Advertisement for orthosearch.org.uk
Results 1 - 20 of 68
Results per page:
Bone & Joint Open
Vol. 5, Issue 11 | Pages 971 - 976
5 Nov 2024
Baker G Hill J O'Neill F McChesney J Stevenson M Beverland D

Aims

In 2015, we published the results of our ceramic-on-metal (CoM) total hip arthroplasties (THAs) performed between October 2007 and July 2009 with a mean follow-up of 34 months (23 to 45) and a revision rate of 3.1%. The aim of this paper is to present the longer-term outcomes.

Methods

A total of 264 patients were reviewed at a mean of 5.8 years (4.6 to 7.2) and 10.1 years (9.2 to 10.6) to determine revision rate, pain, outcome scores, radiological analysis, and blood ion levels. Those who were unwilling or unable to travel were contacted by telephone.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 24 - 24
1 Feb 2020
De Villiers D Collins S
Full Access

INTRODUCTION. Ceramic-on-ceramic hip resurfacing offers a bone conserving treatment for more active patients without the potential metal ion risks associated with resurfacing devices. The Biolox Delta ceramic material has over 15 years of clinical history with low wear and good biocompatibility but has been limited previously in total hip replacement to 48mm diameter bearings [1]. Further increasing the diameter for resurfacing bearings and removing the metal shell to allow for direct fixation of the ceramic cup may increase the wear of this material and increase the risk of fracture. METHODS. Eighteen implants (ReCerf™, MatOrtho, UK; Figure1) were wear tested; six were ⊘40mm (small) and twelve ⊘64mm (large). All small and six large implants were tested under ISO 14242 standard conditions for 5 million cycles (mc) at 30° inclination (45° clinically). The six remaining large implants were tested under microseparation conditions in which rim contact was initiated during heel strike of the gait cycle for 5mc. Cups were orientated at 45° inclination (60° clinically) to allow for separation of the head and cup with a reduced 50N swing phase load and a spring load applied to induce a 0.5mm medial-superior translation of the cup. Wear was determined gravimetrically at 0.5mc, 1mc and every mc after. RESULTS. Wear was low in both standard and microseparation tests, less than 1mm. 3. cumulatively over 5mc (Figure 2). Standard conditions showed a run-in wear phase over the first mc followed by negligible wear in both diameters. The run-in wear significantly increased from 0.2mm. 3. /mc in the 40mm diameter bearings to 0.5mm. 3. /mc with the larger diameter implants. Under microseparation conditions, there was low wear over the first mc, increasing to 0.28mm. 3. /mc between 1–3mc. The wear rate reduced to 0.11mm. 3. /mc from 3=5mc. Stripe wear was evidenced on the microseparated components. There were no incidences of fracture or squeaking. DISCUSSION. Biolox Delta is known for its low wear rates but published results have only reported testing up to ⊘36mm [2]. Increasing the diameter to 64mm showed increased wear compared to smaller diameters but this was only significant over the first mc suggesting similar performance long term. Microseparation testing of these large sized bearings doubled the cumulative wear produced over 5mc but wear measured was still much lower than other bearing combinations. Wear of metal-on-metal resurfacing implants under these high angle, microseparation conditions has been reported up to 10.5mm. 3. /mc [3], significantly higher than any wear rate reported in the current study. Despite the 3mm wall thickness, no fracture of the cup occurred but stripe wear was observed in the ceramic components. SIGNIFICANCE. Biolox Delta ceramic is appropriate for use in larger diameters without excessive wear or damage to the bearings. The improved biocompatibility of the material may allow for hip resurfacing to be offered to more patients than currently available. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1434 - 1441
1 Nov 2018
Blakeney WG Beaulieu Y Puliero B Lavigne M Roy A Massé V Vendittoli P

Aims

This study reports the mid-term results of total hip arthroplasty (THA) performed using a monoblock acetabular component with a large-diameter head (LDH) ceramic-on-ceramic (CoC) bearing.

Patients and Methods

Of the 276 hips (246 patients) included in this study, 264 (96%) were reviewed at a mean of 67 months (48 to 79) postoperatively. Procedures were performed with a mini posterior approach. Clinical and radiological outcomes were recorded at regular intervals. A noise assessment questionnaire was completed at last follow-up.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 57 - 57
1 Apr 2018
Clarke I Elsissy J John A Burgett-Moreno M Donaldson T
Full Access

