header advert
Results 51 - 81 of 81
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 401 - 401
1 Dec 2013
Luyckx T Verstraete M De Roo K Dewaele W Victor J Bellemans J
Full Access

Introduction

In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to investigate the strain in the superficial medial collateral ligament (sMCL) of the human knee. To our knowledge, no reports or validation of 3D DIC measurement on human collagenous tissue exists.

The first part of this research project focused on the validation of 3D DIC (1) as a highly accurate tool for non-contact full field strain analysis of human collagenous tissue. In the second part, 3D DIC was used to measure the strain patterns in the superficial medial collateral ligament (sMCL) of the native knee (2). In a third part, the strain pattern in the sMCL after total knee arthroplasty (TKA) in an ‘optimal’ (3) and with a proximalised joint line (4) was analysed.

Methods

(1) Six fresh frozen human Achilles tendon specimens were mounted in a custom made rig for uni-axial loading. The accuracy and reproducibility of 3D DIC was compared to two linear variable differential transformers (LVDT's). (2) The strain pattern of the sMCL during the range of motion (ROM) was measured using 3D DIC in six fresh frozen cadaveric knees. The knees were mounted in a custom made rig, applying balanced tension to all muscle groups around the knee. The experiment was repeated after computer navigated implantation of a single radius posterior stabilised (PS) TKA in ‘optimal’ (3) and with a 4 mm proximalised joint line (4).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 569 - 569
1 Dec 2013
Van Der Straeten C Witvrouw E Willems T Verstuyft L Victor J Bellemans J
Full Access

Background:

Recently a new version of the Knee Society Knee Scoring System has been developed, adapted to the lifestyle and activities of contemporary patients with a Total Knee Arthroplasty (TKA). It is subdivided into 4 domains including an Objective Knee Score, a Satisfaction Score, an Expectations Score and a Functional Activity Score. Before this scale can be used in non-English speaking populations, it has to be translated and validated for specific populations. The aim of this study was to translate and validate the New Knee Society Knee Scoring System (new KSS) for Dutch speaking populations.

Materials and Methods:

A Dutch translation of the New KSS was established using a forward-backward translation protocol. 137 patients undergoing TKA were asked to complete the Dutch translation of the New KSS as well as the Dutch WOMAC, Dutch KOOS and the Dutch SF12. To determine the test-retest reliability, 53 patients were asked to fill out a second questionnaire with one-week interval. We tested the test-retest reliability of the subjective domains of the New KSS by assessing the intra-class coefficient and the Pearson correlation coefficient between the first and second questionnaires. Systematic differences between the first and second questionnaires were investigated with T-tests and non-parametric statistics. Internal consistency of the Dutch new KSS was evaluated with Cronbach's alpha. The construct validity of the Dutch New KSS was determined by comparing it to the Dutch WOMAC, Dutch KOOS and Dutch SF12 using Pearson correlation coefficients. Content validity was assessed by examining the distribution and the floor and ceiling effects of the Dutch version of the new KSS.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 187 - 187
1 Dec 2013
Van Der Straeten C Van Quickenborne D Pennynck S De Smet K Victor J
Full Access

Background:

Potential systemic toxicity of metal ions from metal-on-metal hip arthroplasties (MoMHA) is concerning. High blood cobalt (Co) levels have been associated with neurological, cardiac and thyroid dysfunctions.

Questions/purposes:

The aim of this research was to investigate the prevalence of systemic Co toxicity in a MoMHA population, to identify confounding factors, and to indicate a Co level above which there is a high risk for systemic toxicity.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 189 - 189
1 Dec 2013
Verstraete M Luyckx T De Roo K Dewaele W Bellemans J Victor J
Full Access

Purpose

As human soft tissue is anisotropic, non-linear and inhomogeneous, its properties are difficult to characterize. Different methods have been described that are either based on contact or noncontact protocols. In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to examine the mechanical behaviour of the human Achilles tendon. Despite its wide use in engineering research and its great potential for strain and displacement measurements in biological tissue, the reported biomedical applications are rather limited. To our knowledge, no validation of 3D DIC measurement on human tendon tissue exists.

The first goal of this study was to determine the feasibility to evaluate the mechanical properties of the human Achilles tendon under uniaxial loading conditions with 3D Digital Image Correlation. The second goal was to compare the accuracy and reproducibility of the 3D DIC against two linear variable differential transformer (LVDT's).

Methods

Six human Achilles tendon specimens were prepared out of fresh frozen lower limbs. Prior to preparation, all limbs underwent CT-scanning. Using Mimics software, the volume of the tendons and the cross sectional area at each level could be calculated. Subsequently, the Achilles tendons were mounted in a custom made rig for uni-axial loading. Tendons were prepared for 3D DIC measurements with a modified technique that enhanced contrast and improved the optimal resolution. Progressive static loading up to 628,3 N en subsequent unloading was performed. Two charge-coupled device camera's recorded images of each loading position for subsequent strain analysis. Two LVDT's were mounted next to the clamped tendon in order to record the displacement of the grips.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 190 - 190
1 Dec 2013
Victor J Tajdar F Ghijselings S Witvrouw E Van Der Straeten C
Full Access

Background:

The number of young patients undergoing total knee arthroplasty is rapidly increasing. Long-term follow-up of modern type implants is needed to provide a benchmark of implant longevity for these patients.

