Advertisement for orthosearch.org.uk
Results 1 - 20 of 158
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 37 - 37
14 Nov 2024
Zderic I Kraus M Axente B Dhillon M Puls L Gueorguiev B Richards G Pape HC Pastor T Pastor T
Full Access

Introduction. Distal triceps tendon rupture is related to high complication rates with up to 25% failures. Elbow stiffness is another severe complication, as the traditional approach considers prolonged immobilization to ensure tendon healing. Recently a dynamic high-strength suture tape was designed, implementing a silicone-infused core for braid shortening and preventing repair elongation during mobilization, thus maintaining constant tissue approximation. The aim of this study was to biomechanically compare the novel dynamic tape versus a conventional high-strength suture tape in a human cadaveric distal triceps tendon rupture repair model. Method. Sixteen paired arms from eight donors were used. Distal triceps tendon rupture tenotomies and repairs were performed via the crossed transosseous locking Krackow stitch technique for anatomic footprint repair using either conventional suture tape (ST) or novel dynamic tape (DT). A postoperative protocol mimicking intense early rehabilitation was simulated, by a 9-day, 300-cycle daily mobilization under 120N pulling force followed by a final destructive test. Result. Significant differences were identified between the groups regarding the temporal progression of the displacement in the distal, intermediate, and proximal tendon aspects, p<0.001. DT demonstrated significantly less displacement compared to ST (4.6±1.2mm versus 7.8±2.1mm) and higher load to failure (637±113N versus 341±230N), p≤0.037. DT retracted 0.95±1.95mm after each 24-hour rest period and withstood the whole cyclic loading sequence without failure. In contrast, ST failed early in three specimens. Conclusion. From a biomechanical perspective, DT revealed lower tendon displacement and greater resistance in load to failure over ST during simulated daily mobilization, suggesting its potential for earlier elbow mobilization and prevention of postoperative elbow stiffness


Bone & Joint 360
Vol. 13, Issue 5 | Pages 34 - 37
1 Oct 2024

The October 2024 Shoulder & Elbow Roundup360 looks at: Proximal humeral fractures with vascular compromise; Outcomes and challenges of revision arthroscopic rotator cuff repair: a systematic review; Evaluating treatment effectiveness for lateral elbow tendinopathy: a systematic review and network meta-analysis; Tendon transfer techniques for irreparable subscapularis tears: a comparative review; Impact of subscapularis repair in reverse shoulder arthroplasty; Isolated subscapularis tears strongly linked to shoulder pseudoparesis; Nexel and Coonrad-Morrey total elbow arthroplasties show comparable revision rates in New Zealand study; 3D MRI matches 3D CT in assessing bone loss and shoulder morphology in dislocation cases.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 474 - 484
10 Sep 2024
Liu Y Li X Jiang L Ma J

Aims

Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration.

Methods

Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.

Cite this article: Bone Joint J 2024;106-B(9):978–985.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 29 - 29
2 Jan 2024
Klatte-Schulz F Gehlen T Bormann N Tsitsilonis S Manegold S Schmock A Melzer J Schmidt-Bleek K Geißler S Duda G Sawitzki B Wildemann B
Full Access

Early identification of patients at risk for impaired tendon healing and corresponding novel therapeutic approaches are urgent medical needs. This study aimed to clarify the role of CD3+ T-cells during acute Achilles tendon (AT) healing. Blood and hematoma aspirate were taken from 26 patients during AT reconstruction, and additional blood samples were obtained during clinical follow-up at 6, 26 and 52 weeks after surgery. T-cell subsets were analyzed by flow cytometry using CD3, CD4, CD8, CD11a, CD57 and CD28 antibodies. Clinical follow-up included functional tests, MRI assessments, and subjective questionnaires. In vitro, the functional behavior of patient-derived tenocytes was investigated in co-cultures with autologous unpolarized CD4+ or CD8+ T-cells, or IFNy-polarized CD8+ or IL17-polarized CD4+ Tcells (n=5-6). This included alterations in gene expression (qPCR), MMP secretion (ELISA), migration rate (scratch wound healing assay) or contractility (collagen gels). Analysis revealed that elevated CD4+ T-cell levels and reduced CD8+ T-cell levels (increased CD4/CD8 ratio) in hematoma aspirate and pre-operative blood were associated with inferior clinical outcomes regarding pain and function at 26 and 52 weeks. Increased levels of CD8+ -memory T-cell subpopulations in blood 6 weeks after surgery were associated with less tendon elongation. In vitro, tenocytes showed increased MMP1/2/3 levels and collagen III/I ratio in co-culture with unpolarized and/or IL17-polarized CD4+ T-cells compared to unpolarized CD8+ T-cells. This coincided with increased IL17 receptor expression in tenocytes co-cultured with CD4+ T-cells. Exposure of tenocytes to IL17-polarized CD4+ T-cells decreased their migration rate and increased their matrix contractility, especially compared to IFNy-polarized CD8+ T-cells. The CD4+ /CD8+ T-cell ratio could serve as prognostic marker for early identification of patients with impaired AT healing potential. Local reduction of CD4+ T-cell levels or their IL17 secretion represent a potential therapeutic approach to improve AT healing and to prevent weakening of the tendon ECM


