header advert
Results 51 - 62 of 62
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 585 - 591
1 May 2017
Buckland AJ Puvanesarajah V Vigdorchik J Schwarzkopf R Jain A Klineberg EO Hart RA Callaghan JJ Hassanzadeh H

Aims

Lumbar fusion is known to reduce the variation in pelvic tilt between standing and sitting. A flexible lumbo-pelvic unit increases the stability of total hip arthroplasty (THA) when seated by increasing anterior clearance and acetabular anteversion, thereby preventing impingement of the prosthesis. Lumbar fusion may eliminate this protective pelvic movement. The effect of lumbar fusion on the stability of total hip arthroplasty has not previously been investigated.

Patients and Methods

The Medicare database was searched for patients who had undergone THA and spinal fusion between 2005 and 2012. PearlDiver software was used to query the database by the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) procedural code for primary THA and lumbar spinal fusion. Patients who had undergone both lumbar fusion and THA were then divided into three groups: 1 to 2 levels, 3 to 7 levels and 8+ levels of fusion. The rate of dislocation in each group was established using ICD-9-CM codes. Patients who underwent THA without spinal fusion were used as a control group. Statistical significant difference between groups was tested using the chi-squared test, and significance set at p < 0.05.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 117 - 117
1 Mar 2017
Yu S Bolz N Buza J Saleh H Murphy H Rathod P Iorio R Schwarzkopf R Deshmukh A
Full Access

Introduction

Revision Total Knee Arthroplasty (TKA) is becoming increasingly prevalent as the number of TKA procedures grow in a younger, higher-demand population. Factors associated with patients requiring multiple revision TKAs are not yet well understood. The purpose of this study is to investigate the epidemiology of re-revision TKA, and identify risk factors that are associated with failure of re-revision TKA.

Methods

A retrospective analysis was performed on 358 patients who underwent revision TKA at a single institution between 1/2012 and 12/2013. Patients who underwent revision knee arthroplasty two or more times were included. Patients were excluded if their indication for the first revision was periprosthetic joint infection (PJI). Patient demographics, surgical indications, revision details, and available follow-up information were collected. Re-revision failure was defined as the need for any additional operative intervention. A logistic regression analysis was performed to assess for significant predictors of re-revision failure.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 20 - 20
1 Mar 2017
Milone M Vigdorchik J Schwarzkopf R Jerabek S
Full Access

INTRODUCTION

Acetabular cup malpositioning has been implicated in instability and wear-related complications after total hip arthroplasty. Although computer navigation and robotic assistance have been shown to improve the precision of implant placement, most surgeons use mechanical and visual guides to place acetabular components. Authors have shown that, when using a bean bag positioner, mechanical guides are misleading as they are unable to account for the variability in pelvic orientation during positioning and surgery. However, more rigid patient positioning devices may allow for more accurate free hand cup placement. To our knowledge, no study has assessed the ability of rigid devices to afford surgeons with ideal pelvic positioning throughout surgery. The purpose of this study is to utilize robotic-arm assisted computer navigation to assess the reliability of pelvic position in total hip arthroplasty performed on patients positioned with rigid positioning devices.

METHODS

100 hips (94 patients) prospectively underwent total hip Makoplasty in the lateral decubitus position from the posterior approach; 77 stabilized by universal lateral positioner, and 23 by peg board. After dislocation but prior to reaming, one fellowship trained arthroplasty surgeon manually placed the robotic arm parallel to both the longitudinal axis of the patient and the horizontal surface of the operating table, which, if the pelvis were oriented perfectly, would represent 0 degrees of anteversion and 0 degrees of inclination. The CT-templated computer software then generated true values of this perceived zero degrees of anteversion and inclination based on the position of the robot arm registered to a preoperative pelvic CT. Therefore, variations in pelvic positioning are represented by these robotic navigation generated values. To assure the accuracy of robotic measurements, cup anteversion and inclination at times of impaction were recorded and compared to those calculated via the trigonometric ellipse method of Lewinnek on standardized 3 months postoperative X-rays.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 140 - 140
1 Mar 2017
Laster S Schwarzkopf R Sheth N Lenz N
Full Access

Background

Total knee arthroplasty (TKA) surgical techniques attempt to achieve equal flexion and extension gaps to produce a well-balanced knee, but unexplainable unhappy patients persist. Mid-flexion instability is one proposed cause of unhappy patients. There are multiple techniques to achieve equal flexion and extension gaps, but their effects in mid-flexion are largely unknown.

Purpose of study

The purpose of the study is to determine the effects that changing femur implant size and/or adjusting the femur and tibia proximal -distal and femur anterior-posterior implant positions have on cruciate retaining (CR) TKA mid-flexion ligament balance when equal flexion and extension gaps are maintained.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 116 - 116
1 Mar 2017
Yu S Saleh H Bolz N Buza J Murphy H Rathod P Iorio R Schwarzkopf R Deshmukh A
Full Access

Introduction

The epidemiology of re-revision total hip arthroplasty (THA) is not well understood. The purpose of this study is to investigate the epidemiology of re-revision THA, and identify risk factors that are associated with failure of re-revision THA.