Methods:

Between January 1995 and October 1997, 245 consecutive total knee arthroplasties were performed in 217 patients by a single surgeon. In 156 knees, the Genesis I implant was used, and in 89 knees the Genesis II implant was used. Mean age at surgery was 69.3 years for the Genesis I cohort and 66 years for the Genesis II (p = 0.016). At 15 to 17 years, cumulative survivorship was calculated using Kaplan-Meier statistics whilst outcomes were rated with the ‘Knee society score’ and with the ‘Knee Injury and Osteoarthritis Outcome Score’. Radiological assessment included coronal alignment measured on full leg standing X-rays, and analysis of radiolucent lines and polyethylene thickness on AP, Lateral and Axial X-rays, positioned under fluoroscopic control.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 568 - 568
1 Dec 2013
Van Der Straeten C Van Quickenborne D De Roest B Victor J De Smet K
Full Access

Introduction

Metal-on-metal hip resurfacings (MoMHRAs) have a characteristic wear pattern initially characterised by a run-in period, followed by a lower-wear steady-state. The use of metal ions as surrogate markers of in-vivo wear is now recommended as a screening tool for the in-vivo performance of MoMHRAs. The aims of this retrospective study were to measure ion levels in MoMHRAs at different stages during the steady-state in order to study the evolution of wear at minimum 10 years postoperatively and describe factors that affect it.

Materials and methods

A retrospective study was conducted to investigate the minimum 10-year survivorship of a single-surgeon Birmingham Hip Resurfacing (BHR) series, and the evolution of metal ion levels. Implant survival, Harris Hip Scores (HHS), radiographs and serum metal ion levels were assessed. The evolution of metal ion levels was evaluated in 80 patients for whom at least two ion measurements were available at more than 12 months postoperatively, i.e. past the run-in phase. Ion level change (Delta Cr; Delta Co) was defined as Cr or Co level at last assessment minus Cr or Co level at initial assessment. Sub-analysis was performed by gender, diagnosis, age, femoral component size and cup inclination angle.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 51 - 51
1 Dec 2013
Dujardin J Vandenneucker H Bellemans J Victor J
Full Access

A prospective randomized trial on 128 patients with end-stage osteoarthritis was conducted to assess the accuracy of patient-specific guides. In cohort A (n = 64), patient- specific guides from four different manufacturers (Subgroup A1 Signature ®, A2 Trumatch ®, A3 Visionaire ® and A4 PSI ®) were used to guide the bone cuts. Surgical navigation was used as an intraoperative control for outliers. In cohort B (n = 64), conventional instrumentation was used. All patients of cohorts A and B underwent a postoperative full-leg standing X-ray and CT scan for measuring overall coronal alignment of the limb and three-planar alignment of the femoral and the tibial component. Three-planar alignment was the primary endpoint. Deviation of more than three degrees from the target in any plane, as measured with surgical navigation or radiologic imaging, was defined as an outlier.

In 14 patients (22%) of cohort A, the use of the patient-specific guide was abandoned because of outliers in more than one plane. In 18 patients (28%), a correction of the position indicated by the guide, was made in at least one plane. A change in cranial-caudal position was most common. Cohort A and B showed a similar percentage of outliers in long-leg coronal alignment (24.6%, 28.1%, p = 0.69), femoral coronal alignment (6.6%, 14.1%, p = 0.24) and femoral axial alignment (23%, 17.2%, p = 0.50). Cohort A had more outliers in coronal tibial alignment (14.6%) and sagittal tibial alignment (21.3%) than cohort B (3.1%, p = 0.03 and 3.1%, p = 0.002, respectively). These data indicate that patient specific guides do not improve accuracy in total knee arthroplasty.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 153 - 158
1 Nov 2013
Victor J Premanathan A

We have investigated the benefits of patient specific instrument guides, applied to osteotomies around the knee. Single, dual and triple planar osteotomies were performed on tibias or femurs in 14 subjects. In all patients, a detailed pre-operative plan was prepared based upon full leg standing radiographic and CT scan information. The planned level of the osteotomy and open wedge resection was relayed to the surgery by virtue of a patient specific guide developed from the images. The mean deviation between the planned wedge angle and the executed wedge angle was 0° (-1 to 1, sd 0.71) in the coronal plane and 0.3° (-0.9 to 3, sd 1.14) in the sagittal plane. The mean deviation between the planned hip, knee, ankle angle (HKA) on full leg standing radiograph and the post-operative HKA was 0.3° (-1 to 2, sd 0.75). It is concluded that this is a feasible and valuable concept from the standpoint of pre-operative software based planning, surgical application and geometrical accuracy of outcome.

Cite this article: Bone Joint J 2013;95-B, Supple A:153–8.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1332 - 1338
1 Oct 2013
Van Der Straeten C Van Quickenborne D De Roest B Calistri A Victor J De Smet K

A retrospective study was conducted to investigate the changes in metal ion levels in a consecutive series of Birmingham Hip Resurfacings (BHRs) at a minimum ten-year follow-up. We reviewed 250 BHRs implanted in 232 patients between 1998 and 2001. Implant survival, clinical outcome (Harris hip score), radiographs and serum chromium (Cr) and cobalt (Co) ion levels were assessed.

