Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:

MCID and PASS are thresholds driven from PROMS to reflect clinical effectiveness. Statistical significance can be derived from a change in PROMS, whereas MCID and PASS reflect clinical significance. Its role has been increasingly used in the world of young adult hip surgery with several publications determining the thresholds for Femoro-acetabular impingement FAI. To our knowledge MCID and PASS for patient undergoing PAO for dysplasia has not been reported. 593 PAOs between 1/2013 and 7/2023 were extracted from the Northumbria Hip Preservation Registry. Patients with available PROMS at 1year and/or 2years were included. PAOs for retroversion, residual Perthes and those combined with FO were excluded. MCID was calculated using the distribution method 0.5SD of baseline score(1). PASS was calculated using anchor method, ROC analysis performed, and value picked maximizing Youden index. A Logistic Regression analysis was performed to determine which independent variables correlated with achieving MCID and PASS. The MCID threshold for iHOt12 was 8.6 with 83.4 and 86.3 % of patients achieved it at 1 and 2 years respectively. The PASS score at 1 and 2 year follow up was 43 and 44 respectively, with 72.6 and 75.2% achieving it at 1 and 2 year postop. At 2 years a Higher preop iHOT 12 was associated with not achieving MCID and PASS (p<0.05). Preop acetabular version was negatively correlated with achieving MCID and previous hip arthroscopy was negatively correlated with PASS. The % of patients achieving MCID and PASS mimics that of FAI surgery (2). The negative correlation with preop iHOT12 reaffirms the importance of patient selection. The negative correlation of hip arthroscopy highlights the importance of having a high index of suspicion for dysplasia prior to hip arthroscopy and poorer outcomes of patients with mixed CAM and dysplasia pathology


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 93 - 93
11 Apr 2023
de Angelis N Beaule P Speirs A
Full Access

Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current diagnostic imaging measures have either low specificity or low sensitivity and do not consider the dynamic nature of impingement during daily activities. The goal of this study is to determine stresses in the cartilage, subchondral bone and labrum of normal and impinging hips during activities such as walking and sitting down. Quantitative CT scans were obtained of a healthy Control and a participant with a symptomatic femoral cam deformity (‘Bump’). 3D models of the hip were created from automatic segmentation of CT scans. Cartilage layers were added so the articular surface was the mid-line of the joint. Finite element meshes were generated in each region. Bone elastic modulus was assigned element-by-element, calculated from CT intensity converted to bone mineral density using a calibration phantom. Cartilage was modelled as poroelastic, E=0.467 MPa, v=0.167, and permeability 3×10. -16. m. 4. /N s. The pelvis was fixed while rotations and contact forces from Bergmann et al. (2001) were applied to the femur over one load cycle for walking and sitting in a chair. All analyses were performed in FEBio. High shear stresses were seen near the acetabular cartilage-labrum junction in the Bump model, up to 0.12 MPa for walking and were much higher than in the Control. Patient-specific modelling can be used to assess contact and tissue stresses during different activities to better understand the risk of degeneration in individuals, especially for activities that involve high hip flexion. The high stresses at the cartilage labrum interface could explain so-called bucket-handle tears of the labrum


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 1 - 2
1 Jul 2020
Della Valle CJ Jacobs JJ


Bone & Joint Open
Vol. 1, Issue 4 | Pages 80 - 87
24 Apr 2020
Passaplan C Gautier L Gautier E

Aims

Our retrospective analysis reports the outcome of patients operated for slipped capital femoral epiphysis using the modified Dunn procedure. Results, complications, and the need for revision surgery are compared with the recent literature.