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 27 - 27
2 Jan 2024
Smith RK
Full Access

Stem cells represent an exciting biological therapy for the management of many musculoskeletal tissues that suffer degenerative disease and/or where the reparative process results in non-functional tissue (‘failed healing’). The original hypothesis was that implanted cells would differentiate into the target tissue cell type and synthesise new matrix. However, this has been little evidence that this happens in live animals compared to the laboratory, and more recent theories have focussed on the immunomodulatory effects via the release of paracrine factors that can still improve the outcome, especially since inflammation is now considered one of the central processes that drive poor tendon healing. Because of the initial ‘soft’ regulatory environment for the use of stem cells in domestic mammals, bone and fat-derived stem cells quickly established themselves as a useful treatment for naturally occurring musculoskeletal diseases in the horse more than 20 years ago (Smith, Korda et al. 2003). Since the tendinopathy in the horse has many similarities to human tendinopathy, we propose that the following challenges and, the lessons learnt, in this journey are highly relevant to the development of stem cells therapies for human tendinopathy:. Source – while MSCs can be recovered from many tissues, the predominant sources for autologous MSCs have been bone and fat. Other sources, including blood, amnion, synovium, and dental pulp have also been commercialised for allogenic treatments. Preparation – ex vivo culture requires transport from a licensed laboratory while ‘minimally manipulated’ preparations can be prepared patient-side. Cells also need a vehicle for transport and implantation. Delivery – transport of cells from the laboratory to the clinic for autologous ex vivo culture techniques; implantation technique (usually by ultrasound-guided injection to minimise damage to the cells (or, more rarely, incorporated into a scaffold). They can also be delivered by regional perfusion via venous or arterial routes. Retention – relatively poor although small numbers of cells do survive for at least 5 months. Immediate loss to the lungs if the cells are administered via vascular routes. Synovially administered cells do not engraft into tendon. Adverse effects – very safe although needle tracts often visible (but do not seen to adversely affect the outcome). Allogenic cells require careful characterisation for MHC Class II antigens to avoid anaphylaxis or reduced efficacy. Appropriate injuries to treat – requires a contained lesion when administered via intra-lesional injection. Intrasynovial tendon lesions are more often associated with surface defects and are therefore less appropriate for treatment. Earlier treatment appears to be more effective than delayed, when implantation by injection is more challenging. Efficacy - beneficial effects shown at both tissue and whole animal (clinical outcome) level in naturally-occurring equine tendinopathy using bone marrow-derived autologous MSCs Recent (licenced) allogenic MSC treatment has shown equivalent efficacy while intra-synovial administration of MSCs is ineffective for open intra-synovial tendon lesions. Regulatory hurdles – these have been lighter for veterinary treatments which has facilitated their development. There has been greater regulation of commercial allogenic MSC preparations which have required EMA marketing authorisation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 129 - 129
2 Jan 2024
Gehwolf R
Full Access

Tendons are characterised by an inferior healing capacity when compared to other tissues, ultimately resulting in the formation of a pathologically altered extracellular matrix structure. Although our understanding of the underlying causes for the development and progression of tendinopathies remains incomplete, mounting evidence indicates a coordinated interplay between tendon-resident cells and the ECM is critical. Our recent results demonstrate that the matricellular protein SPARC (Secreted protein acidic and rich in cysteine) is essential for regulating tendon tissue homeostasis and maturation by modulating the tissue mechanical properties and aiding in collagen fibrillogenesis [1,2]. Consequently, we speculate that SPARC may also be relevant for tendon healing. In a rat patellar tendon window defect model, we investigated whether the administration of recombinant SPARC protein can modulate tendon healing. Besides the increased mRNA expression of collagen type 1 and the downregulation of collagen type 3, a robust increase in the expression of pro-regenerative fibroblast markers in the repair tissue after a single treatment with rSPARC protein was observed. Additionally, pro-fibrotic markers were significantly decreased by the administration of rSPARC. Determination of structural characteristics was also assessed, indicating that the ECM structure can be improved by the application of rSPARC protein. Therefore, we believe that SPARC plays an important role for tendon healing and the application of recombinant SPARC to tendon defects has great potential to improve functional tendon repair