Of 232 patients, 18 were dead (five bilateral BHRs), 15 lost to follow-up and ten had been revised. The remaining 202 BHRs in 190 patients (136 men and 54 women; mean age at surgery 50.5 years (17 to 76)) were evaluated at a minimum follow-up of ten years (mean 10.8 years (10 to 13.6)). The overall implant survival at 13.2 years was 92.4% (95% confidence interval 90.8 to 94.0). The mean Harris hip score was 97.7 (median 100; 65 to 100). Median and mean ion levels were low for unilateral resurfacings (Cr: median 1.3 µg/l, mean 1.95 µg/l (< 0.5 to 16.2); Co: median 1.0 µg/l, mean 1.62 µg/l (< 0.5 to 17.3)) and bilateral resurfacings (Cr: median 3.2 µg/l, mean 3.46 µg/l (< 0.5 to 10.0); Co: median 2.3 µg/l, mean 2.66 µg/l (< 0.5 to 9.5)). In 80 unilateral BHRs with sequential ion measurements, Cr and Co levels were found to decrease significantly (p < 0.001) from the initial assessment at a median of six years (4 to 8) to the last assessment at a median of 11 years (9 to 13), with a mean reduction of 1.24 µg/l for Cr and 0.88 µg/l for Co. Three female patients had a > 2.5 µg/l increase of Co ions, associated with head sizes ≤ 50 mm, clinical symptoms and osteolysis. Overall, there was no significant difference in change of ion levels between genders (Cr, p = 0.845; Co, p = 0.310) or component sizes (Cr, p = 0.505; Co, p = 0.370). Higher acetabular component inclination angles correlated with greater change in ion levels (Cr, p = 0.013; Co, p = 0.002). Patients with increased ion levels had lower Harris hip scores (p = 0.038).

In conclusion, in well-functioning BHRs the metal ion levels decreased significantly at ten years. An increase > 2.5 µg/l was associated with poor function.

Cite this article: Bone Joint J 2013;95-B:1332–8.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 100 - 100
1 May 2013
Victor J
Full Access

Correct alignment and ligament tension are widely accepted conditional features of successful TKA. The technical route of achieving this goal remains a matter of debate. Two philosophies prevail: measured resection as a geometry based system, and tensioned gaps, based upon the dependent relation between tibia and femur. Both techniques claim the best results and are often presented as radically different. From a conceptual standpoint, however, the dependent technique is not purely ligament based as it starts with a cut of the proximal tibia, which is geometrically ruled by sagittal and coronal alignment targets. As such, geometric alignment is the starting point of both techniques.

The use of ligament tensioners as the main basis for obtaining stability and alignment can be a treacherous route to follow. In the native knee that is not affected by arthritis, the functional characteristics of the ligaments are determined by their insertions and the articular geometry. Once the arthritis sets in, the articular surface deforms and leg alignment deviates. It is difficult to restore these parameters, making use of ligament tension as a guide, for the following reasons.

Ligament tension is hard to measure reproducibly intra-operatively. The stress-strain curves of ligaments are different and the magnitude of the optimal distraction force is unknown.

In flexion, the dislocation or eversion of the patella will affect the obtained result and might induce significant bias.

Ligament tensioners evaluate available space in flexion and in 90° of flexion. No information about the mid- and deep flexion range can be obtained. Articular geometry of the implant will affect this.

The ligament tensioner does not control relative position AP position of femur and tibia. Especially in the presence of the PCL, distraction of the femur from the tibia at 90° of flexion will push the tibia forwards as the PCL straightens out and finds a more vertical position.

The medial side of the knee is the more stable and isometric side, where the lateral side is more dynamically controlled by muscle loads. Applying an equal distraction force to the medial and lateral compartment in an anesthetised patient can overestimate the available space in the lateral compartment and induce excessive external rotation.

Traumatic or chronic ligament injury caused by the arthritic process can skew the obtained results

Measure resection is obviously not void of potential errors. Especially in case of dysplasia or prior trauma, bone geometry and landmarks can be deformed. In contrast to ligament assessment however, pre-operative imaging under the form of x-rays or CT allows for an objective and reproducible evaluation of the amount of deformity and subsequent surgical correction.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 112 - 112
1 May 2013
Victor J
Full Access

Osteotomies around the knee are traditionally templated on 2D plain X-rays. Results are often inaccurate and inconsistent and multiplanar osteotomies are hard to perform. The aim of this study is to evaluate the feasibility and accuracy of virtual three-dimensional CT-based planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates.

Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays.

One three-planar, three bi-planar and four single-plane osteotomies were performed. Maximum weightbearing mechanical femoro-tibial coronal malalignment varied between 7° varus and 14° valgus (mean 7.6°, SD 3.1). Corrective angles varied from 7°–15° (coronal), 0°–13° (sagittal) and 0°–23° (horizontal). The maximum deviation between the planned pre-operative wedge angle and the executed post-operative wedge angle was 1° in the coronal, sagittal and horizontal plane. The desired mechanical femorotibial axis on full-leg standing X-rays was achieved in 6 patients. Two patients were undercorrected by 1° and 2° respectively.

