Advertisement for orthosearch.org.uk
Results 1 - 20 of 387
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


Background. Magnetic resonance imaging (MRI) algorithm identifies end stage severely degenerated disc as ‘black’, and a moderately degenerate to non-degenerated disc as ‘white’. MRI is based on signal intensity changes that identifies loss of proteoglycans, water, and general radial bulging but lacks association with microscopic features such as fissure, endplate damage, persistent inflammatory catabolism that facilitates proteoglycan loss leading to ultimate collapse of annulus with neo-innervation and vascularization, as an indicator of pain. Thus, we propose a novel machine learning based imaging tool that combines quantifiable microscopic histopathological features with macroscopic signal intensities changes for hybrid assessment of disc degeneration. Methods. 100-disc tissue were collected from patients undergoing surgeries and cadaveric controls, age range of 35–75 years. MRI Pfirrmann grades were collected in each case, and each disc specimen were processed to identify the 1) region of interest 2) analytical imaging vector 3) data assimilation, grading and scoring pattern 4) identification of machine learning algorithm 5) predictive learning parameters to form an interface between hardware and software operating system. Results. Kernel algorithm defines non-linear data in xy histogram. X,Y values are scored histological spatial variables that signifies loss of proteoglycans, blood vessels ingrowth, and occurrence of tears or fissures in the inner and outer annulus regions mapped with the dampening and graded series of signal intensity changes. Conclusion. To our knowledge this study is the first to propose a machine learning method between microscopic spatial tissue changes and macroscopic signal intensity grades in the intervertebral disc. No conflict of interest declared.  . Sources of Funding. ICMR/5/4-5/3/42/Neuro/2022-NCD-1, Dr TMA PAI SMU/ 131/ REG/ TMA PURK/ 164/2020. A part of the above study was presented as an oral paper at the International Society for the Study of Lumbar Spine (ISSLS) meeting held on 1–5. th. May 2023, Melbourne, Australia


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims

To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration.

Methods

The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 237 - 246
17 May 2024
Cheng B Wu C Wei W Niu H Wen Y Li C Chen P Chang H Yang Z Zhang F

Aims

To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment.

Methods

Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 6 - 6
2 Jan 2024
Liu W Feng M Xu P
Full Access

More and more evidences showed that cartilage harbored local progenitor cells that could differentiate toward osteoblast, chondrocyte, and adipocyte. However, our previous results showed that osteoarthritis derived chondroprogenitor cells (OA-CPC) exhibited strong osteogenic potential even in chondrogenic condition. How to promote their chondrogenic potential is the key for cartilage repair and regeneration in osteoarthritis. Recently, lipid availability was proved to determine skeletal progenitor fate. Therefore, we aim to determine whether lipid inhibition under 3D culture condition could enhance OA-CPC chondrogenesis. Moreover, glucose concentration was also evaluated for chondrogenic capacity. Although there are many researches showed that lower glucose promotes chondrogenesis, in our results, we found that OA-CPC in high concentration of glucose (4.5g/L) with lipid inhibitor (GW1100) showed strongest chondrogenic potential, which could form largest cell pellet with strong proteoglycan staining, COL II expression and no COL I expression. Besides, COL2A1 was increased and COL10A1 was decreased significantly by GW1100 under high glucose condition in 2D culture. Interestingly, although the expression level of MMP13 was not changed by GW1100 at RNA and protein level, less MMP13 protein secreted out of cell nuclear. In summary, we estimated that higher glucose and lower lipid supplies benefit OA-CPC chondrogenesis and cartilage repair


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 79 - 79
2 Jan 2024
Roncada T Kelly D
Full Access

Cartilage lacks the ability to self-repair when damaged, which can lead to the development of degenerative joint disease. Despite intensive research in the field of cartilage tissue engineering, there is still no regenerative treatment that consistently promotes the development of hyaline cartilage. Extracellular matrix (ECM) derived hydrogels have shown to support cell adhesion, growth and differentiation [1,2]. In this study, porcine articular cartilage was decellularized, solubilised and subsequently modified into a photo-crosslinkable methacrylated cartilage ECM hydrogel. Bone marrow derived mesenchymal stem/stromal cells (MSCs) were encapsulated into both methacrylated ECM hydrogels (ECM-MA) and gelatin methacryloyl (GelMA) as control hydrogel, and their chondrogenic potential was assessed using biochemical assays and histological analysis. We found that successful decellularization of the cartilage tissue could be achieved while preserving key ECM components, including collagen and glycosaminoglycans. A live-dead assay demonstrated good viability of MSCs withing both GelMA and ECM-MA hydrogels on day 7. Large increases in sGAG accumulation was observed after 21 days of culture in chondrogenic media in both groups. Histological analysis revealed the presence of a more fibrocartilage tissue in the GelMA group, while cells embedded within the ECM-MA showed a round and chondrocytic-like morphology. Both groups stained positively for proteoglycans and collagen, with limited evidence of calcium deposition following Alizarin Red staining. These results show that ECM-MA hydrogels support a hyaline cartilage phenotype and robust cartilaginous matrix production. Future studies will focus on the printability of ECM-MA hydrogels to enable their use as bioinks for the biofabrication of functional tissues