Performance of metal-on-metal (MOM) bearings was of great interest until recently. Major concerns emerged over high incidence of MOM-wear failures and initially there appeared greater risks with MOM total hip arthroplasty (THA) designs compared to resurfacing arthroplasty (RSA). Impingement of the metal neck against the THA cup was likely the differentiating risk. There is a major difference between RSA and THA in (i) size of femoral necks and (ii) risk of THA metal necks impinging on metal cups. For example, a 46mm THA with 12.5mm neck, a 3.68 head:neck (H/N) ratio, provides a suitably large range-of-motion (ROM). In contrast, an RSA patient with retained 31mm size of natural neck would only have H/N = 1.48, indicating even less ROM than a Charnley THA. However, the enigma is that RSA patients have as good or better ROM in majority of clinical studies. We studied this apparent RSA vs THA dilemma by examining MOM retrievals for signs of adverse impingement. We previously described CoCr stripe wear in failed THA bearings, notably alignment of polar and basal wear stripes coincident with the rim profiles of the cups (Clarke 2013). Our governing hypothesis was that RSA patients had to routinely sublux their hips to get ROM comparable to THA. Our THA impingement studies showed polar stripes within 15o of the polar axis in large heads. For the various RSA diameters, we calculated that wear stripes angled 40o from the femoral axis could indicate impingement with no subluxation, whereas smaller angles would indicate routine subluxation of RSA femoral-shell from cup. We compared explanted RSA (N=15) and THA (N=15) bearings representing three vendors (42–54mm diameters). Wear maps and head-stripes were ink-marked for visualization, photography, and analysis. Wear areas were calculated using spherical equations and wear-stripe angles measured by computer graphics. The results showed that RSA femoral shells had wear areas circular in shape with areas varying 1,085- 3,121mm2. These averaged 14% larger than in matched THA heads but statistically significant difference was not proven. Polar stripes were readily identifiable on femoral components, 75% for RSA cases and 100% for THA. These contained identical linear scratches and all were sited within 30o of neck axis, confirming our hypothesis that RSA patients had to sublux their hips to achieve same motion as THA. Examination of cup wear areas revealed all showed ‘edge-loading’, but RSA cups had a significantly greater degree. Retrieval studies are limited by uncontrolled case sources, varied brands, and small numbers. In this study, we were able to match RSA and THA cases by vendor and diameter. The RSA retrievals revealed polar stripes identical to THA by site, topography and inclination to femoral-neck axis. This confirmed our starting hypothesis and explained the large clinical ROM available in RSA patients. The larger wear areas on RSA femoral shells, although not statistically significant, and the larger ‘edge loading’ sites in RSA cups appeared as further support for routine subluxation of femoral-shells during hip impingement


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 993 - 995
1 Aug 2017
Skinner JA Haddad FS


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 741 - 748
1 Jun 2017
Lee YK Ha YC Yoo J Jo WL Kim K Koo KH

Aims

We conducted a prospective study of a delta ceramic total hip arthroplasty (THA) to determine the rate of ceramic fracture, to characterise post-operative noise, and to evaluate the mid-term results and survivorship.

Patients and Methods

Between March 2009 and March 2011, 274 patients (310 hips) underwent cementless THA using a delta ceramic femoral head and liner. At each follow-up, clinical and radiological outcomes were recorded. A Kaplan-Meier analysis was undertaken to estimate survival.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 12 - 12
1 Apr 2017
Lewallen D
Full Access

For primary hip arthroplasty contemporary acetabular component options available from across multiple manufacturers have evolved over the years to provide several common and widely available features and a few unique options designed to address the main clinical problems that have plagued hip arthroplasty in the past. These include the main causes of failure of THA generally, and of acetabular components in particular: fixation, wear, instability, and infection. The design and implant options that have been made available vary in how effectively they have “solved” the problem in question and occasionally have created new problems or have been associated with major tradeoffs and disadvantages. Fixation: Cementless fixation of the socket has largely supplanted cemented fixation in North America. First generation ingrowth materials for cementless sockets including beads, plasma spraying, and wire mesh, have given way to enhanced more highly porous materials. The advent of rapid prototyping and 3-D printing of highly porous titanium (and other) materials has sparked a wave of various new orthopaedic implant designs including for the acetabulum. Wear: Polyethylene wear and the resulting osteolysis problems seen in hip arthroplasty in the 1980's and 90's spawned a competition between 3 technologies over the optimal enhanced wear couple for THA: Metal-on-Metal (MOM), Ceramic-on-Ceramic, and Metal/Ceramic-on-Highly Crosslinked Polyethylene. Metal-on-Metal surface replacement and MOM THA were designed to reduce wear and also allow very large heads and potentially enhanced hip stability. Unfortunately, after wide adoption, subsequent problems occurred and this ongoing disaster has resulted in the rapid disappearance of virtually all MOM designs. Ceramic-on-Ceramic articulations achieve very low wear rates, but with lower tolerances for imperfect implant positioning. The potential for stripe wear, audible squeaking, rare breakage problems, and much greater expense have limited usage in the US, though this articulation is still preferred by some surgeons for selected very young patients. Ceramic- or Chrome Cobalt-on-Highly Crosslinked Polyethylene has emerged as the most widely used articulation in the US and has excellent wear performance with no demonstrable osteolysis over the first decade. More recent modifications of crosslinking methods and use of Vitamin E as an antioxidant, it is hoped, will further improve wear performance and mechanical properties. Instability: Instability of the hip (subluxation or frank dislocation) remains one of the most common complications of THA, especially early. Acetabular component and insert options available to prevent instability (or treat it in the revision setting) include: 1) Optimal cup version and inclination (so called “safe zone”); 2) Prevent femoral component impingement against socket or liner rim; 3) Face changing elevated liner; 4) Liner to allow large fixed head (32 mm or > depending on cup size); 5) Dual mobility liner; 6) Tripolar construct (small bipolar inside a matched liner for a 40 mm or larger head); 7) Constrained liner (various designs). Infection: There are currently a very limited number of acetabular component or liner options available to attempt to reduce the risk of infection or assist as adjunctive measures in treating the infected arthroplasty, but this is an area of active research and implant design effort


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 13 - 13
1 Feb 2017
Ali M Al-Hajjar M Thompson J Isaac G Jennings L Fisher J
Full Access

