Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article: Bone Joint J 2024;106-B(11):1206–1215


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 60 - 60
1 Dec 2021
Rai A Khokher Z Kumar KHS Kuroda Y Khanduja V
Full Access

Abstract. Introduction. Recent reports show that spinopelvic mobility influences outcome following total hip arthroplasty. This scoping review investigates the relationship between spinopelvic parameters (SPPs) and symptomatic femoroacetabular impingement (FAI). Methods. A systematic search of EMBASE, PubMed and Cochrane for literature related to SPPs and FAI was undertaken as per PRISMA guidelines. Clinical outcome studies and prospective/retrospective studies investigating the role of SPPs in symptomatic FAI were included. Review articles, case reports and book chapters were excluded. Information extracted pertained to symptomatic cam deformities, pelvic tilt, acetabular version, biomechanics of dynamic movements and radiological FAI signs. Results. The search identified 42 papers for final analysis out of 1168 articles investigating the link between SPPs and pathological processes characteristic of FAI. Only one (2.4%) study was of level 1 evidence, five (11.9%) studies) were level 2, 17 (40.5%) were level 3 and 19 (45.2%) were level 4. Three studies associated FAI pathology with a greater pelvic incidence (PI), while four associated it with a smaller PI. Anterior pelvic tilt was associated with radiographic overcoverage parameters of FAI. In dynamic movements, decreased posterior pelvic tilt was a common feature in symptomatic FAI patients at increased hip flexion angles. FAI patients additionally demonstrated reduced sagittal pelvic ROM during dynamic hip flexion. Six studies found kinematic links between sagittal spinopelvic movement and sagittal and transverse plane hip movements. Conclusions. Our study shows that spinopelvic parameters can influence radiological and clinical manifestations of FAI, with pelvic incidence, acetabular version and muscular imbalances being aetiologically implicated. These factors may be amenable to non-surgical therapy. Individual spinopelvic mechanics may predispose to the development of FAI. If FAI pathoanatomy already exists, sagittal pelvic parameters can influence whether FAI symptoms develop and is an area of further research interest


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 41 - 46
1 Jul 2020
Ransone M Fehring K Fehring T

Aims

Patients with abnormal spinopelvic mobility are at increased risk for instability. Measuring the change in sacral slope (ΔSS) can help determine spinopelvic mobility preoperatively. Sacral slope (SS) should decrease at least 10° to demonstrate adequate posterior pelvic tilt. There is potential for different ΔSS measurements in the same patient based on sitting posture. The purpose of this study was to determine the effect of sitting posture on the ΔSS in patients undergoing total hip arthroplasty (THA).

Methods

In total, 51 patients undergoing THA were reviewed to quantify the variability in preoperative spinopelvic mobility when measuring two different sitting positions using SS for planning.


Bone & Joint 360
Vol. 9, Issue 2 | Pages 11 - 15
1 Apr 2020


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 808 - 816
1 Jul 2019
Eftekhary N Shimmin A Lazennec JY Buckland A Schwarzkopf R Dorr LD Mayman D Padgett D Vigdorchik J

There remains confusion in the literature with regard to the spinopelvic relationship, and its contribution to ideal acetabular component position. Critical assessment of the literature has been limited by use of conflicting terminology and definitions of new concepts that further confuse the topic. In 2017, the concept of a Hip-Spine Workgroup was created with the first meeting held at the American Academy of Orthopedic Surgeons Annual Meeting in 2018. The goal of this workgroup was to first help standardize terminology across the literature so that as a topic, multiple groups could produce literature that is immediately understandable and applicable. This consensus review from the Hip-Spine Workgroup aims to simplify the spinopelvic relationship, offer hip surgeons a concise summary of available literature, and select common terminology approved by both hip surgeons and spine surgeons for future research.

Cite this article: Bone Joint J 2019;101-B:808–816.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 72 - 72
1 Apr 2019
Buckland A Cizmic Z Zhou P Steinmetz L Ge D Varlotta C Stekas N Frangella N Vasquez-Montes D Lafage V Lafage R Passias PG Protopsaltis TS Vigdorchik J
Full Access

INTRODUCTION

Standing spinal alignment has been the center of focus recently, particularly in the setting of adult spinal deformity. Humans spend approximately half of their waking life in a seated position. While lumbopelvic sagittal alignment has been shown to adapt from standing to sitting posture, segmental vertebral alignment of the entire spine is not yet fully understood, nor are the effects of DEGEN or DEFORMITY. Segmental spinal alignment between sitting and standing, and the effects of degeneration and deformity were analyzed.

METHODS

Segmental spinal alignment and lumbopelvic alignment (pelvic tilt (PT), pelvic incidence (PI), lumbar lordosis (LL), PI-LL, sacral slope) were analyzed. Lumbar spines were classified as NORMAL, DEGEN (at least one level of disc height loss >50%, facet arthropathy, or spondylolisthesis), or DEFORMITY (PI-LL mismatch>10°). Exclusion criteria included lumbar fusion/ankylosis, hip arthroplasty, and transitional lumbosacral anatomy. Independent samples t-tests analyzed lumbopelvic and segmental alignment between sitting and standing within groups. ANOVA assessed these differences between spine pathology groups.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1275 - 1279
1 Oct 2018
Fader RR Tao MA Gaudiani MA Turk R Nwachukwu BU Esposito CI Ranawat AS

Aims. The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI. Patients and Methods. Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion. Results. Compared with non-FAI controls, symptomatic patients with FAI had less flexion at the spine (mean 22°, . sd. 12°, vs mean 35°, . sd. 8°; p = 0.04) and more at the hip (mean 72°, . sd. 6°, vs mean 62°, . sd. 8°; p = 0.047). Subjects with asymptomatic FAI had more spine flexion and similar hip flexion when compared to symptomatic FAI patients. Both FAI groups also sat with more anterior pelvic tilt than control patients. There were no differences in standing alignment among groups. Conclusion. Symptomatic patients with FAI require more flexion at the hip to achieve sitting position due to their inability to compensate through the lumbar spine. With limited spine flexion, FAI patients sit with more anterior pelvic tilt, which may lead to impingement between the acetabulum and proximal femur. Differences in spinopelvic mechanics between FAI and non-FAI patients may contribute to the progression of FAI symptoms. Cite this article: Bone Joint J 2018;100-B:1275–9