Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

PRECISION OF THE POSITIONING OF AN UNICOMPARTMENTAL KNEE PROSTHESIS BY A MINI-INVASIVE NAVIGATED TECHNIQUE



Abstract

We are using a non image based navigation system on a routine basis for unicompartmental knee replacement (UKR). We prospectively studied 60 patients who underwent navigated minimally invasive UKR for primary medial osteoarthritis at our hospital between October 2005 and October 2006. We established a navigated control group of 60 patients who underwent conventional implantation of a UKA at our hospital between April 2004 and September 2005. There were 42 male and 78 female patients with a mean age of 65 years (range, 44–87 years). There were no differences in all preoperative parameters between the two groups.

The accuracy of implant positioning was determined using predischarge standard anteroposterior and lateral radiographs. The following angles were measured: femorotibial angle, coronal and sagittal orientation of the femoral component, coronal and sagittal orientation of the tibial component. When the measured angle was in the expected range, one point was given. The accuracy was defined as the sum of the points given for each angle, with a maximum of five points (all items fulfilled) and a minimum of 0 point (no item fulfilled). Our primary criterion was the radiographic accuracy index on the postoperative radiograph evaluation. All other items were studied as secondary criteria.

The mean accuracy index was similar in the two groups: 4.1 ± 0.8 in the study group and 4.2 ± 1.2 in the control group. 36 patients (60%) in the control group and 37 patients (62%) in the study group had the maximum accuracy index of five points. All measured angles were similar in the two groups. There were no differences between the percentages of patients in the two groups achieving the desired implant positions. Mean operating time was similar in the two groups. There were no intraoperative complications in either group. The groups had similar major postoperative complication rates during hospital stay (3% for both).

The used navigation system is based on an anatomic and kinematic analysis of the knee joint during the implantation. The modification of the existing software for minimal invasive approach has been successful. It enhances the quality of implantation of the prosthetic components and avoids the inconvenient of a smaller incision with potential less optimal visualization of the intra-articular reference points. However, all centers observed a significant learning curve of the procedure, with a significant additional operative time during the first implantations. The postoperative rehabilitation was actually easier and faster, despite the additional percutaneous fixation of the navigation device. This system has the potential to allow the combination of the high accuracy of a navigation system and the low invasiveness of a small skin incision and joint opening.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org