Introduction. Variations in component position can lead to dynamic separation and edge loading conditions. In vitro methods have been developed to simulate edge loading conditions and replicate stripe wear, increased wear rate, and bimodal wear debris size distribution, as observed clinically [1, 2]. The aim of this study was to determine the effects of translational and rotational positioning on the occurrence of dynamic separation and severity of edge loading, and then investigate the wear rates under the most severe separation and edge loading conditions on an electromechanical hip joint simulator. Materials and Methods. A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX®delta, PINNACLE®, DePuy Synthes, UK) hip replacements. Three axes of rotation conditions (ISO 14242-1 [3]) was applied to the femoral head. This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3) cup inclination angles with 1, 2, 3 and 4 (mm) medial-lateral translational mismatch between the centres of the head and cup. The amount of dynamic separation displacement between the head and cup was measured using a position sensor. The severity of edge loading was determined from the area under the axial force and medial-lateral force outputs during the time of separation [4]. II) A wear test was carried out at 45° (n=6) and 65° (n=6) cup inclination angles for three million cycles with translational mismatch of 4mm between the head and cup. The lubricant used was diluted new-born calf serum (25% v/v). Volumetric wear measurements were undertaken at one million cycle intervals and mean wear rates were calculated with 95% confidence limits. Statistical analysis was carried out using ANOVA and a t-test with significance levels taken at p<0.05. Results. Dynamic separation increased significantly with 3mm (p<0.01) and 4mm (p<0.01) translational mismatch at a 45° cup inclination angle (Figure 1). At 65° the separation increased significantly as the translational mismatch increased from 1mm to 4mm (p<0.01). The most severe edge loading conditions occurred at a 65° cup inclination angle with 4mm of translational mismatch (p<0.01, Figure 2). Mean wear rates were greater at a 65° cup inclination angle compared with a 45° cup inclination angle (p<0.01, Figure 3). Conclusion. Different levels of rotational and translational mismatch affected the separation between the head and cup during gait. Higher levels of translational mismatch and a steeper cup inclination angle may lead to more severe edge loading conditions and increased wear of ceramic-on-ceramic bearings in vivo. A new preclinical testing approach was developed to study the effects of edge loading due to variations in rotational and translational surgical positioning under ISO loading and angular displacement conditions. The first stage comprised of biomechanical tests to determine the occurrence and severity of edge loading in a range of component positions. The second stage investigated the tribological performance of the bearing surface under the worst case edge loading conditions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 71 - 71
1 Feb 2017
Chotanaphuti T Khuangsirikul S
Full Access

Background. Hard-on-hard bearings showed advantages of reduction of wear rates, osteolysis and aseptic loosening in total hip arthroplasty (THA). A new combination of ceramic-on-metal (COM) was developed to compensate the disadvantages of MOM and COC. COM showed good short-term results in vitro and in vivo studies. There was no report of stripe wear and metal ion level elevation. Our study was designed to evaluate the wear pattern of this bearing in early loosening THA. Methods. During January 2009 to December 2010, 121 primary THAs were performed at our institution by single-surgeon, using the same acetabular component and same uncemented femoral stem with a 32-mm modular head. All patients received the information of the bearing couples and made their own decision to choose one of the following bearings: COM, MOP and MOM. The functional outcomes (Harris Hip Score), Serum Co and Cr levels and survival rates were compared between groups at 5 years. The retrievals were tested by optical microscopy and Raman spectroscopy to evaluate the wear pattern in the cases those need revision. Results. At the follow-up 5 years ago, 2 in 10 patients of the COM group received revision due to bearing related complications and loosening although MOP and MOM groups have good clinical follow-up without revision. Metal ion levels were higher in the revision cases. The retrieval analyses revealed metal transfer at weight-bearing area of ceramic femoral head and large wear located on the center of acetabular liner. Spectral shift and broadening of Raman bands demonstrated incorporation of metal ions into the ceramic lattices. Conclusion. Wear pattern in COM was the same as MOM. Severe metal contamination at the ceramic surface might be affected from frictional heating. While the actual causes and contributing factors of high failure rate in COM were not clearly identified, it is important to take precautions in using COM THA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 50 - 50
1 Feb 2017
Kapadia D Racasan R Al-Hajjar M Bills P
Full Access

The use of fourth generation ceramic as an orthopaedic biomaterial has proved to be a very efficient and has gained popularity for primary hip surgery in the last 8–10 years. Cumulative percentage probability of revision after 7 years for un-cemented CoC is 3.09% and for hybrid CoC is 2.00%, this compares favourably with traditional metal-on-UHMWPE un-cemented at 3.05% and hybrid at 2.35% (12th Annual Report - NJR, 2015). Such ceramic-on-ceramic hip prostheses are being implanted in ever younger, more active patients, and yet very few long-term large cohort retrieval studies are yet to be carried out due to the survivorship of the implants. It has been seen in previous studies that levels of wear in ceramic-on-ceramic bearing surface can be of the order of 0.2 mm. 3. /million cycles (Al-Hajjar, Fisher, Tipper, Williams, & Jennings, 2013). This is incredibly low when compared to studies that characterize wear in other bearing surface combinations. It has also been reported that an unusual stripe pattern of wear can occur in some in-vivo retrieved cups (Macdonald & Bankes, 2014) and it has further been postulated that this is caused by cup edge loading (Walter, Insley, Walter, & Tuke, 2004). The combined measurement challenge of stripe wear occurring at the edge of a low-wear ceramic-on-ceramic device is considerable, a solution to which is presented here. Current literature on wear measurement of such cases has been confined to in-vitro simulator studies and use of gravimetric measurement which by definition has limitations due to the lack of spacial characterisation. This paper details a novel method for measuring edge-wear in CoC acetabular liners. The method has been employed in an in-vitro study where it has been benchmarked against gravimetric measurements. These liners were measured on a CMM to determine the volume of material loss. The measurements were conducted as a blinded post-wear study akin to measurement of retrieved components. The most challenging part of this novel method was to create a reference geometry that replicates the free form edge surface of the ‘unworn’ cup using the residual post-wear surface. This was especially challenging due to the uncontrolled geometry at the cup edge and intersection of geometric features at this point. To achieve this, the geometry surrounding the wear patch was used to create a localized reference feature that minimised the effect of global form errors caused by hand polishing in the edge area. Furthermore, the reference geometry is compared with the measured surface to determine the linear penetration and volumetric wear loss. Result of this novel method can be seen in Fig 1. The findings have been compared to gravimetric results and a bar graph comparing two results can be seen in Fig 2. Overall the accuracy of the method for this cohort was 0.03–0.2 mm. 3. when compared to gravimetric reference measurements. This compares very favourably with previously published wear measurement methods and gives confidence in the ability to measure such small measurement volumes over complex geometry


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 87 - 87
1 May 2016
Clarke I Burgett-Moreno M Bone M Scholes S Joyce T Donaldson T
Full Access

Metal-on-metal retrieval studies indicated that MOM wear-rates could rise as high as 60–70mm3/year in short-term failures (Morlock, 2008). In contrast, some MOM and ceramic-on-ceramic (COC) devices of 1970's era performed admirably over 2–3 decades (Schmalzreid, 1996; Shishido, 2003). While technology has aided analysis of short-term MOM and COC failures (Morlock 2008; Lord 2011), information on successful THA remains scant. Lack of long-term data creates difficulties in setting benchmarks for simulator studies and establishing guidelines for use in standards. In this study we compared clinical and wear histories for a 30-year MOM and a 32-year COC to establish such long-term, wear-rates. The McKeeTM retrieval was cemented and made 100% of CoCr alloy (Fig. 1a). This patient had a right femoral fracture at 47 years of age, treated by internal-fixation, which failed. Her revision with a Judet implant also failed, leaving her right hip as a Girdlestone. At the age of 68, she had a McKee THA implanted in left hip, and used it until almost 98 years of age (Campbell, 2003). The COC case was a press-fit AutophorTM THA, head and cup made of alumina ceramic, with the only metal being the CoCr stem (Fig. 1c). This was implanted in a female patient 17-years of age active in sports (water-skiing). This modular THA was revised 32-years later due to hip pain from cup migration. Wear on these implants was identified by stereomicroscopy and stained red for photography (Fig. 1). Cup-to-neck impingement was denoted by circumferential neck notching, roughness was assessed by interferometry, and wear determined by CMM (Lord, 2011). McKee head wear covered 1092mm2 area (Figs. 1a, 2: hemi-area ratio 58%). There was no stripe wear and head roughness was 36nm (Ra). Cup wear covered an area of 1790mm2 (hemi-area 63%). Circumferential damage was noted on the supero-posterior femoral neck with scuff marks also on posterior collar (Fig. 2c). Head and cup wear amounted to 37.7 and 25.2mm3, respectively. Total MOM wear was 62.9mm3, indicating a wear-rate of 2.1mm3/year. Ceramic head wear consisted of two circular patterns (Fig. 1c), the major one of area 1790mm2 (hemi-area 79%). No wear stripes were identified. Non-worn and extensively worn surfaces had roughness (Ra) 17nm and 123nm, respectively. The cup showed 360o circumferential arc of rim wear with a small, non-wear zone inferiorly (Fig. 1c). Gray metallic transfer was evident, EDS revealing Co and Cr (Fig. 3a). Head and cup wear volumes were 77.2 and 54mm3, respectively. Total COC wear amounted to 131.2mm3 indicating a wear-rate of 4.1mm3/year. These two THA functioned successfully over 3 decades. The McKee retrieval had minor signs of impingement but no adverse “stripe wear”. This MOM performed satisfactorily due to good positioning and patient's advanced age (68 to 98Yrs of age). The COC patient was 17 years of age at index surgery and active. The ceramic cup showed 360o of edge wear, CoCr transfer and a COC wear-rate double that of the MOM retrieval. Thus the high ceramic wear-resistance protected this youthful patient


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 139 - 139
1 May 2016
Lazennec J Clarke I
Full Access

