers. The only difference is an operative time slightly longer for the first 15 cases.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 169 - 169
1 Mar 2008
JENNY J BOERI C
Full Access

Introduction: The accuracy of implantation is an accepted prognostic factor for the long term survival of a unicompartmental knee prosthesis (UKP). Minimal invasive technique is recommended for faster post-operative recovery. We developed an adaptation of a non image based system for either conventional or minimal invasive UKP implantation. We hypothesized that the used non image based navigation system will allow to place a UKP in the same position for both conventional and minimal-invasive approach.

Methods: 20 patients were operated on with this experimental minimal invasive navigated technique (group A) and compared to a group of 20 cases operated with the conventional navigated technique (group B), matched to the study group according to age, gender andseverity of the coronal deformation. Coronal mechanical femorotibial angle and coronal and sagittal orientation of the components were measured on post-operative antero-posterior and lateral long leg X-rays. The rate of satisfactory implanted prostheses was compared in both groups with a Chi-square test with a 0.05 limit of significance.

There was no significant difference in the pre-operative data between both groups. The post-operative coronal group A and 17 cases in group B. The prosthesis was optimally implanted in 17 cases in group A and 18 cases in group B. No difference was statistically significant.

Discussion-Conclusion: The used navigation system allowed a very precise implantation of a UKP for both conventional and minimal invasive navigated technique.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 136 - 136
1 Apr 2005
Jenny J Boéri C
Full Access

Purpose: Implantation quality is an important prognostic factor for long-term outcome of unicompartmental knee prostheses. Minimally invasive techniques allow more rapid rehabilitation but at the price of potentially diminished implantation quality. Navigation systems have been developed to overcome this problem.

Material and methods: We analysed a preliminary series of 20 patients (group A) whose unicompartmental medial femorotibial prosthesis (Search(r), Aesculap, Tuttlingen, Germany) was implanted with the CT-free Orthopilot(r) system (Aesculap, Tuttlingen, Germany). This system uses intra-operative kinematic and anatomic analysis to define the mechanical axes of the femur and tibia in space. The femoral and tibial cut lines are aligned on these axes. This series was compared with a retrospective historical series (group B) of 60 knees with the same prostheses implanted with the same navigation system but with a conventional approach requiring patellofemoral subluxation. Implantation quality was measured using the following angles: AP mechanical femorotibial angle, orientation of the tibial and femoral prostheses (AP and lateral), vertical level of the prosthetic joint space in relation to the preserved joint space.

Results: The AP mechanical femorotibial angle was in the desired range in 16 knees in group A (80%) and in 48 in group B (80%). The femoral component exhibited optimal position in 18 knees in group A (90%) and in 54 in group B (90%). The tibial component exhibited optimal position in 17 knees in group A (85%) and in 53 in group B (88%). Thirteen prostheses in group A (65%) and 37 in group B (62%) were implanted optimally using the studied criteria. The length of the incision varied from 7 to 10 cm in group A. There was no significant difference.

Discussion: This navigation system allows very precise implantation of the medial unicompartmental knee prosthesis, both with the conventional technique and the minimally invasive technique. Use of the minimally invasive technique does not decrease the radiographic quality of the implantation in comparison with the conventional navigation technique. This technique could become the gold standard for implantation of unicompartmental knee prostheses.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 98 - 98
1 Apr 2005
Jenny J Piriou P Lortat-Jacob A Vielpeau C
Full Access

Purpose: We reviewed retrospectively 349 cases of infected total hip arthroplasty treated by prosthesis replacement. The surgical strategy, 127 single-stage procedures and 222 two-stage procedures, was determined by the surgeon on a case by case basis.

Material and methods: At least one positive sample during the clinical history was required for inclusion in the series. Results of all bacteriological samples collected pre- and intra-operatively were noted. Samples were considered reliable if obtained from a deep site (puncture, biopsy, intraoperative specimen) and non-reliable if obtained from any other site. We studied the agreement between preoperative and intraoperative samples, taking the intraoperative samples as the reference, in order to determine the effect of complete preoperative knowledge of the causal germ on the outcome of infection treatment at last follow-up.