Methods

We retrospectively evaluated 17 patients (18 hips) who underwent the modified Dunn procedure for the treatment of slipped capital femoral epiphysis. Outcome measurement included standardized scores. Clinical assessment included ambulation, leg length discrepancy, and hip mobility. Radiographically, the quality of epiphyseal reduction was evaluated using the Southwick and Alpha-angles. Avascular necrosis, heterotopic ossifications, and osteoarthritis were documented at follow-up.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 4 - 4
1 Oct 2018
May C Bixby S Kim YJ Millis MB Heyworth B
Full Access

Introduction. Ascertaining the etiology of hip pain in young patients can be challenging. Osteoid osteoma about the hip has only been described in case reports and small case series in this sub-population. This study assessed the clinical course, radiologic findings, and treatment approaches in a large series of pediatric osteoid osteoma cases about the hip. Potential diagnostic and treatment pitfalls were identified. Methods. A single-center tertiary care departmental database was queried for all cases of osteoid osteoma seen between Jan 1, 2003 and December 31, 2015. Medical records were reviewed to identify those with lesions identified within or around the hip joint. Clinical, demographic, and radiologic data were analyzed. Results. Fifty children and adolescents (56% female, mean age 12.4 years, range 3–19 years) were identified with osteoid osteoma about the hip. The femoral neck was the most common lesion location (38%), and pain in the hip was the most common presenting chief complaint (60%). Night pain (90%) and symptom relief with NSAIDs (88%) were extremely common, though not universally reported. Sclerosis and/or cortical thickening was visible in 58% of radiographs, though a lucent nidus was visible in only 42%. Thirty patients (60%) underwent MRI, 27 of which were available for review, with focal peri-lesional edema as a universal finding. Amongst intracapsular lesions (n=17, 63%), common findings included medial retinacular thickening (33%), synovitis (45%) and effusion (76%). In the 43 patients (48%) who underwent CT, a diagnostic lucent nidus was a universal finding. Initial alternative diagnoses were recorded in 46% of cases, including, in order of decreasing frequency, femoro-acetabular impingement, minor trauma, hip synovitis, ‘growing pain’, stress fracture, and infection. Abnormal hip range of motion, positive impingement signs, and global synovitis on MRI scan were found to be associated with alternative diagnosis. On multivariate regression analysis, only abnormal hip ROM was independently predictive of alternative diagnosis. Delay in diagnosis of >6 months was seen in 43% of patients. Three patients underwent preceding operative procedures for other hip diagnoses, but had persistent hip pain until the osteoid osteoma was treated. Forty-one patients (82%) ultimately underwent radiofrequency ablation (RFA), and 1 open osteoid osteoma resection was performed. Of those who underwent RFA, 93% achieved complete symptom resolution, with 2 of 3 patients without symptom resolution undergoing revision RFA procedure, 1 of which led to symptom resolution. Complications of treatment included 1 case of deep infection along an RFA track, requiring operative debridement, 1 case of transient weakness and paresthesias in the involved extremity, and 1 case of fracture at the RFA site, requiring ORIF. Conclusions. Alternative andelayed diagnoses are common in osteoid osteoma about the hip, with femoro-acetabular impingement representing the most common alternative initial diagnosis in our series. While varying presenting complaints and nonspecific MRI findings may contribute to diagnostic uncertainty, night pain was present in the vast majority of cases and CT scans provided definitive diagnosis in all patients who received them. As increasing numbers of young, active patients are being evaluated for various causes of hip pain, such as femoro-acetabular impingement, osteoid osteoma should not be overlooked in the differential diagnosis of pain about the hip


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 1 - 1
1 May 2018
Grammatopoulos G Speirs A Ng G Riviere C Rakhra K Lamontagne M Beaule PE
Full Access