Explanations for “bearing” noise in ceramic-on-ceramic hips (COC) included stripe-wear formation and loss of lubrication leading to higher friction. However clinical and retrieval studies have clearly documented stripe wear in patients that did not have squeaking. Seldom highlighted has been the risk of metal-on-metal or metal-on-ceramic impingement present in total hip arthroplasty (THA) with metal and ceramic cup designs. The limitation in THA positioning studies has been (i) reliance on 2-dimensional radiographic images and (ii) patients lying supine on the examination table, thus not imaged in squeaking positions. We collected eleven squeaking COC cases for an EOS 3D-imaging functional study. Hip positions were documented in each patient's functional ‘squeaking’ posture using standard and 3-D EOS images for sitting, rising from a chair, hip extension in striding, and single-legged stance. EOS imaging documented for the 1st time that postural dysfunctions with potential impingements were demonstrable for each squeaking case. The 1st major insight in this study came from a female patient who complained of squeaking while walking in flat-soled shoes (Figs. 1a, b). She found that when wearing high-heeled shoes her hip stopped squeaking (Figs. 1c, d). Her lateral EOS view in standing position with heeled shoes revealed that the femoral stem had approximately 3o less hyper-extension compared to flat shoes (Figs. 1b, d, arrows #1,3). The three-dimensional ‘sky-view’ EOS reconstruction of pelvis and femurs (Fig. 2) showed that her femur was also more internally rotated when she wore heels. These subtle shifts in position changed her COC hip from one of squeaking to non-squeaking. A squeaking male patient observed similar postural effects while walking up his boat ramp but not going down the ramp. In both cases, the squeaking was a consequence of cup impinging on a metal femoral neck. Thus the primary cause of squeaking appeared to be hip impingement, i.e. repetitive subluxations that patients generally were not aware of. Another case is representative of situations due to atypical and subtle cup/stem mal-adjustments (Fig. 3); frontal pelvic-tilt, thoracolumbar scoliosis, with 1cm of femur lengthening and a significant increase of offset are observed. Also evident was the femoral-neck retroversion in both standing and sitting. Squeaking occurred when modification of the functional neck orientation occured in one-legged stance (Fig. 3c) or when climbing a stair (Fig. 3d). It was apparent in our EOS studies that patient functionality controlled whether squeaking occurred or not. Thus the new data indicated COC squeaking was a three-fold consequence of component positioning, spine and pelvic adaptions, and variations in patient posture. One limitation here is that our conclusions are based on a small sample of patients and may not be applicable to all. A consequence of such repetitive impingement can be cup rim damage and neck-notching, with release of metal debris. It is well documented that retrieved ceramic bearings are frequently stained black. Thus hip squeaking may likely result from (i) impingement and secondarily (ii) due to ingress of metal particles, and then (iii) producing a failure of lubrication. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 15 - 15
1 May 2016
Ali M Al-Hajjar M Fisher J Jennings L
Full Access

Introduction. Translational surgical mismatch in the centres of rotation of the femoral head and acetabular cup in hip joint replacements can lead to dynamic microseparation resulting in edge loading contact [1]. Increased wear in retrieved ceramic-on-ceramic bearings has been associated with edge loading [2]. Hip joint simulators were used to replicate increased wear rate, stripe wear and bimodal wear debris size distribution, as seen clinically [3,4]. Recently developed electromechanical simulators are able to comply with the latest international standards, which include three axes of rotation conditions [5]. Previous simulators had applied two axes of rotation under microseparation conditions [6]. Therefore, the aim of this study was to compare the wear of ceramic-on-ceramic bearings obtained under edge loading due to microseparation conditions during gait using the same electromechanical hip joint simulator with two axes of rotation and three axes of rotation conditions. Materials and Methods. A six-station electromechanical hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX® delta, PINNACLE®, DePuy Synthes, UK) hip replacements. The wear was determined for two million cycles under standard conditions with two axes of rotation conditions (n=6), two million cycles under microseparation conditions with two axes of rotation conditions (n=6) (Figure 1a), and two million cycles under microseparation conditions with three axes of rotation conditions (n=6) (Figure 1b). The loading profiles [5,7] comprised of 3kN twin peak loads and 300N swing phase load under standard conditions. The swing phase load was reduced to approximately 70N under microseparation conditions. Approximately 0.5mm of dynamic microseparation between the head and the cup was applied in the medial/lateral direction. The components were lubricated with 25% new-born calf serum supplemented with 0.03% sodium azide to minimise bacterial growth. The gravimetric wear rates were compared over two million cycles for each test (XP205, Mettler Toledo, UK). The mean wear rates of the head and cup were calculated with 95% confidence limits and statistical analysis was carried out (t-test) with significance levels taken at p<0.05. A coordinate-measurement machine (Legex 322, Mitutoyo, UK) was used to construct a three-dimensional map of the femoral head surface wear. Results. Under standard conditions, the mean wear rate of BIOLOX® delta ceramic-on-ceramic bearings was 0.03±0.01 mm3/million cycles. The mean wear rates under microseparation conditions for two axes and three axes of rotation conditions were 0.14±0.01 mm3/million cycles and 0.14±0.03 mm3/million cycles respectively. There was no statistically significant difference between the wear rates using two axes and three axes of rotation conditions under microseparation conditions (p=0.86). Stripe wear was observed and wear depth measured on the femoral heads under microseparation conditions using two axes (Figure 2a) and three axes (Figure 2b) of rotation. Conclusion. Higher wear rates were observed under microseparation compared with standard conditions, as reported in a previous study [6]. Similar wear rates were obtained under microseparation conditions with two axes and three axes of rotation conditions using the same simulator