Results: For single-stage replacement procedures, preoperative samples were reliable in 74 cases (58%) and non reliable in seven (6%); they were sterile or absent in 46 cases (36%). Intra-operative samples were positive in 103 cases (81%). Agreement between the preoperative and intraoperative samples was observed in 48 cases (38%). The rate of success was not different if the surgeon had or did not have reliable knowledge of the causal germ(s) preoperatively: successful treatment in 66 cases (89%) with knowledge and successful in 46 cases (87%) without knowledge. For two-stage procedures, preoperative samples were reliable in 155 cases (70%) and non-reliable in 15 (7%); they were sterile or absent in 52 cases (23%). Intraoperative samples were positive in 178 cases (80%). Agreement between preoperative and intraoperative samples was observed in 107 cases (48%). The rate of success was not different if the surgeon had or did not have reliable knowledge of the causal germ(s) preoperatively: successful treatment in 133 cases (86%) with knowledge and successful treatment in 56 cases (84%) without knowledge.

Conclusion: Reliable preoperative knowledge of the causal germ(s) did not affect the rate of success for single-stage or two-stage total hip arthroplasty replacement procedures. These findings do not corroborate the notion that it is absolutely necessary to recognise the germ(s) causing the infection before undertaking a single-stage replacement procedure.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 227 - 227
1 Mar 2004
Miehlke R Kohler S Kiefer H Jenny J Konermann W Clemens U
Full Access

Background: The aim of introduction of navigation in knee arthroplasty was to further contribute to precision of endoprosthetic alignment.

Methods and material: A multicentre comparative study was conducted including 821 patients. The SEARCH knee system was used throughout the series. 555 TKA’s were implanted with the use of a navigation system (OrthoPilot) and 266 cases were operated using manual instrumentation. Alignment was radiographically evaluated at the three months follow-up with respect to mechanical axis and femoral and tibial axes using one-leg stance x-rays and standardized lateral radiographs.

Results: The summarized results of the series are shown in the table below. The chi-square test was applied for the statistical analysis.

Conclusions: Endoprosthetic alignment using the navigation system was superior to manual implantation technique on the average with respect to all parameters. Results were more consistent on the tibial side. The navigation system proved to be reliable. The overall results justify the further use and development of navigation tools in knee arthroplasty.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 54 - 54
1 Jan 2004
Jenny J Boéri C
Full Access

Purpose: The design of the contact surfaces of total knee prostheses is a recognised factor affecting polyethylene wear and thus prosthesis survival. Flat-on-flat prostheses have a limited surface area of contact and are thought to favour polyethylene wear. They are not currently recommended for implantation. Nevertheless, several series have reported similar survival with other more congruent prostheses. We studied a series followed for eight years.

Material and methods: We implanted 223 flat-on-flat design total knee prostheses between 1992 and 1996 (Search®, Aesculap, Chaumont). All patients were followed prospectively and seen at regular intervals for physical examination and x-rays. We noted any intervention for implant revision and recorded time to any such procedures as well as the underlying cause. Kaplan-Meier survival curves were plotted taking revision for any cause other than infection as the endpoint.

Results: Ninety-four percent of the patients were reexamined or questioned by phone for this study conducted during 2001. Six percent of the patients were lost to follow-up after a mean 24 months. Seventy-four percent of the prostheses were still in situ at the time of this study at a mean 78 months follow-up. Ten percent of the patients died with their initial implant in place at a mean 50 months. Ten percent of the patients underwent revision surgery at a mean 37 months, half of them for infection and one quarter for a mechanical cause. The overall rate of revision at eight years was 11%; The rate of revision, infection excluded, at eight years was 6%.

Discussion: Survival of this prosthesis in non-infected patients is similar to that of other more congruent implants. This study confirms earlier clinical findings.The undesirable effect of the linear contact surfaces is proven in the laboratory but must not be considered to be automatically transferable to the clinical level. Polyethylene wear is a multifactorial phenomenon which cannot be reduced to a simple question of prosthesis design.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 32 - 33
1 Jan 2004
Boeri G Jenny J Dosch J Dupuis M Moussaoui A Mairot F
Full Access

Purpose: According to the Ottawa rules, x-rays are not needed after knee trauma unless one or more of the following clinical criteria are present: age over 55 years, pain at palpation of the head of the fibula, pain at palpation of the anterior aspect of the patella, impossible knee flexion beyond 90°, inability to walk four steps immediately after trauma and at the emergency consultation. We conducted a prospective study in a consecutive series of patients to check the validity of this rule in daily practice.