Introduction. Acetabular and spino-pelvic (SP) morphological parameters are important determinants of hip joint dynamics. This study aims to determine whether acetabular and SP morphological differences exist between hips with and without cam morphology and between symptomatic and asymptomatic hips with cam morphology. Patients/Materials & Methods. A prospective cohort of 67 patients/hips was studied. Hips were either asymptomatic with no cam (Controls, n=18), symptomatic with cam (n=26) or asymptomatic with cam (n=23). CT-based quantitative assessments of femoral, acetabular, pelvic and spino-pelvic parameters were performed. Measurements were compared between controls and those with a cam deformity, as well as between the 3 groups. Morphological parameters that were independent predictors of a symptomatic Cam were determined using a regression analysis. Results. Hips with cam deformity had slightly smaller subtended angles superior-anteriorly (87° Vs 84°, p=0.04) and greater pelvic incidence (53° Vs 48°, p=0.003) compared to controls. Symptomatic Cams had greater acetabular version (p<0.01), greater subtended angles superiorly and superior-posteriorly (p=0.01), higher pelvic incidence (p=0.02), greater alpha angles and lower femoral neck-shaft angles compared to asymptomatic cams (p<0.01) and controls (p<0.01). The four predictors of symptomatic cam included antero-superior alpha angle, femoral neck-shaft angle, acetabular depth and pelvic incidence. Discussion. Symptomatic hips had a greater amount of supero-posterior coverage; which would be the contact area between a radial cam and the acetabulum, when the hip is flexed to 90°. Furthermore, individuals with symptomatic cam morphology had greater PI. Acetabular- and SP parameters should be part of the radiological assessment of femoro-acetabular impingement. Conclusion. Because of the association between a high PI and an increased risk of hip OA (also shown to be increased with c-FAI), the relationship between the PI and FAI should be taken into consideration in prospective longitudinal studies looking at factors influencing the formation of cam morphology as well as those at risk of developing symptoms and degenerative changes


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 724 - 731
1 Jun 2017
Mei-Dan O Jewell D Garabekyan T Brockwell J Young DA McBryde CW O’Hara JN

Aims

The aim of this study was to evaluate the long-term clinical and radiographic outcomes of the Birmingham Interlocking Pelvic Osteotomy (BIPO).

Patients and Methods

In this prospective study, we report the mid- to long-term clinical outcomes of the first 100 consecutive patients (116 hips; 88 in women, 28 in men) undergoing BIPO, reflecting the surgeon’s learning curve. Failure was defined as conversion to hip arthroplasty. The mean age at operation was 31 years (7 to 57). Three patients (three hips) were lost to follow-up.


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 705 - 707
1 Jun 2017
Witt JD Haddad FS


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 112 - 112
1 Jan 2017
Valente G Crimi G Cavazzuti L Benedetti M Tassinari E Taddei F
Full Access

In the congenital hip dysplasia, patients treated with total hip replacement (THR) often report persistent disability and pain, with unsatisfactory function and quality of life. A major challenge is to restore the center of rotation of the hip and a satisfactory abduction function [1]. The position of the acetabular cup during THR might be crucial, as it affects abduction moment and motor function. Recently, several software systems have been developed for surgical planning of endoprostheses. Previously developed software called HipOp [2], which is routinely used in clinics, allows surgeons to properly position the prosthetic components into the 3D space of CT data. However, this software did not allow to simulate the articular range of motion and the condition of the abductor muscles. Our aim is to present HipOpCT, an advanced version of the software that includes 3D musculoskeletal planning, through the application to hip dysplasia patients to add knowledge in the diagnosis and treatment of such patients who need THR. 40 hip dysplasia patients received pre-operative CT scanning of pelvis and thighs and had their THR surgery planned using HipOpCT. The base planning includes import of CT data, positioning of prosthetic components interactively through multimodal display, as well as geometrical measurements of the implant and the host bone. The advanced planning additionally includes evaluation of femoro-acetabular impingement and calculation of leg lengths, abductor muscle lengths and lever arms through the automatic creation of a musculoskeletal model. The musculoskeletal parameters in all patients were calculated during the surgical planning, and the data were processed to evaluate pre- and post-operative differences in leg length discrepancy, length and lever arm of the abductor muscles, and how these parameters correlated. The surgical planning led to an increase in the operated leg length of 7.6 ± 5.7 mm. The variation in abductors lever arm was −0.9% ± 4.8% and significantly correlated with the variation in the operated leg length (r = −0.49), pre-operative leg length discrepancy (r = 0.32) and variation in abductors length (r = −0.32). The variation in abductors length was 6.6% ± 5.5%, and significantly correlated with the variation in the operated leg length (r = 0.92), post-operative leg length discrepancy (r = 0.37), pre-operative abductors length (r = −0.37) and variation in abductors lever arm (r = −0.32). The increase in the operated leg length was strongly correlated to the increase in abductor muscle length. Conversely, abductor lever arms slightly decreased on average, and were inversely correlated to leg length variation and abductors lengths. This interactive technology for surgical planning represent a powerful tool for orthopaedic surgeons to consider the best muscle reconstruction, and for rehabilitation specialists to achieve the best functional recovery based on biomechanical outcomes. In a parallel study, we are investigating how these advanced planning is reflected onto the function, pain and biomechanical outcome after a rehabilitation protocol is completed