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 92 - 92
1 May 2016
Lancaster-Jones O Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims. In order to improve the longevity and design of an implant, a wide range of pre-clinical testing conditions should be considered including variations in surgical delivery, and patients' anatomy and biomechanics. The aim of this research study was to determine the effect of the acetabular cup inclination angle with different levels of joint centre mismatch on the magnitude of dynamic microseparation, occurrence and severity of edge loading and the resultant wear rates in a hip joint simulator. Methods. The six-station Leeds Mark II Anatomical Physiological Hip Joint Simulator and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta) were used in this study. A standard gait cycle, with a twin-peak loading (2.5kN peak load and approximately 70N swing phase load), extension/flexion 15°/+30° and internal/external ±10° rotations, was applied. Translational mismatch in the medial-lateral axis between the centres of rotation of the head and the cup were considered. In this study, mismatches of 2, 3 and 4 (mm) were applied. Two acetabular cup inclination angles were investigated; equivalent to 45° and 65° in-vivo. These resulted in a total of six conditions [Figure 1] with n=6 for each condition. Three million cycles were completed under each condition. The lubricant used was 25% (v/v) new-born calf serum supplemented with 0.03% (w/v) sodium azide to retard bacterial growth. The wear of the ceramic bearings were determined using a microbalance (XP205, Mettler Toledo, UK) and a coordinate measuring machine (Legex 322, Mitutoyo, UK). The stripe wear was analysed using RedLux software. The dynamic microseparation displacement was measured using a linear variable differential transformer. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed with significance taken at p<0.05. Results Increasing the medial-lateral joint centre mismatch from 2 to 3 to 4mm resulted in an increased dynamic microseparation [Figure 2]. A similar trend was observed for the wear. A higher level of medial-lateral mismatch increased the wear rate under both 45° and 65° cup inclination angle conditions [Figure 3]. The mean wear rates obtained under 65° were significantly higher compared to those obtained under the 45° cup inclination angle conditions for a given medial-lateral mismatch in the joint centre (p=0.02 for 2mm mismatch, p=0.02 for 3 mm mismatch, and p<0.01 for 4mm mismatch). Conclusions. The condition with the acetabular cups positioned at an inclination of 45° exhibited greater resistance to dynamic microseparation for any given medial-lateral mismatch in the centres of rotation. Higher wear rates correlated with higher levels of dynamic microseparation. These results highlight how different conditions can alter the severity of edge loading, and highlight the necessity of understanding how the surgical positioning can affect the occurrence of edge loading and wear. Future studies will look into the other factors which can influence the microseparation conditions such as joint laxity, swing phase load and version angles


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 95 - 95
1 Jan 2016
O'Neill CK Molloy D Patterson C Beverland D
Full Access

Background. The current orthopaedic literature demonstrates a clear relationship between acetabular component positioning, polyethylene wear and risk of dislocation following Total Hip Arthroplasty (THA). Problems with edge loading, stripe wear and squeaking are also associated with higher acetabular inclination angles, particularly in hard-on-hard bearing implants. The important parameters of acetabular component positioning are depth, height, version and inclination. Acetabular component depth, height and version can be controlled with intra-operative reference to the transverse acetabular ligament. Control of acetabular component inclination, particularly in the lateral decubitus position, is more difficult and remains a challenge for the Orthopaedic Surgeon. Lewinnek et al described a ‘safe zone’ of acetabular component orientation: Radiological acetabular inclination of 40 ± 10° and radiological anteversion of 15 ± 10°. Accurate implantation of the acetabular component within the ‘safe zone’ of radiological inclination is dependent on operative inclination, operative version and pelvic position. Traditionally during surgery, the acetabular component has been inserted with an operative inclination of 45°. This assumes that patient positioning is correct and does not take into account the impact of operative anteversion or patient malpositioning. However, precise patient positioning in order to orientate acetabular components using this method cannot always be relied upon. Hill et al demonstrated a mean 6.9° difference between photographically simulated radiological inclination and the post-operative radiological inclination. The most likely explanation was felt to be adduction of the uppermost hemipelvis in the lateral decubitus position. The study changed the practice of the senior author, with target operative inclination now 35° rather than 40° as before, aiming to achieve a post-operative radiological inclination of 42° ± 5°. Aim. To determine which of the following three techniques of acetabular component implantation most accurately obtains a desired operative inclination of 35 degrees:. Freehand. Modified (35°) Mechanical Alignment Guide, or. Digital inclinometer assisted. Methods. 270 patients undergoing primary uncemented THA were randomised to one of the three methods of acetabular component implantation. Target operative inclination for all three techniques was 35°. Operative inclination was measured intra-operatively using both a digital inclinometer and stereophotogrammetric system. For both the freehand and Mechanical Alignment Guide implantation techniques, the surgeon was blinded to intra-operative digital inclinometer readings. Results. The freehand implantation technique had an operative inclination range of 25.2 – 43.2° (Mean 32.9°, SD 2.90°). The modified (35°) Mechanical Alignment Guide implantation technique had an operative inclination range of 29.3 – 39.3° (Mean 33.7°, SD 1.89°). The digital inclinometer assisted technique had an operative inclination range of 27.5 – 37.5° (Mean 34.0°, SD 1.57°). Mean unsigned deviation from target 35° operative inclination was 2.92° (SD 2.03) for the freehand implantation technique, 1.83° (SD 1.41) for the modified (35°) Mechanical Alignment Guide implantation technique and 1.28° (SD 1.33) for the digital inclinometer assisted technique. Conclusions. When aiming for 35° of operative inclination, the digital inclinometer technique appears more accurate than either the freehand or Mechanical Alignment Guide techniques. In order to improve accuracy of acetabular component orientation during Total Hip Arthroplasty, the surgeon should consider using such a technique


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 117 - 117
1 Jan 2016
Elsissy J John A Smith E Donaldson T Burgett-Moreno M Clarke I
Full Access