Materials and methods: From December 2001 to January 2002, we included all patients consulting in an emergency situation for recent trauma involving only the knee joint. We excluded patients aged less than ten years, wounds without trauma, trauma more than two days before consultation, and patients with a history of trauma involving the same knee. An emergency physical exam was performed in all cases with identification of the study criteria. Standard x-rays (AP and lateral view in the supine position) were obtained for all patients. The patients and the x-rays were seen later by a senior orthopaedic surgeon and a senior radiologist who noted the presence of fracture requiring specific therapeutic management. The sensitivity, specificity and positive and negative predictive values of the Ottawa rule were determined for search for fracture.

Results: One hundred thirty-eight patients met the inclusion criteria during the study period. The sensitivity and negative predictive value of the Ottawa rule were 100%; the specificity was 36%, and the positive predictive value was 25%. Nineteen fractures (14%) requiring specific therapeutic management were identified: all patients had at least one positive sign. Seventy-six patients (55%) without fracture had at least one positive sign. Forty-three patients (31%) without fracture did not have any positive sign. The x-rays were not contributive for these patients.

Discussion and conclusion: This study demonstrated the validity of the Ottawa rule in the clinical setting of our practice. With widespread use of this rule, approximately one-third of the x-rays performed for recent trauma involving the knee alone could be avoided.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 31 - 31
1 Jan 2004
Boeri C Ballonzoli L Jenny J
Full Access

Purpose: Knowledge of the radiological axes in the normal lower limb is important for correction and reconstruction surgery. Classically, the femorotibial mechanical axis presents a zero angle on the anteroposterior view, with 3° femoral valgus being compensated by an equivalent tibial varus. Reference data have however been established with questionable methodology because they have been obtained with small selected samples.

Material and methods: We obtained teleradiograms of the lower limbs in 100 healthy volunteers free of any disease of the lower limbs and selected randomly among patients undergoing surgery for trauma or degenerative lesions of the upper limb. The following angles were measured by the same senior surgeon: mechanical femorotibial angle, orientation of the femoral condylar complex in relation to the mechanical axis of the femur, angle between the mechanial axis and the anatomic axis of the femur, orientation of the tibial plateaux in relation to the mechanical axis of the tibia.

Results: Sixty-nine men and 31 woman, mean age 39 years (range 17 – 62 years) participated in this study. The mean mechanical femorotibial angle was 179° (SD 3°, median 179°, range 168°–185°). The mean orientation of the femoral condylar complex in relation to the femoral mechanical axis was 91° (SD 2°, median 91°, range 86°–98°); 17 subjects had the classical value of 93°. The mean angle between the mechanical and anatomic axis of the femur was 6° (SD 1°, median 6°, range 3°–9°); 29 subjects had the classical value of 7°. The mean orientation of the tibial plateaux in relation to the mechanical axis of the tibia was 88° (SD 2°, median 88°, range 82°–84°); 14 subjects had the classical value of 87°.

Discussion and conclusion: The values considered to be normal in the literature only included 15–20% of the subjects in this study. Although there could be a theoretical selection bias in this series, it can be assumed that there is a wide dispersion of “normal” values around the means. The pertinence of this dispersion in clinical practice remains to be established. The question of individualising reconstruction or prosthetic procedures is raised.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 54 - 54
1 Jan 2004
Miehlke R Jenny J
Full Access

Purpose: The purpose of this study was to conduct a multicentric comparison of total knee arthroplasty using the conventional technique versus digitalized navigation.

Material and methods: A prospective comparative study was conducted in five centres in 821 patients using the same implant (Search®, Aesculap, Chaumont): 555 procedures with the Orthopilot® navigation system (Aesculap, tutligen, group 1) and 266 conventional procedures, group 2). Radiographic results were analysed by an independent investigator who examined telemetric images obtained three months after surgery.

Results: The mechanical femorotibial axis was within desired limits (3° frontal deformation) in 88.6% of the knees in group 1 and in 72.2% of the knees in group 2 (p< 0.001). The rate of unacceptable implantations (> 5° deviation) was 2.5% in group 1 and 9.8% in group 2).