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 126 - 126
1 May 2016
Eid M
Full Access

Management of the young adult hip pathologies is a special entity in orthopaedic surgical practice that needs special emphasis and consideration. A wide range of pathological and traumatic conditions occur in the young adult hip that lead to functional disability and the development of premature osteoarthritis. Proper surgical interference when the hip is still in the pre-arthritic stage restores function to the young hip and protects it from early degenerative changes, and hence the anticipated need for future joint replacement surgery is prevented. Accurate estimation of the biomechanical error combined with careful understanding of the hip joint biology is the cornerstone of success of any hip preservation surgery ever performed to save the young adult hip. Safe surgical hip dislocation approach was adopted as one of the tools in the hands of the hip preservation surgeon to treat a broad spectrum of intra-articular hip pathologies like Perthes disease and severe forms of slipped capital femoral epiphysis (SCFE). Osteo-chondroplasty at the head-neck junction with relative femoral neck lengthening for Perthes disease, and Subcapital re-orientation of severe SCFE based on its retinacular vascular pedicle are often performed via the surgical hip dislocation approach. The approach is also useful with certain types of acetabular fractures that enables fixation of dual-column fractures via single approach with intra-articular visualization for the accuracy of reduction and hardware placement. The 4 cm mini-open direct anterior approach is ideal for the surgical treatment of cases with cam and/or pincer types of femoro-acetabular impingement. Peri-articular osteotomies performed either on the acetabular or the femoral sides of the hip joint are extremely useful in the correction of the biomechanical error that led to an existing hip pathology. Periacetabular osteotomies are commonly performed to treat dysplasia of the young hip. Proximal femoral osteotomies are commonly performed to treat a wide range of hip pathologies including non-unions of femoral neck fractures in the young adult. Correction of the biomechanical error at the proper timing ensures normalization of the hip joint loading conditions and range of motion that leads to reversal of the pathologic process and prevention of osteoarthritis. A hip joint replacement would have an unknown but certainly a finite life, whereas a young hip that has healed after hip preservation surgery would definitely last for a lifetime


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 37 - 37
1 Feb 2016
Hamada H Takao M Uemura K Sakai T Nishii T Sugano N
Full Access

Rotational acetabular osteotomy (RAO) for developmental dysplasia of the hip (DDH) may not restore normal hip range of motion (ROM) due to the inherent deformity of the hip and it may lead to femoro-acetabular impingement. The purpose of this study was to investigate morphological factors of the pelvis and femur influencing on simulated ROM after RAO with a fixed target for femoral head coverage. We retrospectively reviewed CT images of 52 DDHs with an average lateral centre edge angle (CEA) of 7.9° (−12° to 19°). After virtual RAO with 30° of lateral CEA and 55° of anterior CEA producing femoral head coverage similar to that of the normal hips, we measured simulated flexion ROM using pelvic and femoral computer models reconstructed from the CT images. Pelvic sagittal inclination, acetabular anteversion, lateral CEA, femoral neck anteversion, femoral neck shaft angle (FNSA), alpha angle and the position of the anterior inferior iliac spine (AIIS) were investigated as morphological factor. When the most prominent point of the AIIS existed more distally than the cranial tip of the acetabular joint line in a lateral view of the pelvis model in supine position, the subjects were defined as AIIS-Type1; the remaining subjects were defined as Type 2. There were 10 hips with Type 1 and 42 hips with Type 2 AIIS. The Kappa value of inter-observer reproducibility to classify AIIS was 0.82. Multiple regression analyses were performed to analyse the relationship between ROM and the morphological parameters. We also analysed the relationship between the probability of flexion ROM being less than 110° and the factors which influenced on flexion ROM. FNSA and AIIS-Type independently influenced on simulated flexion ROM after RAO (standard regression coefficient: −0.51 and 0.37, respectively. p&lt; 0.001). The multiple correlation coefficient was 0.68. Flexion ROM after RAO with a fixed femoral head coverage similar to that of the normal hips ranged from 95° to 141° with an average of 121°±8°. The probability of ROM being less than 110° was significantly higher in subjects with AIIS-Type 1 than in those with Type 2 (odds ratio: 13.3, p&lt;0.01). It was also significantly higher in subjects with more than 135° of FNSA than in those with less than 135° of FNSA (odds ratio: 9.5, p&lt;0.05). FNSA and the type of AIIS influenced on flexion ROM after RAO with approximately 40° of variation in spite of a fixed target for femoral head coverage. A large FNSA and a distal positioning of AIIS were independently associated with smaller flexion ROM after RAO