Conclusion

3D planning and guided correction of multi-planar deformity of femur or tibia is a feasible and accurate novel technique.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 22 - 22
1 Oct 2012
Victor J Premanathan A Keppler L Deprez P Bellemans J
Full Access

Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays.

One three-planar, three bi-planar and four single-plane osteotomies were performed. Maximum weightbearing mechanical femoro-tibial coronal malalignment varied between 7° varus and 14° valgus (mean 7.6°, SD 3.1). Corrective angles varied from 7°–15°(coronal), 0°–13°(sagittal) and 0°–23°(horizontal). The maximum deviation between the planned pre-operative wedge angle and the executed post-operative wedge angle was 1° in the coronal, sagittal and horizontal plane. The desired mechanical femorotibial axis on full-leg standing X-rays was achieved in 6 patients. Two patients were undercorrected by 1° and 2° respectively.

Conclusion

3D planning and guided correction of multi-planar deformity of femur or tibia is a feasible and accurate novel technique.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 146 - 146
1 Sep 2012
Premanathan A Victor J Keppler L Deprez P Bellemans J
Full Access

Background

Osteotomies around the knee have been used to correct lower limb mal-alignment for over 50 years. The procedure is technically demanding and carries specific risks of neurovascular injury, incorrect planning and execution, and insufficient fixation. In recent years, with the advent of locking plates, fixation techniques have improved significantly but the correct planning and execution of the operation remains difficult. Despite the availability of CT and MRI 3D imaging, surgical planning is still traditionally performed on 2D plain X-rays [1]. Especially with multi-planar deformities, this technique is prone to error. The aim of this clinical pilot study is to evaluate the feasibility of virtual pre-operative three-dimensional planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates.

Patients and methods

Eight consecutive patients, presenting with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software (Mimics® 3-matic®, Materialise, Leuven Belgium) [2]. These models were used to evaluate the required surgical correction. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment [3]. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation (see figure 1). Apart from guiding the osteotomy, the patient specific surgical guide also guided drilling of the planned screw holes. Post-operative assessment of the correction was obtained through planar X-rays, CT-scan and full leg standing X-ray.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 208 - 208
1 Sep 2012
Victor J Premanathan A Keppler L Deprez P Bellemans J
Full Access

Introduction

Osteotomies around the knee are traditionally templated on 2D plain X-rays. Results are often inaccurate and inconsistent and multiplanar ostetomies are hard to perform. The aim of this study is to evaluate the feasibility and accuracy of virtual three-dimensional CT-based planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates.

Methods

Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1271 - 1276
1 Sep 2012
Luyckx T Peeters T Vandenneucker H Victor J Bellemans J

Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an ‘adapted’ measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan.

Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° (sd 2.5) in the gap-balancing group and 1.7° (sd 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our ‘adapted’ measured resection technique was much lower than reported in the literature.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 47 - 47
1 Mar 2012
Almqvist K Vanlauwe J Saris D Victor J Verdonk P Bellemans J Verdonk R
Full Access

Introduction

Autologous chondrocyte implantation presents a viable alternative to microfracture in the repair of damaged articular cartilage of the knee; however, outcomes for patellar lesions have been less encouraging. ChondroCelect (CC) is an innovative, advanced cell therapy product consisting of autologous cartilage cells expanded ex vivo through a highly controlled and consistent manufacturing process.

Purpose

To assess the effect of CC in the treatment of patellofemoral lesions, for which standard treatment options had failed and/or no other treatment options were considered feasible.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 433 - 433
1 Nov 2011
Victor J Van Doninck D Labey L
Full Access

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system.

After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter-and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, SD 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, SD 4.08). Of all the surfacederived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, SD 1.77). The posterior condylar line was the most consistent axis (range −2.96° to − 0.28°, SD 0.77) and the trochlear anteroposterior axis the least consistent axis (range − 10.62° to +11.67°, SD 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 406 - 406
1 Nov 2011
Victor J Labey L Wong P Bellemans J
Full Access

A comparative kinematic study was carried out on six cadaver limbs, comparing tibiofemoral kinematics in five different conditions: unloaded, under a constant 130 N ankle load with a variable quadriceps load, with and without a constant 50 N medial and lateral hamstrings load. Kinematics were described as translation of the projected centers of the medial (MFT) and lateral femoral condyles (LFT) in the horizontal plane of the tibia, and tibial axial rotation (TR) as a function of flexion angle. In passive conditions, the tibia rotated internally with increasing flexion, to an average of −16° (range −12/−20°, SD 3.0°). Between 0 – 40° flexion, the medial condyle translated forwards 4 mm (range 0.8/5.5 mm, SD 2.5 mm), followed by a gradual posterior translation, totaling −9 mm (range −5.8/−18.5 mm, SD 4.9 mm) between 40° – 140° flexion. The lateral femoral condyle translated posteriorly with increasing flexion completing −25 mm (range −22.6 – −28.2 mm, SD 2.5 mm). Dynamic, loaded measurements were carried out in a knee rig. Under a fixed ankle load of 130 N and variable quadriceps loading, tibial rotation was inverted, mean TR 4.7° (range −3.3°/11.8° SD 5.4°), MFT −0.5 mm (range = −4.3/2.4 mm, SD = 2.4 mm), LFT 3.3 mm (range = −3.6/10.6 mm, SD = 5.1 mm). As compared to the passive condition, all these excursions were significantly different: p=0.015, p=0.013, and p=0.011 for TR, MFT and LFT respectively. Adding medial and lateral hamstrings force of 50N each, reduced TR, MFT and LFT significantly as compared to the passive condition. In general, loading the knee with hamstrings and quadriceps reduces rotation and translation as compared to the passive condition. Lateral hamstring action is more influential on knee kinematics than medial hamstrings action.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 464 - 464
1 Nov 2011
Victor J Hardeman F Londers J Witvrouw E
Full Access