Frontal orientation of the femoral component was satisfactory in 89.4% of the knees in group 1 and in 77.1% in group 2. Sagittal orientation of the femoral component was satisfactory in 75.5% of the knees in group 1 and in 70.7% of the knees in group 2. Frontal orientation of the tibial component was satisfactory in 91.9% of the knees in group 1 and in 83.5% of the knees in group 2. The sagittal orientation of the tibial piece was satisfactory in 81.3% of the knees in group 1 and in 69.9% of the knees in group 2. Optimal implantation, considering all criteria studied, was achieved in 275 patients (49.5%) in group 1 and in 82 patients (30.8%) in group 2 (p< à.001). Ther was no difference in results between centres.

Discussion: Computer-assisted navigation facilitated prosthesis implantation with the desired orientation in comparison with manual instrumentation. The number of unacceptable implantations was significantly lower. After a short learning curve, the reliability of this system has proven very satisfactory, facilitating its use since this study.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 84 - 85
1 Jan 2003
Miehlke RK Kiefer H Kohler S Jenny J Konermann W
Full Access

INTRODUCTION

Nowadays, longevity of total knee arthroplasties is very acceptable. Survivorship analyses demonstrate a success in a range of 80% to more than 95% over a period of more than ten years (1–4). However, long-term results largely depend, amongst other factors, on restoration of physiological alignment of the lower limb (5–11). Jeffery et al. (12) reported a three percent loosening rate over eight years when knees were correctly aligned whereas insufficient alignment lead to prosthetic loosening in 24 percent. Rand and Coventry (13) found a 90 percent survivorship rate at ten years when the mechanical axis was aligned in a range from nought to four degrees of valgus. Valgus position of more than four degrees or varus alignment resulted in only 71 percent and 73 percent of survivorship respectively.

Recently, computer aided instrumentation systems (14,15) became available and preliminary results of small series were reported (16–17).

The purpose of this study was to assess the accuracy of computer integrated instrumentation for knee alignment.

MATERIAL AND METHOD

The OrthoPilot® represents a computer controlled image supported alignment system. A 3-D Optotrak™ camera localizes infra-red diodes fixed to rigid bodies within the surgical field. Thereby a spatial coordinate reference system is provided. The localizer is linked to a UNIX work station which performs the operative protocol using a graphical interface and a foot pedal. The rigid bodies are fixed to the bones by bicortical screws. An intraoperative kinematic analysis and various additional landmarks lead to definition of the centres of hip, ankle and knee joint and sizing of endoprosthetic components. With the use of LED-equipped alignment instruments the femoral and tibial resection planes are determined.

The OrthoPilot® navigation system is not dependant on CT data and no additional preoperative planning is therefore necessary.

A prospective comparative multicentre study in five institutions, four in Germany and one in France, was carried out. 821 patients with primary tricompartimental knee arthroplasty using the SEARCH LC knee (B|Braun AESCULAP) were included in the study. The OrthoPilot® Navigation system was used in 555 cases and 266 knees were implanted with the use of conventional instrumentation. At the three months follow-up alignment was assessed using standardized one leg stance radiographs with regard to the mechanical axis and the femoral and tibial angels in the coronal plane. For the lateral femoral and tibial angels standard lateral x-rays were used. Prosthetic alignment was verified by an independent observer.

RESULTS

The radiographically assessed results were subdivided into three groups. An error of ± one degree in the radiographical measurements and small deviations caused by the play of surgical instruments have to be considered. With respect to the femoral and tibial angels in the ap and lateral view the group of very good clinical results was, therefore, defined in the range between ninty degrees and ± two degrees. Deviations of three and four degrees from the optimum were classified as being clinically acceptable. Aberrations of more than four degrees were classified as outliers. When measuring the mechanical axis deviations from fully precise femoral and tibial angels may add up. For this reason zero degrees ± three degrees were rated as a very good result, deviations of four to five degrees were considered to be acceptable and alignment beyond five degrees from the optimum was classified as an unsatisfactory result.

Mechanical axis:

35. 2% of the navigated cases were aligned at exactly zero degrees. This was achieved in only 24. 4% of the manual cases. 88. 6% of cases using navigation and 72. 2% in the manual group showed zero degrees and varus or valgus angles of up to three degrees. 8. 9% and 18. 1% of cases respectively showed deviations of four or five degrees of valgus or varus alignment representing an acceptable clinical result. In only 2. 5% of the navigation group aberrations of more than five degrees occurred. The rate of dissatisfying results was 9. 8% in the manual group.