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1204 - 1213
1 Sep 2015
Lazaro LE Klinger CE Sculco PK Helfet DL Lorich DG

This study investigates and defines the topographic anatomy of the medial femoral circumflex artery (MFCA) terminal branches supplying the femoral head (FH). Gross dissection of 14 fresh–frozen cadaveric hips was undertaken to determine the extra and intracapsular course of the MFCA’s terminal branches. A constant branch arising from the transverse MFCA (inferior retinacular artery; IRA) penetrates the capsule at the level of the anteroinferior neck, then courses obliquely within the fibrous prolongation of the capsule wall (inferior retinacula of Weitbrecht), elevated from the neck, to the posteroinferior femoral head–neck junction. This vessel has a mean of five (three to nine) terminal branches, of which the majority penetrate posteriorly. Branches from the ascending MFCA entered the femoral capsular attachment posteriorly, running deep to the synovium, through the neck, and terminating in two branches. The deep MFCA penetrates the posterosuperior femoral capsular. Once intracapsular, it divides into a mean of six (four to nine) terminal branches running deep to the synovium, within the superior retinacula of Weitbrecht of which 80% are posterior. Our study defines the exact anatomical location of the vessels, arising from the MFCA and supplying the FH. The IRA is in an elevated position from the femoral neck and may be protected from injury during fracture of the femoral neck. We present vascular ‘danger zones’ that may help avoid iatrogenic vascular injury during surgical interventions about the hip.

Cite this article: Bone Joint J 2015;97-B:1204–13.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 25 - 25
1 Dec 2013
Chan N Fuchs C Valle R Adickes M Noble P
Full Access

Introduction:. Femoro-acetabular impingement reduces the range of motion of the hip joint and is thought to contribute to hip osteoarthritis. Surgical treatments attempt to restore hip motion through resection of bone at the head-neck junction. Due to the broad range of morphologies of FAI, the methodology of osteochondroplasty has been difficult to standardize and often results in unexpected outcomes, ranging from minimal improvement in ROM to excessive head resection with loss of cartilage and even neck fracture. In this study we test whether a standardized surgical plan based on a pre-determined resection path can restore normal anatomy and ROM to the CAM-impinging hip. Methods:. Computer models of twelve femora with classic signs of cam-type FAI were reconstructed from CT scans. The femoral shaft and neck were defined with longitudinal axes and the femoral head by a sphere of best fit. Boundaries defining the maximum extent of anterior resection were constructed: (i) superiorly and inferiorly along the anterior femoral neck at 12:30 and 5:30 on the clock face, approximating the locations of the vascularized synovial folds; (ii) around the head-neck junction along the edge of the articular cartilage; and (iii) at the base of the neck, perpendicular to the neck axis, 20–30 mm lateral to the articular edge. All four boundaries were used to form 3 alternative resection surfaces that provided resection depths of 2 mm (small), 4 mm (medium), and 6 mm (large) at the location of the cam lesion. Solid models of each femur after virtual osteochondroplasty were created by Boolean subtraction of each of the resection surfaces from the original femoral model. For each depth of neck resection, we measured the following: (i) alpha angle, (ii) anterior offset of the head-neck junction, and (iii) volume of bone removed. Before and after each resection, we also measured the maximum internal rotation of the hip in 90° flexion and 0° abduction. Results:. The initial alpha angles of the twelve femora averaged 63.8°, with corresponding average anterior head-neck offset of 5.8 mm and average maximum internal rotation of 16.3°. Impingement prevented one specimen from attaining the initial position of 90° flexion and 0° abduction. Implementation of pre-operative plans demonstrated that normal alpha angles (<55°) could be achieved using resection depths of 2 mm, 4 mm, and 6 mm (small: 48.8°, medium: 40.8°, large: 35.3°). The corresponding changes in internal rotation were +7.7° (to 24.0°; p < 0.001), +11.8° (to 28.1°; p < 0.001), and +14.7° (to 31°; p < 0.001), with anterior offsets of 8.0 mm, 9.9 mm, and 11.2 mm, respectively. The corresponding volume of resected bone ranged from 0.57 cm. 3. to 3.20 cm. 3. . Conclusions:. Our study shows that a standardized method of pre-operative planning may enable surgeons to restore normal hip ROM, alpha angles, and anterior offsets through pre-determined bony resection. This method shows how osteochondroplasty can be customized to each deformity, thus removing only the necessary amount of bone to correct each abnormality. We believe implementation of our boundaries and method will enable surgeons to consistently and quantitatively reproduce and teach osteochondroplasty, and that this method is readily adaptable to computerized machining of the femur