Methodology: A retrospective review based on a prospective database was performed on 146 consecutive revision TKA’s. An independent observer measured clinical outcomes using the Knee Society Knee (KS) and Function Score (FS). X-ray evaluation, including rating of radiolucent lines, tibiofemoral and patellofemoral alignment, was carried out by an independent radiologist. ANOVA was used for statistical analysis, with significance set at p≤0.05 (SPSS version 15.0). Post-hoc Bonferroni testing was carried out for single variables including primary cause of failure, age at revision surgery, time span between index operation and revision, type of index operation, partial or total revision and the performance of a tuberosity osteotomy.

Results: 146 files were available in 135 patients. 16 patients deceased (17 knees) during the follow-up period and 2 patients (2 knees) were lost to follow-up. 117 patients (127 knees) were available for evaluation. Age at revision surgery averaged 67.7 years (range 32.3–88.1). Mean follow-up time was 4.5 years (range 1–14). Patients had revision TKA between 51 days and 16.1 years (average 4.7 years) after the index TKA. 54% of the early revisions were due to infection and instability, 55% of late revisions were caused by polyethylene-wear and loosening. The mean postoperative KS was 70.8 with a mean improvement of 43.2 points as compared to pre-operative. The mean postoperative FS was 52.9 with a mean improvement of 25.4 points. Grouping outcomes according to cause of failure of the index TKA gave the following ranking from better to worse, without being significant: wear (n=15; KS 80.8; range 43–99, SD 17.5), loosening (n=44; KS 75.8; range 15–100, SD=21.2), malalignment (n=19; KS 70.0; range 9–95, SD 25.9), instability (n=33; KS 68.2; range 5–100, SD 24.1), others (n=16; KS 66.7; range 10–100, SD 25.9), and infection (n=21; KS 64.2; range 3–100, SD 31.7). Survivorship at 5 years was 90.0% (CI 86.4% –93.6%), at 10 years 84,6% (CI 77.0% –92.3%) and at 14 years 84,6% (CI 37.7% –131.6%). Significant better outcomes were seen with late revisions, index operation being partial knee replacement and older age at revision. More failures (p=0.002) were seen with early revisions. In 32.6% of the patients radiolucent lines of ≥1 mm were observed. Points were granted with the use of a Radiolucency Scoring Scheme. Patients with less than 4 points (n=87, mean KS 71.2) had better outcomes than patients with 4 or more points (n=8, mean KS 56.4). 87% of patients were aligned within 4° of mechanical axis.

Conclusion:

Outcomes of revision TKA are inferior to primary TKA.

Early failures were mainly caused by infection, instability, malalignment.

Grouping revision TKA’s to etiology of failure did not lead to significant differences in outcomes.

Significant better outcomes were reported for late revisions, patients with older age at revision surgery and partial knee replacement.

Survivorship analysis was significally better for late than for early revisions.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1355 - 1361
1 Oct 2011
Bollars P Luyckx J Innocenti B Labey L Victor J Bellemans J

High-flexion total knee replacement (TKR) designs have been introduced to improve flexion after TKR. Although the early results of such designs were promising, recent literature has raised concerns about the incidence of early loosening of the femoral component. We compared the minimum force required to cause femoral component loosening for six high-flexion and six conventional TKR designs in a laboratory experiment.

Each TKR design was implanted in a femoral bone model and placed in a loading frame in 135° of flexion. Loosening of the femoral component was induced by moving the tibial component at a constant rate of displacement while maintaining the same angle of flexion. A stereophotogrammetric system registered the relative movement between the femoral component and the underlying bone until loosening occurred.

Compared with high-flexion designs, conventional TKR designs required a significantly higher force before loosening occurred (p < 0.001). High-flexion designs with closed box geometry required significantly higher loosening forces than high-flexion designs with open box geometry (p = 0.0478). The presence of pegs further contributed to the fixation strength of components.

We conclude that high-flexion designs have a greater risk for femoral component loosening than conventional TKR designs. We believe this is attributable to the absence of femoral load sharing between the prosthetic component and the condylar bone during flexion.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 292 - 292
1 Jul 2011
Almqvist K Saris D Vanlauwe J Victor J Luyten F
Full Access

Purpose: Long-term follow-up was to determine clinical benefit of ChondroCelect (CC) in the repair of full-thickness femoral cartilage lesions as compared to microfracture (MF).