Metal-on-metal (MOM) retrieval studies have demonstrated that CoCr bearings used in total hip arthroplasty (THA) and resurfacing (RSA) featured stripe wear damage on heads, likely created by rim impact with CoCr cups. 1-3. Such subluxation damage may release quantities of large CoCr particles that would provoke aggressive 3. rd. -body wear. With RSA, the natural femoral neck reduces the head-neck ratio but avoids risk of metal-to-metal impingement (Fig. 1). 4. For this study, twelve retrieved RSA were compared to 12 THA (Table 1), evaluating, (i) patterns of habitual wear, (ii) stripe-wear damage and (iii) 3. rd. -body abrasive scratches. Considering RSA have head/neck ratios much lower than large-diameter THA, any impingement damage should be uniquely positioned on the heads. Twelve RSA and THA retrievals were selected with respect to similar diameter range and vendors with follow-up ranging typically 1–6 years (Table 1). Patterns of habitual wear were mapped to determine position in vivo. Stripe damage was mapped at three sites: polar, equatorial and basal. Wear patterns were examined using SEM and white light interferometry (WLI). Graphical models characterized the complex geometry of the natural femoral neck in coronal and sagittal planes and provided RSA head-neck ratios. 4. Normal area patterns of habitual wear were similar on RSA and THA bearings. The wear patterns showing cup rim-breakout proved larger for RSA cups than THA. Polar stripes presented in juxtaposition to the polar axis in both RSA and THA (Fig. 1). As anticipated, basal stripes on RSA occurred at steeper cup-impingement angles (CIA) than THA. The micro-topography of stripe damage was similar on both RSA and THA heads. Some scratches were illustrative of 3. rd. -body wear featuring raised lips, punctuated terminuses, and crater-like depressions (Fig. 2). Neck narrowing observed following RSA procedures may be a consequence of impingement and subluxation due to the small head-neck ratios. However, lacking a metal femoral neck, such RSA impingement would not result in metal debris being released. Nevertheless it has been suggested that cup-to-head impingement produced large CoCr particles and also cup “edge wear” as the head orbits the cup rim. 4. Our study showed that impingement had occurred as evidenced by the polar stripes and 3. rd. -body wear by large hard particles as evidenced by the wide scratches with raised lips. We can therefore agree with the prior study, that 2-body and 3rd-body wear mechanisms were present in both RSA and THA retrievals


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 83 - 83
1 Jan 2016
Chotanaphuti T Khuangsirikul S Nuansalee N
Full Access

Osteolysis is one of a major cause of failure that affect long term survival rate in THA. Hard-on-hard bearing surface were developed to reduce wear and osteolysis, such as ceramic-on-ceramic which is the lowest wear rate was introduced but it still has squeaking and ceramic fracture. Metal-on-metal bearing surface significantly reduce wear rate but it still release metal ion which affect local tissue reaction. Then ceramic-on-metal is another choice of bearing with combine the advantage of reduce wear rate, metal ion release, no stripe wear, no squeaking and no ceramic fracture. However after clinical use ALTRs may occur and disturb the longevity of THA. During January 2009 to December 2009 we performed 98 THR with the same femoral stem and acetabular cup with difference bearing which were 87 cases of metal on cross-linked PE, 8 cases of ceramic on metal and 5 cases of metal on metal. Routinely postoperative care were done with clinical evaluation, plain x-rays and Harris hip score. After 5 years follow up there are clinical problems in ceramic on metal THA with decrease clinical score and progressive osteolysis in radiographic finding in 2 cases then we investigated to find the cause of this problem and revise the components. We preformed magnetic resonance imaging and collect blood sample for ESR, CRP and Cobalt and Chromium level. We revised 2 cases of ceramic on metal THA, during surgery we collected tissue for bacterial and AFB and histopathology. All retrieval components were studied for wear pattern. First patient have thigh pain and progressive osteolysis after year 4. th. of follow up. She had normal ESR and CRP with high level of cobalt and chromium level. We revised both components and tissue histopathology showed metallosis with chronic inflammation. Another patient had failure due to ALTRs with mixed solid-cystic mass at trochanteric bursa but component is stable then only bearing surface were change. Wear pattern at femoral head was in weight bearing area with corresponding to apical center wear of metal liner. Our study showed that only in group of ceramic-on-metal THA that have 5 years follow up have early reoperation due to osteolysis and tissue reaction. We routinely stop to use this bearing since 2010. But we have small number of cases in our study to conclude that is bearing are not suitable for clinical usage


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 77 - 77
1 Jan 2016
Al-Hajjar M Williams S Jennings L Thompson J Isaac G Ingham E Fisher J
Full Access

Introduction. Increased wear rates [1, 2] and acetabular rim fracture [3] of hip replacement bearings reported clinically have been associated with edge loading, which could occur due to rotational and/or translational mal-positioning [4]. Surgical mal-positioning can lead to dynamic microseparation mechanisms resulting in edge loading conditions. In vitro microseparation conditions have replicated stripe wear and the bi-modal wear debris distribution observed clinically [5, 6]. The aim of this study was to investigate the effect of steep cup inclination, representing rotational mal-positioning, on the magnitude of dynamic microseparation, severity of edge loading, and the resulting wear rate of a ceramic-on-ceramic bearing, under surgical translational mal-positioning conditions. Materials and Methods. Ceramic-on-ceramic bearings where the ceramic liner was inserted into a titanium alloy cup (BIOLOX® delta and Pinnacle® respectively, DePuy Synthes, UK) were tested on the six-station Leeds II hip simulator. The first test was run with the cups inclined at an angle equivalent, clinically, to 45° (n=6) and the second test was run with the cups inclined at an angle equivalent, clinically, to 65° (n=6). A standard gait cycle was run. A fixed surgical translational mal-positioning of 4mm between the centres of rotations of the head and the cup in the medial/lateral axis was applied on all stations. Both tests ran for three million cycles each. The lubricant used was 25% new-born calf serum. Wear was assessed gravimetrically using a microbalance (XP205, Mettler Toledo, UK) and geometrically using a coordinate measuring machine (CMM, Legex 322, Mitutoyo, UK). Statistical analysis was done using one way ANOVA with significance taken at p<0.05. Results. The magnitude of dynamic microseparation was significantly (p<0.01) higher when the inclination angle of the cup was steeper (Figure 1) under the same level of translational mal-positioning of 4mm. This has resulted in significantly (p<0.01) higher wear rates of 1.01mm. 3. /million cycles for the steep cup inclination group of 65° compared to 0.32mm. 3. /million cycles for the 45° inclined cups group (Figure 2). Furthermore, the penetration on the femoral heads was significantly (p<0.01) higher for the steep cup inclination angle group with a mean (±95% confidence limit) penetration of 33±6µm under the 65° cup inclination angle condition and 15±3µm under the 45° cup inclination angle condition (Figure 3). Discussion and Conclusion. This study showed that cup inclination angle affects the magnitude of dynamic microseparation for a given surgical translational mal-position, thus leading to severe edge loading and increased wear rates with increased cup inclination angles. The occurrence and severity of the resulting edge loading causing increased wear in hip bearings will depend on the combinations of surgical variations, such as steep inclination angle, excessive version angle, medialised cups, head offset deficiencies, stem subsidence, and joint laxity. Future work will include studying the effect of these variables on the level of dynamic microseparation, severity of edge loading, the offset frictional torque and level of resulting wear