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLII | Pages 1 - 1
1 Sep 2012
Phillips A Bartlett G Norton M Fern D
Full Access

The purpose of this study was to investigate whether patients who had had excision of the Ligamentum Teres as part of a surgical hip dislocation for femoro-acetabular impingement exhibited symptoms of acute Ligamentum Teres rupture post-operatively. Recent reports in the literature suggest that injury to the Ligamentum Teres can cause instability, severe pain and inability to walk. We present the results of a postal questionnaire to 217 patients who had undergone open surgical hip dislocation for femoro-acetabular impingement where the LT was excised. This included seven patients who had undergone bilateral surgery. The questionnaire was designed to enquire about specific symptoms attributed to LT injuries in the literature; gross instability, incomplete reduction, inability to bear weight and mechanical symptoms. 161 patients responded (75%), with a total of 168 (75%) questionnaires regarding 224 hips completed. There were 104 females and 64 males. Median age was 34 and median follow-up was 52 months. All patients were found to have cam deformities, 72% (n=121) had associated labral tears. All patients were able to fully weight bear after surgery. 77% experienced no groin pain and 61% experienced no pain on exercise. 35% of patients experienced popping and locking in their operated hip and 24% had subjective feeling of their hip giving way. Oxford Hip scores and Nonarthritic Hip scores improved by 12 and 28 points respectively (n=47). Our results show that the symptoms of pain and instability described with LT pathology can be present but are by no means universal. This leads us to conclude that their symptoms may be attributed to labral pathology which is frequently noted to coexist


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 180 - 180
1 Sep 2012
Banks D Boden R Mehan R Fehily M
Full Access

Background

Magnetic resonance arthrography is the current method of choice for investigating patients with a clinical diagnosis of femoroacetabular impingement prior to performing hip arthroscopy. The aim of our study was to assess the efficacy of this investigation by comparing the findings of MR arthrogram with those found at arthroscopy, with reference to labral tears and chondral damage.

Methods

A prospective trial to investigate the sensitivity, specificity, accuracy and predictive value of MRA for diagnosis of labral tears and chondral defects. Over a 25-month period 69 hips undergoing hip arthroscopy were investigated with MRA prior to the definitive operative procedure. MRA findings were compared to the intraoperative findings.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 116 - 116
1 Jun 2012
Konan S Rayan F Meermans G Witt J Haddad FS
Full Access