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 78 - 78
2 Jan 2024
Larrañaga-Jaurrieta G Abarrategui A Camarero-Espinosa S
Full Access

In the native articular cartilage microenvironment, chondrocytes are constantly subjected to dynamic physical stimuli that maintains tissue homeostasis. They produce extra cellular matrix (ECM) components such as collagens (type II mainly, 50-75%), proteoglycans (10-30%) and other type of proteins. 1. . While collagen offers a large resistance in tension, proteoglycans are the responsible of the viscoelastic response under compression due to the negative charge they confer to the ECM allowing it to entrap a large amount of interstitial fluid. In pathologic states (e.g. osteoarthritis), this ECM is degenerated and the negative charge becomes unbalanced, losing the chondroprotective properties and resulting on an overloaded chondrocytes that further degenerate the matrix. Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) has been used to generate acoustic (pressure) waves that create bubbles that collapse with cells, inducing a stimulus that can modulate cell response. 2. This mechanical stimulation promotes the expression of type II collagen, type X collagen, aggrecan and TGF-β, appearing as a great strategy to regenerate cartilage. However, current strategies make use of extrinsic forces to stimulate cartilage formation overlooking the physico-chemical properties of the degenerated cartilage, resulting in an excessive load-transfer to chondrocytes and the consequent hypertrophy and degeneration. Here, interpenetrated networks (IPNs) with different compositions were created using methacrylated gelatin (GelMA), to mimic the collagen, and alginate functionalized with tyramine (Alg-tyr) to mimic glycosaminoglycans and to introduce a negative charge in the model. Within the matrix chondrocytes where encapsulated and stimulated under different conditions to identify the ultrasound parameters that enhance tissue formation. Samples with and without stimulation were compared analysing the expression and deposition of collagen II, aggrecan, collagen X and TGF-β. The results suggested that the chondrogenic marker expression of the samples stimulated for 10 minutes per day for 28 days, was two times higher overall in all of the cases, which was correlated to the tissue formation detected. Acknowledgments: The authors would like to thank the Basque Government for the “Predoctoral Training Program for Non-Doctoral Research Staff 2021-2022” (Grant ref.: PRE_2021_1_0403). This work was supported by the RETOS grant PID2020-114901RA-I00 of the Ministry of Science and Innovation (MICINN)


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims

cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect.

Methods

CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 135 - 135
2 Jan 2024
Füllemann P Jörimann T Bella E Stoddart M Matthys R Verrier S
Full Access

Bone healing outcome is highly dependent on the initial mechanical fracture environment [1]. In vivo, direct bone healing requires absolute stability and an interfragmentary strain (IFS) below 2% [2]. In the majority of cases, however, endochondral ossification is engaged where frequency and amplitude of IFS are key factors. Still, at the cellular level, the influence of those parameters remains unknown. Understanding the regulation of naïve hMSC differentiation is essential for developing effective bone healing strategies. Human bone-marrow-derived MSC (KEK-ZH-NR: 2010–0444/0) were embedded in 8% gelatin methacryol. Samples (5mm Ø x 4mm) were subjected to 0, 10 and 30% compressive strain (5sec compression, 2hrs pause sequence for 14 days) using a multi-well uniaxial bioreactor (RISystem) and in presence of chondro-permissive medium (CP, DMEM HG, 1% NEAA, 10 µM ITS, 50 µg/mL ascorbic acid, and 100 mM Dex). Cell differentiation was assessed by qRT-PCR and histo-/immunohistology staining. Experiments were repeated 5 times with cells from 5 donors in duplicate. ANOVA with Tukey post-hoc correction or Kurskal-Wallis test with Dunn's correction was used. Data showed a strong upregulation of hypertrophic related genes COMP, MMP13 and Type 10 collagen upon stimulation when compared to chondrogenic SOX9, ACAN, Type 2 collagen or to osteoblastic related genes Type 1 Collagen, Runx2. When compared to chondrogenic control medium, cells in CP with or without stimulation showed low proteoglycan synthesis as shown by Safranine-O-green staining. In addition, the cells were significantly larger in 10% and 30% strain compared to control medium with 0% strain. Type 1 and 10 collagens immunostaining showed stronger Coll 10 expression in the samples subjected to strain compared to control. Uniaxial deformation seems to mainly promote hypertrophic-like chondrocyte differentiation of MSC. Osteogenic or potentially late hypertrophic related genes are also induced by strain. Acknowledgments: Funded by the AO Foundation, StrainBot sponsored by RISystemAG & PERRENS 101 GmbH