Femoral axis (coronal plane):

In the navigation group 48. 1% of cases showed an alignment at exactly 90 degrees which was the case in only 33. 5% of the control group. Altogether, in 89. 4% of the navigated cases a very good result was observed. In the conventionally instrumented cases only 77. 1% very good results were found. There were 1. 6% outliers beyond the limits of four degrees in the navigation group in comparison to 4. 9% amongst the control cases.

Femoral axis (sagittal plane):

Very good results with up to two degrees of deviation from a ninety degree position were obtained in 75. 5% of navigated cases and 70. 7% of manual cases. 37. 3% and 34. 6% respectively showed an ideal alignment of exactly ninety degrees. Unsatisfactory results were observed in 9. 5% of the navigated cases and 9. 4% of the manual cases.

Tibial axis (coronal plane):

58. 7% of the computer assisted and 40. 6% of the reference cases were exactly aligned at rectangles. All in all, in 91. 9% navigated and only 83. 5% manual cases a very good result was obtained. Only 1. 1% outliers had to be observed in the navigation group whereas 3. 4% unsatisfactory results were registered with manual technique.

Tibial axis (sagittal plane):

44. 3% of the navigated cases and only 26. 7% of cases in the control group were aligned perpendicular to the dorsal tibial cortex, thus showing no posterior slope. Altogether, 81. 3% could be classified as very good clinical results in the computer assisted group. The corresponding rate of the manual group was 69. 9%. Equivalent values of 8. 6% in the navigation group and 8. 3% in the reference group were registered beyond the limits of four degrees deviation.

The additional operation time for the use of the navigation system is calculated between eight and ten minutes after having passed through the learning curve.

CONCLUSIONS

Knee navigation facilitates proper alignment of endoprosthetic components and with the use of the Ortho-Pilot® system results are clearly more favourable in comparison to conventional instrumentation technique. In addition, the data obtained from literature demonstrate that the use of this navigation system contributes to reducing outliers in number. With the learning curve the OrthoPilot® alignment system proved to gain in reliability.

Deviations from perfect alignment are still difficult to be classified into surgical or technical deficiencies.

Many technical and software improvements which were introduced in the meantime will, in addition, contribute to reliability and time saving.

Comparative studies with different navigation systems are not yet available. They might allow an even more profound insight into the possibilities and advantages or disadvantages of computer assisted knee alignment.

LITERATURE

(1) Knutson K, Lindstrand A, Lidgren L. Survival of knee arthroplasties, a nation-wide multicenter investigation of 8000 cases. J Bone Joint Surg. 1986; 68B: 795-803

(2) Scuderi GR, Insall JN, Windsor RE, Moran MC. Survivorship of cemented knee replacement. J Bone Joint Surg. 1989; 798-409

(3) Nafei A, Kristensen O, Knudson HM, Hvid I, Jensen J. Survivorship analysis of cemented total condylar knee arthoplasty. J Arthoplasty 11, 1996;07-10

(4) Ranawat CS, Flynn WF, Saddler S, Hansraj KH, Maynhard MJ. Long-term results of total condylar knee arthroplasty. A 15-years survivorship study. Clin Orthop 1993; 286:94-102

(5) Lotke PA, Ecker ML. Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg 1977;59-A:77-79

(6) Hood RW, Vanni M, Insall JN. The correction of knee alignment in 225 consecutive total condylar knee replacements. Clin Orthop 1981;160:94-105

(7) Bargren JH, Blaha JD, Freeman MAR. Alignment in total knee arthroplasty. Clin Orthop 1983;173:178-183.

(8) Hvid I, Nielsen S. Total condylar knee arthroplasty. Acta Orthop Scand 1984;55:160-165

(9) Tew M, Waugh W. Tibial-femoral alignment and the results of knee replacement. J Bone Joint Surg 1985;67-B:551-556

(10) Jonsson B, Astrom J. Alignment and long-term clinical results of a semi-constrained knee prosthesis. Clin Orthop 1988;226:124-128

(11) Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement its effect on survival. Clin Orthop 1994;299:153-156

(12) Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg 1991;73-B:709-714

(13) Rand JA, Coventry MB. Ten-year evaluation of geometric total knee arthroplasty. 1988;232:168-173

(14) Leitner F, Picard F, Minfelde R, Schulz HJ, Clinquin P, Saragaglia D. Computer assisted knee surgical total replacement. In: CVRMed-MRCAS. Troccaz J, Grimson E, Mösges R (Eds). 1997; 630-638, Springer

(15) Delp SL, Stulberg SD, Davies BL, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop 1998; 354:49-56

(16) Picard F, Saragaglia D, Montbarbon E, Chaussard C, Leitner F, Raoult O. Computer assisted knee arthroplasty - preliminary clinical results with the Ortho-Pilot System. Abstract, 4th International CAOS Symposium, Davos, Switzerland, 1999

(17) Miehlke RK, Clemens U, Jens J-H, Kershally S. Navigation in der Knieendoprothetik - vorläufige klinische Erfahrungen und prospektiv vergleichende Studie gegenüber konventioneller Implantationstechnik, Z Orthop 2001; 139: 109-116


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 55
1 Mar 2002
Brinkert D Gaudias J Boeri C Jenny J
Full Access

Purpose: Treatment of infection in patients with an unstable bone is based on removal of implants, bone resection, reconstruction, and external fixation. We report a retrospective series of 11 patients who developed post-traumatic osteitis of the tibia on an unstable bone who were treated by removal of all implants, cleaning, antibiotics, and internal fixation using a centromedullary locked nail.

Material and methods: The series included seven men and four women, mean age 32.4 years (16–56). Initially, there were two closed fractures and nine open fractures (Gustilo II: 4, IIIA: 1; IIIB: 4) treated by external fixation in six cases, centromedullary locked nailing in four and plate fixation in one. Bacteriology results were available for all deep surgical samples. The initial implants were removed in all cases, followed by debridement sparing soft tissue, and reaming of the bone. Adapted antibiotics were prolonged for three months. Refixation using a centromedullary locked nail was performed at the first revision time in two cases and later after cleaning in nine (mean delay 28 days, range 2–53 days). Two cases required a flap for cover.

Results: There were two failures: one due to recurrent infection with a different germ, the other due to necrosis of a latissimus dorsi flap followed by amputation. There were nine successes with bone healing in all cases (first intention in eight and after complementary bone graft in one) and no recurrent infection at the current mean follow-up of 2.6 years.

Discussion: These eleven cases have a common feature of no extensive bone necrosis or major bone defect. Bone resection was basically related to reaming with a minimalistic approach for soft tissue debridement. Reliable bacteriological examinations, effective antibiotic therapy, and prolonged and rapid skin cover are essential elements for success.

Conclusion: This experience is limited but does demonstrate that locked centromedullary nailing can be successful for the treatment of long bone infections on unstable bones, considering that this could be the ideal fixation method.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages 55 - 55
1 Mar 2002
Boeri C Gaudia J Jenny J
Full Access

Purpose: Centromedullary nailing with reaming is a recognised treatment for open leg fractures with a well-measured risk of postoperative infection. The development nailing procedures without reaming might reduce this risk.

Material and methods: We performed a Medline search using the following key words: nailing, tibia, open fracture, infection. To be retained for analysis, articles had to evaluate infectious risk of nailing with or without reaming, in clinical trials or experimental studies, with precise diagnostic criteria. Clinical articles retained were classed in three categories by decreasing value of their methodology: prospective randomised comparative studies, case-control studies, comparative observation studies, simple observation studies. Only comparative experimental and prospective comparative randomised studies were considered to be pertinent.

Results: Five articles met the predefined quality inclusion criteria and were retained for analysis: three experimental studies and two clinical trials. The experimental studies by Melcher (1995 and 1996) demonstrated a significant increase in infection rate and bacterial counts after nailing with reaming; there were two confounding factors however, steel or titanium nail and full or hollow nail which also had a significant effect on the rate of infection. The experimental work by Curtis (1995) did not find any difference in incidence and severity of infection between nailings with and without reaming. The two prospective comparative randomised clinical trials by Keating (1007) and Finkemeier (2000) included a total of 132 cases. the risk of infection was 8% after nailing with reaming and 7% after nailing without reaming (NS). The relative risk of infection after nailing with reaming was 1.02-fol greater than that without reaming (NS).