Methods

A retrospective analysis was performed on 288 patients who underwent revision THA at a single institution between 1/2012 and 12/2013. Patients who underwent revision hip arthroplasty two or more times were included. Patients were excluded if their indication for their first revision was due to periprosthetic joint infection (PJI). Patient demographics, surgical indications, revision details, and available follow-up information were collected through the electronic medical record. Re-revision failure was defined as the need for any additional return to the operating room, regardless of indication. A logistic regression analysis was performed to assess for significant predictors of re-revision failure.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 141 - 141
1 Mar 2017
Laster S Schwarzkopf R Sheth N Lenz N
Full Access

Background

Total knee arthroplasty (TKA) surgical techniques attempt to achieve equal flexion and extension gaps to produce a well-balanced knee. Anterior knee pain, which is not addressed by flexion-extension balancing, is one of the more common complaints for TKA patients. The variation in patellofemoral balance resulting from the techniques to achieve equal flexion and extension gaps has not been widely studied.

Purpose of study

The purpose of the study is to determine the effects on cruciate retaining (CR) TKA patellofemoral balance when equal flexion and extension gaps are maintained while changing femur implant size and/or adjusting the femur and tibia implant proximal -distal and femur anterior-posterior positions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 97 - 97
1 Feb 2017
DelSole E Vigdorchik J Schwarzkopf R Buckland A
Full Access

Background

Spinal deformity has a known deleterious effect upon the outcomes of total hip arthroplasty and acetabular component positioning. This study sought to evaluate the relationship between severity of spinal deformity parameters and acetabular cup position, rate of dislocation, and rate of revision among patients with total hip arthroplasties and concomitant spinal deformity.

Methods

A prospectively collected database of patients with spinal deformity was reviewed and patients with total hip arthroplasty were identified. The full body standing stereoradiographic images (EOS) were reviewed for each patient. From these images, spinal deformity parameters and acetabular cup anteversion and inclination were measured. A chart review was performed on all patients to determine dislocation and revision arthroplasty events. Statistical analysis was performed to determine correlation of deformity with acetabular cup position. Subgroup analysis was performed for patients with spinal fusion, dislocation events, and revision THA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 23 - 23
1 May 2016
Schwarzkopf R Cross M Huges D Laster S Lenz N
Full Access

Introduction

Achieving proper ligament tension in knee flexion within cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The distal femoral joint line (DFJL) is routinely used as a variable to assist in achieving proper flexion-extension gap balancing. No prior study has observed the possible effects of properly restoring the DFJL may have on ligament tension in flexion. The purpose of this computational analysis was to determine what effect the DFJL may have on ligament strains and tibiofemoral kinematics of CR knee designs in flexion.

Methods

A computational analysis was performed utilizing a musculoskeletal modeling system with ligaments modeled as non-linear elastic. Tibiofemoral kinematics, contact points estimated from the femoral condyle low points, and ligament strain, change in length relative to the unloaded length, were measured at 90° knee flexion during a deep knee bend activity. Two different knee implants, a High Flexion CR (HFCR) and a Guided Motion CR (GMCR) design were used. Simulations were completed for changes in superior-inferior (SI) positioning of the femoral implant relative to the femur bone, in 2mm increments to simulate over and under resection of the DFJL.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 22 - 22
1 May 2016
Schwarzkopf R Huges D Laster S Lenz N Cross M
Full Access

Introduction

Achieving proper ligament tension in knee flexion within posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. Ligament balance has been achieved through specific surgical technique steps. No prior study evaluated the possible effects of varying levels of posterior cruciate ligament (PCL) release on femorotibial contact location and PCL ligament strain. The purpose of this computational analysis was to determine what effect-varying levels of PCL release may have on the tibiofemoral kinematics and PCL strain.

Methods

A computational analysis was performed utilizing a musculoskeletal modeling system with ligaments modeled as non-linear elastic structures and ligament insertions. A single CR knee system with two different tibial insert designs was tested, a Guided Motion (GM) and an ultra-congruent, Deep Dished (DD) design. Varying levels of PCL release were simulated by setting the stiffness of both bundles of the PCL to a percentage, ranging from 0–100% in 25% increments. Tibiofemoral kinematics was evaluated by measuring the contact points estimated from the femoral condyle low points, and ligament strain of the anterior-lateral (AL) and posterior-medial (PM) bundles. The maximum PCL strain was determined for each bundle to evaluate the risk of PCL rupture based on the PCL failure strain.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 147 - 147
1 Jan 2016
Lee T Lee J Bouzarif G McGarry M Schwarzkopf R
Full Access

INTRODUCTION

Total knee arthroplasty (TKA) is a very successful procedure with good clinical outcomes. However, the effects of obesity on TKA outcomes remain controversial and inconclusive. The objective of this study was to quantify the biomechanical effects of simulated obesity on Cruciate Retaining (CR) and Posterior Stabilized (PS) TKA in human cadaveric knees. We hypothesized that biomechanical characteristics of CR TKA will be less dependent on simulated obesity compared to PS TKA.