Methods: In a randomized controlled clinical trial CC (n=57) was compared to MF (n=61) in patients aged 18 to 50 years with single ICRS grade III/IV symptomatic cartilage defects of the femoral condyles. Clinical improvement was measured up to 36 months using the KOOS (Knee injury and Osteoarthritis Outcome Score). Safety was monitored throughout the study.

Results: At baseline, KOOS was comparable between treatment groups (Mean ± SD: CC, 56.30 ± 13.61 and MF, 59.53 ± 14.95). Improvement from baseline in adjusted mean ± SE for the Overall KOOS was 21.25 ± 3.60 for the CC group vs. 15.83 ± 3.48 for the MF group at 36 months. When using the mixed linear model analysis at 36 months, statistically significantly greater improvements were demonstrated in the CC group vs. the MF group in change from baseline for the overall KOOS (D 7.60%, P = 0.018), as well as in 4 of 5 KOOS domains (activities of daily living, pain, symptoms/stiffness, and quality of life). Percentages of treatment responders were 83% (n = 34/41) vs. 62% (n = 31/50) based on the KOOS for CC and MF groups, respectively. Two (3.9%) patients in the CC group and 7 (11.5%) patients in the MF group underwent a re-intervention and were therefore considered treatment failures. Both treatments were well tolerated and the proportion of patients reporting AEs diminished over time, indicating stabilization of the patients’ condition.

Conclusions: Implantation of ChondroCelect in the treatment of articular cartilage defects of the femoral condyles shows superior clinical benefit at 36 months vs. microfracture. Structural superiority in favour of the ChondroCelect group was previously demonstrated at 1 year follow up.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 181 - 181
1 May 2011
Innocenti B Bollars P Luyckx J Labey L Victor J Bellemans J
Full Access

Introduction: High-flexion (HF) TKA designs were introduced in order to achieve greater flexion than with conventional TKA designs. Although early clinical results are promising, recent literature raises concerns about fixation and risk for early loosening of the femoral component during high demanding activities. This study’s aim was to measure the loosening force of the femoral component of several PS-TKA designs in a deep flexion configuration.

Methods: The loosening force of the femoral component of ten contemporary PS-TKAs, including five HF and five conventional designs from the major orthopaedic companies were evaluated. To simulate a deep flexion configuration, each TKA was implanted in a femoral bone model and placed in a loading frame in 135° of flexion, with the tibia vertically. Loosening of the femoral component was induced by raising the tibial insert with constant displacement rate, maintaining the same flexion angle. The resisting force was recorded continuously. A stereo-photogrammetric system registered the relative motion between the femoral component and the bone model. The loosening force was determined when a gap of 2 mm was observed. The influence of pegs on the loosening force was also investigated.

Results: Generally, conventional femoral designs required higher forces before loosening occurred compared to HF designs (p< 0.001). In the group of the HF designs there was a statistically significant difference between the designs (p=0.015) due to the shape of the internal box cut. For some designs, the presence of pegs induced a statistically significant change in loosening force.

Discussion and Conclusion: Several design characteristics of the femoral component can alter its resistance to loosening. In this in vitro study, it was shown that the shape of the internal box cut and the presence of pegs, as well as the geometry of the pegs, are important factors for the loosening force. In the group of the HF components there was a statistically significant difference between the designs with an open and a closed box.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 507 - 507
1 Oct 2010
Tengrootenhuysen M Meermans G Pittoors K Van Damme G Victor J
Full Access

Introduction: Meniscal injuries are common and a potential source of osteoarthritis of the knee. This has led to the development of techniques to repair meniscal tears. The goal of this study was to look at the independent variables that have an influence on the outcome and identify factors that might improve future clinical results.

Method: A total of 119 meniscal repairs were included in this study and evaluated at minumum 72 months postoperatively (range 72–86). Meniscal repair was done by an arthroscopically assisted technique: inside-out, all-inside or by a combination of both techniques. Patients with menisci repaired were clinically evaluated. We performed examinations using the International Knee Documentation Committee (IKDC) form and the Lysholm score. Radiological analysis of the knees was done by means of the Ahlback classification pre- and postoperatively. Variables that were analyzed were age, gender, type of repair, chronicity of the lesion, zone of injury, morphology of the tear, involvement of the anterior cruciate ligament (ACL), and the compartment involved. Statistical analysis was done by means of logistic regression.

Results: The overall clinical success rate for meniscal repair was 74.0%. In 73.1% of the cases, the mensiscal injury was associated with an injury of the ACL. Patients with an associated ACL injury had a better chance for a successfull outcome, but this was only significantly when the ACL injury was repaired (p< 0.05). There was no difference between the male and female patients regarding outcome. A delay in treatment for 6 weeks or more resulted in significantly worse results (p< 0.001). Younger patients had significantly better outcome results (p< 0.05). Better results were obtained when the inside-out technique was used for meniscal repair (p< 0.05).