Introduction. In recent years, there has been a significant advancement in our understanding of femoro-acetabular impingement and associated labral and chondral pathology. Surgeons worldwide have demonstrated the successful treatment of these lesions via arthroscopic and open techniques. The aim of this study is to validate a simple and reproducible classification system for acetabular chondral lesions. Methods. In our classification system, the acetabulum is first divided into 6 zones as described by Ilizalithurri VM et al [Arthroscopy 24(5) 534-539]. The cartilage is then graded as 0 to 4 as follows: Grade 0 – normal articular cartilage lesions; Grade 1 softening or wave sign; Grade 2 - cleavage lesion; Grade 3 - delamination and Grade 4 –exposed bone. The site of the lesion is further typed as A, B or C based on whether the lesion is 1/3 distance from acetabular rim to cotyloid fossa, 1/3 to 2/3 distance from acetabular rim to cotyloid fossa and > 2/3 distance from acetabular rim to cotyloid fossa. For validating the classification system, six surgeons reviewed 14 hip arthroscopy video clips. All surgeons were provided with written explanation of our classification system. Each surgeon then individually graded the cartilage lesion. A single observer then compared results for observer variability using kappa statistics. Results. We observed a high inter-observer reliability of the classification system with a kappa coefficient of 0.89 (range 0.78 to 0.91) and high intra-observer reliability with a kappa coefficient of 0.91 (range 0.89 to 0.96). In conclusion we have developed a simple reproducible classification system for acetabular cartilage lesions seen at hip arthroscopy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 79 - 79
1 May 2012
Bucknill A de Steiger R
Full Access

Perthes disease often leaves young adults with hip joint incongruency due to femoral head asphericity, (extra-articular extrusion and superior flattening). This causes femoro-acetabular impingement, a reduced range of movement and early degenerative change. We report a novel method for restoration of femoral head sphericity and femoro-acetabular congruency. Two males (aged 21 and 22 years) presented with groin pain and severe hip stiffness after childhood Perthes disease. Imaging confirmed characteristic saddle shaped deformities of the femoral head, with cartilage loss overlying a central depression in the superior section of the head. A new method of treatment was proposed. Both cases were treated in the same manner. A surgical dislocation was performed with a trochanteric flip osteotomy. The extra-articular bump was removed with osteotomes and a burr to reduce femoro- acetabular impingement. The sphericity of the femoral head was restored using a HemiCap partial re-surfacing (Arthrosurface, MA, USA). The radius of the implant was selected to match that of the acetabulum. Restoration of the height of the flattened portion of the weight-bearing surface of the femoral head reduces abnormal loading of the acetabular articular cartilage by improving congruency of the joint. Both patients recovered without incident and were mobilised with crutches, restricted to touch weight-bearing for six weeks to protect union of the trochanteric osteotomy. At a minimum of three year follow-up both patients had sustained improved range of movement, pain and Oxford hip score. Repeated imaging shows no evidence of joint space narrowing or loosening at this stage. We conclude that this novel treatment functions well in the short term. Further surveillance is on-going to confirm that this treatment results in improved long term durability of the natural hip joint after Perthes disease


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 31 - 31
1 Mar 2012
Griffin D Karthikeyan S
Full Access

Background. Femoro-acetabular impingement (FAI) is increasingly recognised as a cause of mechanical hip symptoms in sportspersons. In femoro-acetabular impingement abnormal contact occurs between the proximal femur and the acetabular rim during terminal motion of the hip as a result of abnormal morphologic features involving the proximal femur (CAM) or the acetabulum (Pincer) or both (Mixed) leading to lesions of acetabular labrum and the adjacent acetabular cartilage. It is likely that it is a cause of early hip degeneration. Ganz developed a therapeutic procedure involving trochanteric flip osteotomy and dislocation of the hip, and have reported good results. We have developed an arthroscopic technique to reshape the proximal femur and remove prominent antero-superior acetabular rim thereby relieving impingement. Methods. Twelve patients presented with mechanical hip symptoms and had demonstrable cam-type (eight patients) or mixed (four patients) FAI on radially-reconstructed MR arthrography, were treated by arthroscopic femoral osteochondroplasty and acetabular rim resection if indicated. All patients were competing at the highest level in their respective sport (football, rugby and athletics). All patients were followed up and post-operative Non-Arthritic Hip Scores (NAHS, maximum possible score 100) compared with pre-operative NAHS. Results. There were no complications. All patients were asked to be partially weight-bearing with crutches for four weeks and most returned to training within six weeks. All of them returned to competitive sports by 14 weeks. Symptoms improved in all patients, with mean NAHS improving from 72 pre-operatively to 97 at 3 months. Conclusion. Arthroscopic reshaping to relieve FAI is feasible, safe and reliable. However it is technically difficult and time-consuming. The results are comparable to open dislocation and debridement, but avoid the prolonged disability and the complications associated with trochanteric flip osteotomy. This is important in elite athletes as they can return to training and competitive sports much quicker with less morbidity