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 116 - 116
1 Jan 2016
Burgett-Moreno M Medina E Burton P Donaldson T Clarke I
Full Access

A 35-year-old female (age 35Yrs) had primary MOM total hip arthroplasty (THA) in 2008. At 8 months this patient postoperatively developed headaches, memory loss, vertigo, and aura-like symptoms that progressed to seizures. At 18 months review, she complained of progressive hip pain, a popping sensation and crepitus with joint motion. This patient weighed 284lbs with BMI of 38.5. Radiographs revealed the cup had 55° inclination, 39° anteversion (Fig. 1). Metal ion concentrations were high (blood: Co=126 mcg/L, Cr= 64mcg/L). Revision was performed in November 2010 A dark, serous fluid was observed, along with synovitis. The implants were well fixed and the femoral head could not be removed; thus the stem was removed by femoral osteotomy. With the head fused on this femoral stem, for the 1. st. time it was possible to precisely determine the habitual patterns of MOM wear relative to her in-vivo function. We investigated (1) size and location of wear patterns and (2) signs of cup-stem impingement to help explain her symptoms developed over 32 months follow-up. The retrieved MOM was a Magnum™ with head diameter 50mm and 50×56mm cup (Biomet). This was mounted on a Taperloc™ lateralized porous-coated stem. Components were examined visually and wear damage mapped by stereo-microscopy, interferometry, CMM, SEM, and EDS. Main-wear zone (MWZ) areas were calculated using standard spherical equations. 1. and centroidal vectors determined. The head-cup mismatch was 427um with the cup revealing a form factor of 228um. The cup showed wear area of 1275mm² that extended up to the cup rim over 150°arc. The cup rim was worn thin over a 90° arc with loss of cup bevel. The head showed an elliptical wear area of 2200mm. 2. located centrally on the superior-medial surface (ellipsoidal ratio ×1.2). Compared to the hemispherical surface (50mm: hemi-area = 3927mm. 2. ), the worn area represented hemi-area ratio of 56%. The centroidal vectors measured 8° anterior and 24° superior to the head's polar axis (Fig. 2). Stripe wear damage revealed multiple impingement sites. SEM and EDS revealed stripes were contaminated by metal transfer from the stainless-steel instruments used at revision. The main impingement position was identified (Fig. 3) indicating the site of repetitive subluxations whereby the subluxing head thinned the cup, i.e. “edge wear”. Cup and head wear patterns corresponded well, reinforcing our definition of the MWZ locations in vivo. The femoral MWZ was centrally located superiorly and medially with respect to the polar axis of the femoral neck and head. The noted impingement position indicated this patient had experienced repetitive subclinical subluxations (RSS). 2. The taper inside the fused head may also have been a contributory factor that we cannot ignore. Nevertheless her excessive cup thinning was likely a result of a steep cup and considerable anteversion allowing the femoral head to sublux over the cup rim, thus thinning the cup and wearing the rim bevel, and producing MOM wear debris


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 300 - 305
1 Mar 2015
Hill JC Diamond OJ O’Brien S Boldt JG Stevenson M Beverland DE

Ceramic-on-metal (CoM) is a relatively new bearing combination for total hip arthroplasty (THA) with few reported outcomes. A total of 287 CoM THAs were carried out in 271 patients (mean age 55.6 years (20 to 77), 150 THAs in female patients, 137 in male) under the care of a single surgeon between October 2007 and October 2009. With the issues surrounding metal-on-metal bearings the decision was taken to review these patients between March and November 2011, at a mean follow-up of 34 months (23 to 45) and to record pain, outcome scores, radiological analysis and blood ion levels. The mean Oxford Hip Score was 19.2 (12 to 53), 254 patients with 268 hips (95%) had mild/very mild/no pain, the mean angle of inclination of the acetabular component was 44.8o (28o to 63o), 82 stems (29%) had evidence of radiolucent lines of > 1 mm in at least one Gruen zone and the median levels of cobalt and chromium ions in the blood were 0.83 μg/L (0.24 μg/L to 27.56 μg/L) and 0.78 μg/L (0.21 μg/L to 8.84 μg/L), respectively. The five-year survival rate is 96.9% (95% confidence interval 94.7% to 99%).

Due to the presence of radiolucent lines and the higher than expected levels of metal ions in the blood, we would not recommend the use of CoM THA without further long-term follow-up. We plan to monitor all these patients regularly.

Cite this article: Bone Joint J 2015;97-B:300–5.