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 128 - 128
2 Jan 2024
Ackerman J
Full Access

Tendon injuries present a major clinical challenge, as they necessitate surgical intervention and are prone to fibrotic progression. Despite advances in physical therapy and surgical technique, tendons fail to return to full native functioning, underlining the need for a biological therapeutic to improve tendon healing. Myofibroblasts are activated fibroblasts that participate in the proliferative and remodeling phases of wound healing, and while these matrix-producing cells are essential for proper healing, they are also linked to fibrotic initiation. A subset of tenocytes has been shown to give rise to the myofibroblast fate, and potentially contribute to fibrotic tendon healing. A viable anti-fibrotic therapy in other tissues has been reprogramming the fibroblast-myofibroblast differentiation route, avoiding a more pro-fibrotic myofibroblast phenotype. Thus, defining the molecular programs that underlie both physiological and pathological tendon healing is critical for the development of potential pharmacologic treatments. Towards that end, we have taken advantage of spatial transcriptomics, using the tenocyte marker Scleraxis as a tool, and have outlined three major spatiotemporally distinct tenocyte differentiation trajectories (synthetic, proliferative, and reactive) following acute tendon injury in mouse FDL. We have further outlined key transcriptional controls that may be manipulated to alter the differentiation process and influence the resulting myofibroblast phenotype, thereby promoting regenerative tendon healing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 72 - 72
2 Jan 2024
Loiselle A
Full Access

During aging, tendons demonstrate substantial disruptions in homeostasis, leading to impairments in structure-function. Impaired tendon function contributes to substantial declines quality of life during aging. Aged tendons are more likely to undergo spontaneous rupture, and the healing response following injury is impaired in aged tendons. Thus, there is a need to develop strategies to maintain tendon homeostasis and healing capacity through the lifespan. Tendon cell density sharply declines by ∼12 months of age in mice, and this low cell density is retained in geriatric tendons. Our data suggests that this decline in cellularity initiates a degenerative cascade due to insufficient production of the extracellular matrix (ECM) components needed to maintain tendon homeostasis. Thus, preventing this decline in tendon cellularity has great potential for maintaining tendon health. Single cell RNA sequencing analysis identifies two changes in the aged tendon cell environment. First, aged tendons primarily lose tenocytes that are associated with ECM biosynthesis functions. Second, the tenocytes that remain in aged tendons have disruptions in proteostasis and an increased pro-inflammatory phenotype, with these changes collectively termed ‘programmatic skewing'. To determine which of these changes drives homeostatic disruption, we developed a model of tenocyte depletion in young animals. This model decreases tendon cellularity to that of an aged tendon, including decreased biosynthetic tenocyte function, while age-related programmatic skewing is absent. Loss of biosynthetic tenocyte function in young tendons was sufficient to induce homeostatic disruption comparable to natural aging, including deficits in ECM organization, composition, and material quality, suggesting loss biosynthetic tenocytes as an initiator of tendon degeneration. In contrast, our data suggest that programmatic skewing underpins impaired healing in aged tendons. Indeed, despite similar declines in the tenocyte environment, middle-aged and young-depleted tendons mount a physiological healing response characterized by robust ECM synthesis and remodeling, while aged tendons heal with insufficient ECM


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 13 - 13
2 Jan 2024
Teixeira S Pardo A Bakht S Gomez-Florit M Reis R Gomes M Domingues R
Full Access

Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels. 2. to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating adipose tissue-derived stem cells (ASCs), microfibers, and MINPs within gelatin hydrogels, while aligning the microfibers with an external magnetostatic field during gelation. This allows an effective modulation of hydrogel fibrillar topography, mimicking the native tissue's anisotropic architecture. Cell responses were analyzed by multiplex immunoassay, quantitative polymerase chain reaction, and immunocytochemistry. MINPs showed an affinity for the template comparable to monoclonal antibodies. Encapsulated ASCs acquired an elongated shape and predominant orientation along the alignment direction. Cellular studies revealed that combining MINPs with aligned microfibers increased TGF-β signaling via non-canonical Akt/ERK pathways and upregulated tendon-associated gene expression, contrasting with randomly oriented gels. Immunostaining of tendon-related proteins presented analogous outcomes, corroborating our hypothesis. Our results thus demonstrate that microstructural cues and biological signals synergistically direct stem cell fate commitment, suggesting that this strategy holds potential for improving tendon healing and might be adaptable for other biological tissues. The proposed concept highlights the GF-sequestering ability of MINPs which allows a cost-effective alternative to recombinant GF supplementation, potentially decreasing the translational costs of tissue engineering strategies. Acknowledgements: The authors acknowledge the funding from the European Union's Horizon 2020 under grant No. 772817; from FCT/MCTES for scholarships PD/BD/143039/2018 & COVID/BD/153025/2022 (S.P.B.T.), and PD/BD/129403/2017 (S.M.B.), co-financed by POCH and NORTE 2020, under the Portugal 2020 partnership agreement through the European Social Fund, for contract 2020.03410.CEECIND (R.M.A.D.) and project 2022.05526.PTDC; and from Xunta de Galicia for grant ED481B2019/025 (A.P.)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 32 - 32
2 Jan 2024
Traweger A
Full Access

Approximately 30% of general practice consultations for musculoskeletal pain are related to tendon disorders, causing substantial personal suffering and enormous related healthcare costs. Treatments are often prone to long rehabilitation times, incomplete functional recovery, and secondary complications following surgical repair. Overall, due to their hypocellular and hypovascular nature, the regenerative capacity of tendons is very poor and intrinsically a disorganized scar tissue with inferior biomechanical properties forms after injury. Therefore, advanced therapeutic modalities need to be developed to enable functional tissue regeneration within a degenerative environment, moving beyond pure mechanical repair and overcoming the natural biological limits of tendon healing. Our recent studies have focused on developing biologically augmented treatment strategies for tendon injuries, aiming at restoring a physiological microenvironment and boosting endogenous tissue repair. Along these lines, we have demonstrated that the local application of mesenchymal stromal cell-derived small extracellular vesicles (sEVs) has the potential to improve rotator cuff tendon repair by modulating local inflammation and reduce fibrotic scarring. In another approach, we investigated if the local delivery of the tendon ECM protein SPARC, which we previously demonstrated to be essential for tendon maturation and tissue homeostasis, has the potential to enhance tendon healing. Finally, I will present results demonstrating the utility of nanoparticle-delivered, chemically modified mRNAs (cmRNA) to improve tendon repair


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 48 - 48
2 Jan 2024
Faydaver M Russo V Di Giacinto O El Khatib M Rigamonti M Rosati G Raspa M Scavizzi F Santos H Mauro A Barboni B
Full Access

Digital Ventilated Cages (DVC) offer an innovative technology to obtain accurate movement data from a single mouse over time [1]. Thus, they could be used to determine the occurrence of a tendon damage event as well as inform on tissue regeneration [2,3]. Therefore, using the mouse model of tendon experimental damage, in this study it has been tested whether the recovery of tissue microarchitecture and of extracellular matrix (ECM) correlates with the motion data collected through this technology. Mice models were used to induce acute injury in Achilles tendons (ATs), while healthy ones were used as control. During the healing process, the mice were housed in DVC cages (Tecniplast) to monitor animal welfare and to study biomechanics assessing movement activity, an indicator of the recovery of tendon tissue functionality. After 28 days, the AT were harvested and assessed for their histological and immunohistochemical properties to obtain a total histological score (TSH) that was then correlated to the movement data. DVC cages showed the capacity to distinguish activity patterns in groups from the two different conditions. The data collected showed that the mice with access to the mouse wheel had a higher activity as compared to the blocked wheel group, which suggests that the extra movement during tendon healing improved motion ability. The histological results showed a clear difference between different analyzed groups. The bilateral free wheel group showed the best histological recovery, offering the highest TSH score, thus confirming the results of the DVC cages and the correlation between movement activity and structural recovery. Data obtained showed a correlation between TSH and the DVC cages, displaying structural and movement differences between the tested groups. This successful correlation allows the usage of DVC type cages as a non-invasive method to predict tissue regeneration and recovery. Acknowledgements: This research is part of the P4FIT project ESR13, funded by the H2020-ITN-EJD MSCA grant agreement No.955685