METHODS

Eight cadaveric knees (4 male, 4 female) average age 68.4 years (range, 40–86 years) underwent TKA and were tested using a custom knee testing system. Specifically, Cruciate Retaining (CR) and Posterior Stabilized (PS) Lospa Knee System (Corentec Inc.) were implanted and tested sequentially using internal control experimental design. The muscle loading was determined based on the physiological cross-sectional area ratio of the quadriceps and hamstring muscles. The ratios were then applied to CDC data representing the average male height and used to simulate a BMI of 25, 30, and 35 at knee flexion angles (KFA) of 15, 30, 45, 60, 75, and 90 degrees. Patellofemoral and tibiofemoral joint contact areas and pressures were measured using the K-scan sensor system (Tekscan Inc, South Boston, MA). Contact area, force, pressure and peak contact pressure were obtained and analyzed for each specimen. Knee kinematics were quantified using a Microscribe 3DLX digitizer (Revware Inc, Raleigh, North Carolina). Repeated measure analysis of variance with a Tukey post hoc test was used to compare loading conditions. Comparisons between the CR and PS TKA groups were made with a paired t-test. The significance level was set at 0.05.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1017 - 1023
1 Aug 2015
Phan D Bederman SS Schwarzkopf R

The interaction between the lumbosacral spine and the pelvis is dynamically related to positional change, and may be complicated by co-existing pathology. This review summarises the current literature examining the effect of sagittal spinal deformity on pelvic and acetabular orientation during total hip arthroplasty (THA) and provides recommendations to aid in placement of the acetabular component for patients with co-existing spinal pathology or long spinal fusions. Pre-operatively, patients can be divided into four categories based on the flexibility and sagittal balance of the spine. Using this information as a guide, placement of the acetabular component can be optimal based on the type and significance of co-existing spinal deformity.

Cite this article: Bone Joint J 2015;97-B:1017–23.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 452 - 453
1 Nov 2011
Schwarzkopf R Kummer F Jaffee W
Full Access

The analysis of hip joint vibrations (phonoarthrography, vibration arthrometry, vibroarthrography, hip auscultation) has been explored as a means to assess joint pathologies, disease status and recently, incipient prosthesis failure. Frequencies < 100Hz have been used to diagnose gross pathology and wear in knee prostheses, frequencies from 1k to 10k Hz for progression of osteoarthritis, and frequencies > 10k Hz for loosening of cemented hip prostheses. It is possible that detailed analysis of higher frequencies could detect and quantify the smaller geometric changes (asperities) that develop in articular prosthetic wear.

We examined the ultrasound emission generated by various types of hip prostheses and native hips of 98 patients. The ultrasonic transducer was attached to the skin over the greater trochanter with a hypoallergenic, transparent dressing using a standard acoustic coupling gel layer on the microphone face to improve skin contact. The transducer was attached by a 2m cord to a battery operated, data recorder/logger. The patients were asked to sit in a chair, rise, sit again and then rise and take 5 steps while recording the acoustic data from these two movements of sitting and walking. This procedure was repeated for the opposite hip in each patient as well. Acoustic emission analysis examined frequency distributions and power spectrums of the recorded signals and their relations to prosthesis type and implantation time. Review of x-rays of prosthetic and native hips was carried out with OA grading and prosthetic wear quantification.

We have obtained data on 79 metal-polyethylene (average duration of 8.5 years; 0.1–28), 20 ceramic-ceramic (average duration of 8.5 years; 0.5–10), 17 metal-metal (average duration of 1.2 years; 0.1–5.5) and 15 ceramic-polyethylene (average duration of 0.6 years; 0.1–1) hip arthroplasties as well as 75 native hips.

Analysis of the data enabled us to tell the difference between patients whose native hips did not cause them any discomfort and those patients with painful osteoarthritis (initial findings indicate that OA severity can be quantified as well). The measurements of wear of the metal-polyethylene prostheses obtained from patients’ x-rays were compared to an analysis of the ultrasonic emissions, a homogeneity showed no significant differences (all p’s > 0.24) between the curve type and amount of wear of the prosthesis polyethylene.

Our data suggests that we are capable of assessing the status of OA by acoustic emission. Further analysis of wear data coupled to ultrasonic emission is needed for accurate quantification of THA wear.