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 407 - 407
1 Nov 2011
Song Y Giori NJ Ito H Safran MR
Full Access

Cam type femoro-acetabular impingement is defined by a reduced femoral head-neck offset and by excessive bone at antero-lateral femoral head-neck junction. Reconstruction of the femoral head-neck offset by removing the femoral bony prominence is a common treatment for cam type impingement. In many cases, the goal of this treatment is to make the antero-lateral head-neck offset symmetrical to the postero-lateral offset. However, guidelines for bony removal are not well established. The objective of this study is to examine if the antero-lateral and postero-lateral femoral offsets are symmetrical in normal healthy hips. CT analyses of the anatomic geometry of the femoral head and neck were performed. Hip joints with any evidence of cartilage defects and impingement were excluded. Eight cadaveric hips (3 right and 5 left hips) were examined. The average age of the cadavers was 65.1±15.1 years. A peripheral QCT scanner was used which provided 0.2 x 0.2 x 2 mm resolution. To improve the resolution of the final result, each hip joint was scanned in three different scanning directions (sagittal, coronal, and axial scanning planes). A custom imaging fixture was built to position a joint sample in three different scanning planes and a custom irrigation system supplied saline to protect the sample from dehydration. A custom segmentation program was developed to delineate the bony contours of the femoral head and neck in a fully automated manner. The segmentation data from the three differenent imaging planes were merged and a 3D solid model of each hip joint was created. The prominence of the femoral head was determined by the distance of the 3D head from an ideal sphere fitted into the 3D model. All the femoral heads were found to be asymmetric. Prominence of posteromedial femoral head averaged 0.105 mm more than the antero-medial femoral head. The antero-lateral head-neck junction was also found to be more prominent than the postero-lateral head-neck junction by an average of 1.09 mm. Asymmetry in the femoral head and femoral head-neck junction was a general finding in normal hip joints. The conventional approach of symmetric reconstruction of femoral head-neck junction may result in unnecessary removal of bone at the antero-lateral head-neck junction and potentially increase the risk of femoral neck fracture


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 304 - 304
1 Jul 2011
Konan S Rayan F Meermans G Witt J Haddad F
Full Access

Introduction: In recent years, there has been a significant advancement in our understanding of femoro-acetabular impingement and associated labral and chondral pathology. Surgeons worldwide have demonstrated the successful treatment of these lesions via arthroscopic and open techniques. The aim of this study is to validate a simple and reproducible classification system for acetabular chondral lesions. Methods: In our classification system, the acetabulum is first divided into 6 zones as described by Ilizalithurri VM et al [Arthroscopy 24(5) 534–539]. The cartilage is then graded as 0 to 4 as follows: Grade 0 – normal articular cartilage lesions; Grade 1 softening or wave sign; Grade 2 – cleavage lesion; Grade 3 – delamination and Grade 4 -exposed bone. The site of the lesion is further typed as A, B or C based on whether the lesion is 1/3 distance from acetabular rim to cotyloid fossa, 1/3 to 2/3 distance from acetabular rim to cotyloid fossa and > 2/3 distance from acetabular rim to cotyloid fossa. For validating the classification system, six surgeons reviewed 14 hip arthroscopy video clips. All surgeons were provided with written explanation of our classification system. Each surgeon then individually graded the cartilage lesion. A single observer then compared results for observer variability using kappa statistics. Results: We observed a high inter-observer reliability of the classification system with a kappa coefficient of 0.89 (range 0.78 to 0.91) and high intra-observer reliability with a kappa coefficient of 0.91 (range 0.89 to 0.96). Discussion: In conclusion we have developed a simple reproducible classification system for acetabular cartilage lesions