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 12 - 12
2 Jan 2024
Montes A Mauro A Cerveró-Varona A Prencipe G El Khatib M Tosi U Wouters G Stöckl J Russo V Barboni B
Full Access

Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate in vitro their teno-differentiation for potential use in preclinical tendon regeneration models. Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories, expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches. ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 vs. ADSCs 48h) with a significant increase at 14 days of culture (p<0.05 vs. ADSCs + fleece 48h). Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold's topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them in vivo for tendon regeneration. Acknowledgements: This research is part of the P4FIT project ESR5, under the H2020MSCA-ITN-EJD-P4 FIT-Grant Agreement ID:955685


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 22 - 22
2 Jan 2024
Muller S
Full Access

Tendons mainly consist of collagen in order to withstand high tensile forces. Compared to other, high turnover tissues, cellularity and vascularity in tendons are low. Thus, the natural healing process of tendons takes long and can be problematic. In case of injury to the enthesis, the special transition from tendon over cartilage to bone is replaced by a fibrous scar tissue, which remains an unsolved problem in rotator cuff repair. To improve tendon healing, many different approaches have been described using scaffolds, stem cells, cytokines, blood products, gene therapy and others. Despite promising in vitro and in vivo results, translation to patient care is challenging. In clinics however, tendon auto- or allografts remain still first choice to augment tendon healing if needed. Therefore, it is important to understand natural tendon properties and natural tendon healing first. Like in other tissues, senescence of tenocytes seems to play an important role for tendon degeneration which is interestingly not age depended. Our in vivo healing studies have shown improved and accelerated healing by adding collagen type I, which is now used in clinics, for example for augmentation of rotator cuff repair. Certain cytokines, cells and scaffolds may further improve tendon healing but are not yet used routinely, mainly due to missing clinical data, regulatory issues and costs. In conclusion, the correct diagnosis and correct first line treatment of tendon injuries are important to avoid the necessity to biologically augment tendon healing. However, strategies to improve and accelerate tendon healing are still desirable. New treatment opportunities may arise with further advances in tendon engineering in the future


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 24 - 24
23 Jun 2023
Byrd JWT Jones KS Bardowski EA
Full Access

Partial thickness abductor tendon tears are a significant source of recalcitrant laterally based hip pain. For those that fail conservative treatment, the results of endoscopic repair are highly successful with minimal morbidity. The principal burden is the protracted rehabilitation that is necessary as part of the recovery process. There is a wide gap between failed conservative treatment and successful surgical repair. It is hypothesized that a non-repair surgical strategy, such as a bioinducitve patch, could significantly reduce the burden associated recovery from a formal repair. Thus, the purpose of this study is to report the preliminary results of this treatment strategy. Symptomatic partial thickness abductor tendon tears are treated conservatively, including activity modification, supervised physical therapy and ultrasound guided corticosteroid injections. Beginning in January 2022, patients undergoing hip arthroscopy for intraarticular pathology who also had persistently symptomatic partial thickness abductor tendon tears, were treated with adjunct placement of a bioinducitve (Regeneten) patch over the tendon lesion from the peritrochanteric space. The postop rehab protocol is dictated by the intraarticular procedure performed. All patients are prospectively assessed with a modified Harris Hip Score (mHHS) and iHOT and the tendon healing response examined by ultrasound. Early outcomes will be presented on nine consecutive cases. Conclusions - Will be summarized based on the preliminary outcomes to be reported


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims

Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing.

Methods

A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.


To analyse the efficacy and safety of cellular therapy utilizing Mesenchymal Stromal Cells (MSCs) in the management of rotator cuff(RC) tears from clinical studies available in the literature. We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library on August 2021 for studies analyzing the efficacy and safety of cellular therapy (CT) utilizing MSCs in the management of RC tears. VAS for pain, ASES Score, DASH Score, Constant Score, radiological assessment of healing and complications and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta [Analyst] software. RESULTS:. 6 studies involving 238 patients were included for analysis. We noted a significant reduction in VAS score for pain at 3 months (WMD=-2.234,p<0.001) and 6 months (WMD=-3.078,p<0.001) with the use of CT. Concerning functional outcomes, utilization of CT produced a significant short-term improvement in the ASES score (WMD=17.090,p<0.001) and significant benefit in functional scores such as Constant score (WMD=0.833,p=0.760) at long-term. Moreover, we also observed a significantly improved radiological tendon healing during the long-term follow-up (OR=3.252,p=0.059). We also noted a significant reduction in the retear rate upon utilization of CT in RC tears both at short- (OR=0.079,p=0.032) and long-term (OR=0.434,p=0.027). We did not observe any significant increase in the adverse events as compared with the control group (OR=0.876,p=0.869). Utilization of CT in RC tear is safe and it significantly reduced pain severity, improved functional outcome, enhanced radiological tendon healing, and mitigated retear rates at short- and long-term follow-up


