Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

NEW 3-DIMENSIONAL IMAGING OF IMPLANT-POSITIONING IN PATIENTS WITH SQUEAKING HIP JOINTS

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 2.



Abstract

Explanations for “bearing” noise in ceramic-on-ceramic hips (COC) included stripe-wear formation and loss of lubrication leading to higher friction. However clinical and retrieval studies have clearly documented stripe wear in patients that did not have squeaking. Seldom highlighted has been the risk of metal-on-metal or metal-on-ceramic impingement present in total hip arthroplasty (THA) with metal and ceramic cup designs. The limitation in THA positioning studies has been (i) reliance on 2-dimensional radiographic images and (ii) patients lying supine on the examination table, thus not imaged in squeaking positions. We collected eleven squeaking COC cases for an EOS 3D-imaging functional study. Hip positions were documented in each patient's functional ‘squeaking’ posture using standard and 3-D EOS images for sitting, rising from a chair, hip extension in striding, and single-legged stance.

EOS imaging documented for the 1st time that postural dysfunctions with potential impingements were demonstrable for each squeaking case. The 1st major insight in this study came from a female patient who complained of squeaking while walking in flat-soled shoes (Figs. 1a, b). She found that when wearing high-heeled shoes her hip stopped squeaking (Figs. 1c, d). Her lateral EOS view in standing position with heeled shoes revealed that the femoral stem had approximately 3o less hyper-extension compared to flat shoes (Figs. 1b, d, arrows #1,3). The three-dimensional ‘sky-view’ EOS reconstruction of pelvis and femurs (Fig. 2) showed that her femur was also more internally rotated when she wore heels. These subtle shifts in position changed her COC hip from one of squeaking to non-squeaking. A squeaking male patient observed similar postural effects while walking up his boat ramp but not going down the ramp. In both cases, the squeaking was a consequence of cup impinging on a metal femoral neck. Thus the primary cause of squeaking appeared to be hip impingement, i.e. repetitive subluxations that patients generally were not aware of. Another case is representative of situations due to atypical and subtle cup/stem mal-adjustments (Fig. 3); frontal pelvic-tilt, thoracolumbar scoliosis, with 1cm of femur lengthening and a significant increase of offset are observed. Also evident was the femoral-neck retroversion in both standing and sitting. Squeaking occurred when modification of the functional neck orientation occured in one-legged stance (Fig. 3c) or when climbing a stair (Fig. 3d).

It was apparent in our EOS studies that patient functionality controlled whether squeaking occurred or not. Thus the new data indicated COC squeaking was a three-fold consequence of component positioning, spine and pelvic adaptions, and variations in patient posture. One limitation here is that our conclusions are based on a small sample of patients and may not be applicable to all. A consequence of such repetitive impingement can be cup rim damage and neck-notching, with release of metal debris. It is well documented that retrieved ceramic bearings are frequently stained black. Thus hip squeaking may likely result from (i) impingement and secondarily (ii) due to ingress of metal particles, and then (iii) producing a failure of lubrication.

To view tables/figures, please contact authors directly.


*Email: