Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.Aims
Methods
The June 2024 Wrist & Hand Roundup360 looks at: One-year outcomes of the anatomical front and back reconstruction for scapholunate dissociation; Limited intercarpal fusion versus proximal row carpectomy in the treatment of SLAC or SNAC wrist: results after 3.5 years; Prognostic factors for clinical outcomes after arthroscopic treatment of traumatic central tears of the triangular fibrocartilage complex; The rate of nonunion in the MRI-detected occult scaphoid fracture: a multicentre cohort study; Does correction of carpal malalignment influence the union rate of scaphoid nonunion surgery?; Provision of a home-based video-assisted therapy programme in thumb carpometacarpal arthroplasty; Is replantation associated with better hand function after traumatic hand amputation than after revision amputation?; Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review.
Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using
Anterior approach total hip arthroplasty (AA-THA) has a steep learning curve, with higher complication rates in initial cases. Proper surgical case selection during the learning curve can reduce early risk. This study aims to identify patient and radiographic factors associated with AA-THA difficulty using Machine Learning (ML). Consecutive primary AA-THA patients from two centres, operated by two expert surgeons, were enrolled (excluding patients with prior hip surgery and first 100 cases per surgeon). K- means prototype clustering – an
Aims. Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA. Methods. First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used
Cite this article:
The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction. Cite this article:
Primary total hip replacement (THR) is a successful and common operation which orthopaedic trainees must demonstrate competence in prior to completion of training. This study aimed to determine the impact of operating surgeon grade and level of supervision on the incidence of 1-year patient mortality and all-cause revision following elective primary THR in a large UK training centre. National Joint Registry (NJR) data for all elective primary THR performed in a single University Teaching Hospital from 2005–2020 were used, with analysis performed on the 15-year dataset divided into 5-year temporal periods (B1 2005–2010, B2 2010–2015, B3 2015–2020). Outcome measures were mortality and revision surgery at one year, in relation to lead surgeon grade, and level of supervision for trainee-led operations. 9999 eligible primary THR were undertaken, of which 5526 (55.3%) were consultant led (CL), and 4473 (44.7%) trainees led (TL). Of TL, 2404 (53.7%) were non-consultant supervised (TU), and 2069 (46.3%) consultant supervised (TS). The incidence of 1-year patient mortality was 2.05% (n=205), and all-cause revision was 1.11% (n=111). There was no difference in 1-year mortality between TL (n=82, 1.8%) and CL (n=123, 2.2%) operations (p=0.20, OR 0.78, CI 0.55–1.10). The incidence of 1-year revision was not different for TL (n=56, 1.3%) and CL (n=55, 1.0%) operations (p=0.15, OR 1.37, CI 0.89–2.09). Overall, there was no temporal change for either outcome measure between TL or CL operations. A significant increase in revision within 1-year was observed in B3 between TU (n=17, 2.7%) compared to CL (n=17, 1.0%) operations (p=0.005, OR 2.81, CI 1.35–5.87). We found no difference in 1-year mortality or 1-year all-cause revision rate between trainee-led primary THR and consultant-led operations over the entire fifteen-year period. However,
The aim of this study was to determine the effectiveness of home-based prehabilitation on pre- and postoperative outcomes in participants awaiting total knee (TKA) and hip arthroplasty (THA). A systematic review with meta-analysis of randomized controlled trials (RCTs) of prehabilitation interventions for TKA and THA. MEDLINE, CINAHL, ProQuest, PubMed, Cochrane Library, and Google Scholar databases were searched from inception to October 2022. Evidence was assessed by the PEDro scale and the Cochrane risk-of-bias (ROB2) tool.Aims
Methods
Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits. ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering,
Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of
Access to health care, including physiotherapy, is increasingly occurring through virtual formats. At-home adherence to physical therapy programs is often poor and few tools exist to objectively measure low back physiotherapy exercise participation without the direct supervision of a medical professional. The aim of this study was to develop and evaluate the potential for performing automatic,
An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise. A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.Aims
Methods
The February 2023 Knee Roundup. 360. looks at: Machine-learning models: are all complications predictable?; Positive cultures can be safely ignored in revision arthroplasty patients that do not meet the 2018 International Consensus Meeting Criteria; Spinal versus general anaesthesia in contemporary primary total knee arthroplasty; Preoperative pain and early arthritis are associated with poor outcomes in total knee arthroplasty; Risk factors for infection and revision surgery following patellar tendon and quadriceps tendon repairs; Supervised versus
Giant cell tumors of bone (GCTs) are locally aggressive tumors with recurrence potential that represent up to 10% of primary tumors of the bone. GCTs pathogenesis is driven by neoplastic mononuclear stromal cells that overexpress receptor activator of nuclear factor kappa-B/ligand (RANKL). Treatment with specific anti-RANKL antibody (denosumab) was recently introduced, used either as a neo-adjuvant in resectable tumors or as a stand-alone treatment in unresectable tumors. While denosumab has been increasingly used, a percentage of patients do not improve after treatment. Here, we aim to determine molecular and histological patterns that would help predicting GCTs response to denosumab to improve personalized treatment. Nine pre-treatment biopsies of patients with spinal GCT were collected at 2 centres. In 4 patients denosumab was used as a neo-adjuvant, 3 as a stand-alone and 2 received denosumab as adjuvant treatment. Clinical data was extracted retrospectively. Total mRNA was extracted by using a formalin-fixed paraffin-embedded extraction kit and we determined the transcript profile of 730 immune-oncology related genes by using the Pan Cancer Immune Profiling panel (Nanostring). The gene expression was compared between patients with good and poor response to Denosumab treatment by using the nSolver Analysis Software (Nanostring). Immunohistochemistry was performed in the tissue slides to characterize cell populations and immune response in CGTs. Two out of 9 patients showed poor clinical response with tumor progression and metastasis. Our analysis using
Factors associated with high mortality rates in geriatric hip fracture patients are frequently unmodifiable. Time to surgery, however, might be a modifiable factor of interest to optimize clinical outcomes after hip fracture surgery. This study aims to determine the influence of postponement of surgery due to non-medical reasons on clinical outcomes in acute hip fracture surgery. This observational cohort study enrolled consecutively admitted patients with a proximal femoral fracture, for which surgery was performed between 1 January 2018 and 11 January 2021 in two level II trauma teaching hospitals. Patients with medical indications to postpone surgery were excluded. A total of 1,803 patients were included, of whom 1,428 had surgery < 24 hours and 375 had surgery ≥ 24 hours after admission.Aims
Methods
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
Aims. We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. Methods. Five datasets were obtained from the Gene Expression Omnibus database.
The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS). A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.Aims
Methods
Total hip arthroplasties (THAs) are performed by surgeons at various stages in training with varying levels of supervision, but we do not know if this is safe practice with comparable outcomes to consultant-performed THA. Our aim was to examine the association between surgeon grade, the senior supervision of trainees, and the risk of revision following THA. We performed an observational study using National Joint Registry (NJR) data. We included adult patients who underwent primary THA for osteoarthritis, recorded in the NJR between 2003 and 2016. Exposures were operating surgeon grade (consultant or trainee) and whether or not trainees were directly supervised by a scrubbed consultant. Outcomes were all-cause revision and the indication for revision up to ten years. We used methods of survival analysis, adjusted for patient, operation, and healthcare setting factors.Aims
Methods