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 131 - 131
4 Apr 2023
Korcari A Nichols A Loiselle A
Full Access

Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits. ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering, unsupervised cell clustering, and differential gene expression (DEG) analysis were performed using Seurat. Following integration and sub-clustering of the tenocyte populations, five distinct subpopulations were observed. In both ScxLin depletion and aging, ‘ECM synthesizers’ and ‘ECM organizers’ populations were lost, consistent with disruptions in tissue homeostasis and altered ECM composition. However, in ScxLin depleted mice retention of a ‘specialized ECM remodeler’ population was observed, while aging tendon cells demonstrated inflammatory skewing with retention of a ‘pro-inflammatory tenocyte population’. In addition, enrichment of genes associated with protein misfolding clearance were observed in aged tenocytes. Finally, a similar inflammatory skewing was observed in aged tendon-resident macrophages, with this skewing not observed in ScxLin depleted tendons. These data suggest that loss of ‘ECM synthesizer’ populations underpins disruptions in tendon homeostasis. However, retention of ‘specialized remodelers’ promotes enhanced healing (ScxLin depletion), while inflammatory skewing may drive the impaired healing response in aged tendons


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 41 - 41
10 Feb 2023
Fryer C Jackson C Mckelvey K Lin H Xue. M
Full Access

Tendinopathy is a tendon pathology often resulting from a failed healing response to tendon injury. Activated protein C (APC) is a natural anti-coagulant with anti-inflammatory and wound healing promoting functions, which are mainly mediated by its receptors, endothelial protein C receptor (EPCR) and protease activated receptors (PARs). This study aimed to determine whether APC stimulates tenocyte healing and if so, to assess the involvement of the receptors. Mouse-tail tenocytes were isolated from 3-week-old wild type (WT), PAR- 1 knockout (KO) and PAR-2 KO mice. The expression of EPCR, PAR-1 and −2 and the effect of APC on tenocytes tendon healing and the underlying mechanisms were investigated by Reverse transcription real time PCR, western blot, 3- (4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, zymography, and scratch wound healing/ migration assay. When compared to WT cells, PAR-1 KO tenocytes showed increased cell proliferation (3.3-fold, p<0.0001), migration (2.7-fold, p<0.0001) and wound healing (3-fold, p<0.0001), whereas PAR-2 KO cells displayed decreased cell proliferation (0.6-fold, p<0.05) and no change in cell migration or wound healing. APC at 1 μg/ml stimulated WT and PAR-1 KO tenocyte proliferation (~1.3, respectively, p<0.05) and wound healing (~1.3-fold, respectively, p<0.05), and additionally promoted PAR1-KO cell migration (1.4-fold, p<0.0001). APC only increased the migration (2-fold, p<0.05) of PAR-2 KO tenocytes. The activation of AKT, extracellular signal-regulated kinase (ERK)-2, and glycogen synthase kinase (GSK)-β3, the intracellular molecules that are associated with cell survival/growth, and matrix metalloproteinase (MMP)-2 that is related to cell migration and wound healing, were increased in all three cell lines in response to APC treatment. These findings show that PAR-1 and PAR-2 act differentially in tenocyte proliferation/migration/wound healing. APC likely promotes tenocyte proliferation/ wound healing via PAR-2, not PAR-1


Bone & Joint 360
Vol. 12, Issue 1 | Pages 30 - 33
1 Feb 2023

The February 2023 Shoulder & Elbow Roundup360 looks at: Arthroscopic capsular release or manipulation under anaesthesia for frozen shoulder?; Distal biceps repair through a single incision?; Distal biceps tendon ruptures: diagnostic strategy through physical examination; Postoperative multimodal opioid-sparing protocol vs standard opioid prescribing after knee or shoulder arthroscopy: a randomized clinical trial; Graft healing is more important than graft technique in massive rotator cuff tear; Subscapularis tenotomy versus peel after anatomic shoulder arthroplasty; Previous rotator cuff repair increases the risk of revision surgery for periprosthetic joint infection after reverse shoulder arthroplasty; Conservative versus operative treatment of acromial and scapular spine fractures following reverse total shoulder arthroplasty.