Discussion: Our data confirm the good outcome results of meniscal repair. In our hands, a meniscal repair has the highest likelihood of success in young patients, with a concomitant ACL injury that is repaired at the same time. Better outcome scores were observed when the inside-out technique was used and when menisci where repaired within 6 weeks of the initial injury.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 502 - 502
1 Oct 2010
Bohnsack M Almqvist F Bellemans J Luyten F Saris D Vanlauwe J Verdonk R Victor J
Full Access

Purpose: A three-year evaluation of long-term clinical efficacy of Characterized Chondrocyte Implantation (CCI) compared to microfracture (MF), in the repair of symptomatic cartilage defects of the femoral condyles at 36 months post-surgery.

Materials and Methods: In a prospective, randomized, controlled, multicenter trial, CCI was compared to MF in patients aged 18–50 years with a single symptomatic ICRS grade III–IV lesion of the knee. Clinical outcome was measured 36 months after surgery by means of the KOOS, VAS for pain and ARS, with a non-inferiority margin preset at 9 % points for KOOS and VAS. Furthermore, response to treatment and progression of knee symptoms were assessed. Treatment failure was monitored throughout the study.

Results: Improvement from baseline was higher in the CCI group (N = 41) compared to the MF group (N = 49) for all clinical outcome parameters. Mean improvement from baseline for Overall KOOS was 22.14 vs. 14.48, respectively, with VAS and ARS scores revealing a similar trend. Responder analysis showed 83% of the patients treated with CCI improving vs. 61% after MF. Additionally, we observed a shift in the proportion of knee symptoms over time (52% vs. 35% of asymptomatic knees at 36 months compared to 2% vs. 8% at baseline in the CCI and MF group respectively). At 36 months, failure rates were low in both groups (n=2 in CCI vs. n=7 in MF).

Conclusions: Previous data have described a superior structural repair after CCI compared to MF at 1 year post-surgery. Continued clinical improvement as well as a favorable responder analysis was demonstrated for CCI compared to MF at 36 months.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 195 - 195
1 Mar 2010
Harato K Bourne R Hart J Victor J Snyder M Ries M
Full Access

The purpose of the current study was to compare mid-term outcomes of posterior cruciate retaining(CR) versus posterior cruciate substituting (PS)procedures, using the Genesis II total knee arthroplasty (TKA) system(Smith and Nephew, Memphis TN). Ninety nine CR and 93 PS TKA’s were analysed in this prospective, randomised, clinical trial. Surgeries were performed at seven medical centres by participating surgeons. Clinical outcomes (Knee Society Score, Range of Motion, WOMAC, SF 12 : and radiographic findings), in addition to postoperative complications, were evaluated with a minimum follow-up of five years. Following data analysis, there were no Significant differences in patient demographics or pre-operative clinical measures between the two groups. At the latest follow-up interval, no Significant differences were found between the CR and PS groups with regard to functional assessment, patient satisfaction or post-operative complications. However the PS group did display statistically Significant improvements in range of motion when compared with the CR group. The results of this investigation would suggest that while comparable in regards to supporting good clinical outcomes, the PS Genesis II design does appear to support significantly improved post-operative range of motion when compared with the CR design


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 415 - 415
1 Sep 2009
Saris DB Vanlauwe J Victor J Bellemans J LuytenYFortems FP
Full Access

Purpose: As a one-step surgical procedure, microfracture is frequently considered to be technically easier and associated with less postoperative morbidity than autologous chondrocyte implantation (ACI), which involves both arthrotomy and arthroscopy and therefore safety was assessed in patients with symptomatic cartilage lesions of the knee treated with characterized chondrocyte implantation (CCI) or microfracture.

Methods: CCI (n=57) was compared to microfracture (n=61) in patients with grade III–IV symptomatic cartilage defects of the femoral condyles in a Phase III, prospective, multi-center, randomized, controlled trial. Safety assessments included adverse events (AEs), physical examination, vital signs, hematology and clinical chemistry.

Results: At 18 months post-surgery, similar proportions of patients experienced AEs in the CCI (88%) and microfracture (82%) groups; 67% and 59%, respectively, experienced AEs considered treatment related. The AE profile was generally similar between groups, with no significant difference for hypertrophy, although significantly more CCI-treated patients had joint swelling (19% versus 4.9%; p=0.022) and treatment-related joint crepitation (12% versus 1.6%; p=0.028). Although the proportion of patients with severe AEs was similar for CCI (12%) and microfracture (13%), slightly more microfracture-treated patients experienced serious (life-threatening or requiring hospitalization) AEs (13% versus 8.8%). No patients discontinued due to AEs or died during the study.

Conclusion: Contrary to general opinion, the two-step CCI procedure, involving arthroscopy followed by arthrotomy, has a similar safety profile to that of microfracture, a one-step arthroscopic procedure, for treating cartilage lesions of the knee.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 415 - 415
1 Sep 2009
Saris DB Vanlauwe J Victor J Bellemans J Luyten FP Fortems Y
Full Access

Purpose: This study compared the efficacy and safety of Characterized Chondrocyte Implantation (CCI) to microfracture in the repair of symptomatic cartilage defects of the femoral condyle.