Discussion, conclusion: There is experimental evidence that would tend to prove that the risk of infection is lower after nailing with reaming, but it is insufficient to explain the mechanism of this lower rate. Inversely, although the clinical observation series tend to confirm these results, the two methodologically valid prospective comparative randomised studies did not find any difference. To date, there is no objective evidence ruling out the usefulness of nailing with reaming because of higher infection risk in open leg fractures.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 42
1 Mar 2002
Jenny J Kehr P
Full Access

Purpose: The quality of implantation of single-compartment knee prostheses is a recognised prognostic factor. Acceptable reproducibility can be achieved with traditional instrumentations, although the rate of error can be significant. Computer-assisted implantation might improve results. Most of the currently proposed techniques require supplementary preoperative imaging or implantation of metallic material for guidance. The Orthopilot® system is a purely peroperative system and could thus provide better cost-effectiveness.

Material and methods: We implanted 30 single-compartment knee prostheses using the Orthopilot® computerised system (Aesculap, Chaumont, Group A) and compared the radiographic quality of the implant on telemetric AP and lateral views with those from a control group of 30 single-compartment prostheses implanted with a traditional instrumentation with a femoral centromedullary aiming device (group B). All patients underwent surgery for primary degeneration and were operated on by the same surgeon using the same implant (Search®, Aesculap, Chaumont). The control group was selected among a consecutive series of 250 implants to match the study group for age, gender, importance of the degeneration and frontal femorotibial mechanical angle.

Results: The mechanical femorotibial angle was within desired limits (177±3°) in 26 patients in group A and in 20 patients in group B. Frontal orientation of the femoral component was within desired limits (90±2°) in 27 patients in group A and in 19 in group B (p< 0.05). Frontal orientation of the tibial piece was within desired limits (90±2°) in 27 patients in group A and in 19 patients in group B (p < 0.02). The original level of the joint line was reconstructed with a 2 mm margin in 30 patients in group A and in 24 patients in group B (p < 0.05). Eighteen patients in group A and four patients in group B had optimal implantation for all criteria studied (p < 0.001). There were no system-related complications.

Discussion, conclusion: Computer-assisted implantation is more reliable and more reproducible than traditional instrumentation for the implantation of a single-compartment knee prosthesis. Follow-up results with these prostheses may be better. Systematic preoperative imaging, or preoperative implantation of metallic guide pins is not necessary with this system. The system appears to offer a better cost-effectiveness.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 37
1 Mar 2002
Boeri C Jenny J Kehr P
Full Access

Purpose: The biepicondylar axis of the femur is considered by many authors as a reliable reference axis for flexion-extension of the knee and to establish desirable orientation of the femoral component of a total knee arthroplasty. We studied the reproducibility of axis measurments made using an automatic digital acquisition system (OrthoPilot®, Aesculap, Chaumont, France). The system localises anatomic points in space from information obtained with a palpation probe carrying an infrared diode.

Material and methods: A consecutive series of 20 total knee arthroplasties (Search®, Aesculap, Chaumont, France) implanted by two senior surgeons on the same surgical team were studied. The mechanical axis of the femur was calculated prior to the study using kinematic acquisition of the position of the centres of rotation of the hip and the knee. The frontal reference plane was then defined from the most posterior point on the femoral condyles palpated with the probe as the plane containing the mechanical axis of the femur and parallel to the posterior bicondylar line. The apex of the two femoral epicondyles was obtained by direct palpation with the probe. A second plane passing through the apex of the epicondyles and parallel to the mechanical axis of the femur was thus defined. Three acquisitions were made for the same patient by each of the two surgeons without changing the posterior bicondylar reference plane. The angle between the frontal plane of reference and the biepicondylar plane was calculated directly by the software for each acquisition. The variability of the three measurements taken by each operator and between the two operators was studied with the Wilcoxon test for paired series and with Spearman’s coefficient of correlation.

Results: Mean intraobserver variability for the orientation of the biepicondylar axis was 4° for the two operators, with a maximum of 11° for the first operator and 9° for the second, the directions being random. The mean interobserver variability for this orientation was 4° with a maximum of 14°, again at random. All differences were statistically significant.

Discussion, conclusion: Measurements of the biepicondylar axis exhibit high intra- and interobserver variability, probably due to the anatomic conditions; the apex of the epicondyles is a blunt surface difficult to identify with precision. Use of this axis to determine the rotation of the femoral component of a total knee arthroplasty is thus an element of wide variability with measurement inaccuracy of a mean ± 5° but with a maximum that can reach 10°. The question remains to determine whether this uncertainty is tolerable or whether more precision is required.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 745 - 745
1 Jul 1999
JENNY J