Methods: CCI (n=51) was compared to microfracture (n=61) in patients with grade III–IV symptomatic cartilage defects of the femoral condyles in a prospective, multicenter, randomized, controlled trial. Structural repair was assessed at 1 year by histopathologists blinded to the treatment using

computerized histomorphometry and

an overall histology assessment. Clinical outcome was measured using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Safety was recorded throughout the study.

Results: CCI resulted in better structural repair than microfracture at 1 year post-treatment, as assessed by histomorphometry (p=0.003) and overall histology (p=0.012). Structural repair parameters relating to chondrocyte phenotype and tissue structure were also superior with CCI. Noninferiority of CCI was demonstrated for clinical outcome at 12–18 months, and both treatments were generally well tolerated.

Conclusion: At 1 year post-treatment, CCI resulted in superior tissue repair compared to microfracture. Short-term clinical outcome after 12–18 months was similar for both treatments, as was the safety profile. The superior structural repair achieved with CCI may lead to improved long-term clinical benefits.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system.

After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, sd 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, sd 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, sd 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, sd 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, sd 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 646 - 655
1 May 2005
Victor J Banks S Bellemans J

We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the in vivo kinematic behaviour of both devices.

At follow-up at five years, no statistically significant differences were found in the clinical outcome measurements for either design. The prevalence of radiolucent lines and the survivorship were the same. In a subgroup of 15 knees, additional image-intensifier analysis in the horizontal and sagittal planes was performed during step-up and lunge activity. Our analysis revealed striking differences. Lunge activity showed a mean posterior displacement of both medial and lateral tibiofemoral contact areas (roll-back) which was greater and more consistent in the cruciate-substituting than in the cruciate-retaining group (medial p < 0.0001, lateral p = 0.011). The amount of posterior displacement could predict the maximum flexion which could be achieved (p = 0.018). Forward displacement of the tibiofemoral contact area in flexion during stair activity was seen more in the cruciate-retaining than in the cruciate-substituting group. This was attributed mainly to insufficiency of the posterior cruciate ligament and partially to that of the anterior cruciate ligament. We concluded that, despite similar clinical outcomes, there are significant kinematic differences between cruciate-retaining and cruciate-substituting arthroplasties.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 227 - 227
1 Mar 2004
Victor J Hoste D
Full Access

Aims: The aim of the study was to determine the accuracy of the kinematical determination of the centre of rotation of the hip and to compare the outcome of the Computer assisted surgery (CAS) group versus a control group of patients with conventionally instrumented TKA, in a prospective randomized way. Methods: A prospective, randomized and controlled trial was undertaken with an image based CAS system (ION®), using specific knee software for the GENESIS II®total knee system. Randomization was performed on a consecutive group of 50 primary TKA’s, without exclusion criteria. All computed kinematical centres of rotation of the hip were compared to the anatomic fluoroscopic images. The difference between the kinematical centre of rotation and the anatomic centre of the femoral head was measured in the frontal plane. Coronal alignment was measured on full leg standing films. Validation of the full leg standing films was carried out in comparing the pre-operative measured angle and the computed deformity angle at the beginning of the surgery. Outcome of the CAS group was compared to the conventional group on the following items: tourniquet time, operative time, blood loss, patellar alignment, tibial slope, coronal alignment, range of motion and complications. Results: ACCURACY: The correlation index between pre-op full legs and CAS measured values was excellent: r2=0.997. Difference between kinematical centre of rotation and anatomic centre of the hip: mean deviation between the two points was 1.2 mm (0–4mm), stdv 1.2 mm. This corresponds with a mean angular deviation of 0.17° (0–0.57°). OUTCOME: Tourniquet time: conventional 56 min., CAS 72 min. p=0.002. Operative time: conventional 70 min., CAS 93 min. p< 0.001. Blood loss: conventional 3.3 g/dl, CAS 4 g/dl. Patellar alignment: no tilt > 5°, no subluxation > 3 mm, both groups. Tibial slope: conventional 3.5°, CAS 3°. Post-operative mechanical alignment was between 0 and 2° of deformity for 16 conventional knees, and between 3–4° for 5 conventional knees. In the CAS group, all 21 knees scored between 0° and 2° of mechanical alignment. ROM at 6 weeks: flexion conventional 106°, CAS 105°. Fixed flexion contracture: conventional 2.9, CAS 2.1. Complications: delayed wound healing: conventional 2, CAS 1. Conclusions: Computer assisted kinematical determination of the centre of the hip can be highly accurate. Post-operative coronal alignment in CAS group is excellent, however not significantly better than conventional instrumentation.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 50 - 53
1 Jan 2002
Bellemans J Banks S Victor J Vandenneucker H Moemans A

Our purpose was to determine the mechanism which allows the maximum knee flexion in vivo after a posterior-cruciate-ligament (PCL)-retaining total knee arthroplasty.

Using three-dimensional computer-aided design videofluoroscopy of deep squatting in 29 patients, we determined that in 72% of knees, direct impingement of the tibial insert posteriorly against the back of the femur was the factor responsible for blocking further flexion.

In view of this finding we defined a new parameter termed the ‘posterior condylar offset’. In 150 consecutive arthroplasties of the knee, the magnitude of posterior condylar offset was found to correlate with the final range of flexion.