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 14 - 14
2 Jan 2024
Helmholz H Chathoth BM Angrisani N Reifenrath J Willumeit-Römer R
Full Access

Osteoarthritis (OA) is an inflammatory disease affecting the complete synovial joint including the cartilage layer and the subchondral bone plate. Due to the multifactorial causes and the not yet completely resolved molecular mechanisms, it lacks a gold standard treatment to mitigate OA. Hence, biomaterials capable of delaying or preventing OA are a promising alternative or supplement to antiphlogistic and surgical interventions. Magnesium (Mg) and its alloys are among the promising biomaterials with osteoinductive effects. This work investigated the impact of Mg micro cylinders (length ≈of 1.0 mm and width of 0.5 mm) in vitro, in favoring joint regeneration together with preventing OA progression. Therefore, a mesenchymal stem cell line (SCP-1) was applied in order to assess the compatibility of the degradable material. Furthermore, an in vitro OA model utilizing SCP-1 cells based on the supplementation of the cytokines; IL-1β, TNF-α was established and disclosed the capability of Mg microparticles in differentiating SCP-1 cells into chondrogenic and osteogenic lineages proven through extracellular matrix staining and gene marker analysis. A concentration above 10 mM revealed a reduction in the cell viability by 50 %. An increase in the expression of collagens especially and proteoglycans (COL2A1, Aggrecan) as extracellular matrix proteins as well as an increase in osteogenic marker (ALP, BMP2) favoring the mineralization process were observed. The inflammatory condition reduced the viability and productivity of the applied stem cell line. However, the application of Mg microparticles induced a cell recovery and reduction of inflammation marker such as MMP1 and IL6. The cytocompatible and the ability of Mg microparticles in supporting bone and cartilage repair mechanisms in vitro even under inflammatory conditions make biodegradable Mg microparticles a suitable implant material to treat OA therapy. Acknowledgements: This project OAMag was funded by the German Research Foundation (project number 404534760). The author thank Dr. Björn Wiese (hereon) for the production of Mg based material and Prof. Böcker (MUM Musculoskeletal University Center Munich) for the provision of SCP-1 cell line


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 126 - 126
2 Jan 2024
Schmidt S Klampfleuthner F Diederichs S
Full Access

The signaling molecule prostaglandin E2 (PGE2), synthesized by cyclooxygenase-2 (COX-2), is immunoregulatory and reported to be essential for skeletal stem cell function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in osteoarthritis (OA) analgesia, but cohort studies suggested that long-term use may accelerate pathology. Interestingly, OA chondrocytes secrete high amounts of PGE2. Mesenchymal stromal cell (MSC) chondrogenesis is an in vitro OA model that phenocopies PGE2 secretion along with a hypertrophic OA-like cell morphology. Our aim was to investigate cause and effects of PGE2 secretion in MSC-based cartilage neogenesis and hypertrophy and identify molecular mechanisms responsible for adverse effects in OA analgesia. Human bone marrow-derived MSCs were cultured in chondrogenic medium with TGFβ (10ng/mL) and treated with PGE2 (1µM), celecoxib (COX-2 inhibitor; 0.5µM), AH23848/AH6809 (PGE2 receptor antagonists; 10µM), or DMSO as a control (n=3–4). Assessment criteria were proteoglycan deposition (histology), chondrocyte/hypertrophy marker expression (qPCR), and ALP activity. PGE2 secretion was measured (ELISA) after TGFβ withdrawal (from day 21, n=2) or WNT inhibition (2µM IWP-2 from day 14; n=3). Strong decrease in PGE2 secretion upon TGFβ deprivation or WNT inhibition identified both pathways as PGE2 drivers. Homogeneous proteoglycan deposition and COL2A1 expression analysis showed that MSC chondrogenesis was not compromised by any treatment. Importantly, hypertrophy markers (COL10A1, ALPL, SPP1, IBSP) were significantly reduced by PGE2 treatment, but increased by all inhibitors. Additionally, PGE2 significantly decreased ALP activity (2.9-fold), whereas the inhibitors caused a significant increase (1.3-fold, 1.7-fold, 1.8-fold). This identified PGE2 as an important inhibitor of chondrocyte hypertrophy. Although TGFβ and WNT are known pro-arthritic signaling pathways, they appear to induce a PGE2-mediated antihypertrophic effect that can counteract pathological cell changes in chondrocytes. Hampering this rescue mechanism via COX inhibition using NSAIDs thus risks acceleration of OA progression, indicating the need of OA analgesia adjustment


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 36 - 36
2 Jan 2024
Jahr H
Full Access

Articular cartilage is a relatively hypoxic tissue with a unique extracellular matrix that is enriched with cations, resulting in an elevated interstitial fluid osmolarity. Several biomechanical and physicochemical stimuli are reported to influence chondrocyte metabolism. For regenerative in vitro applications, increasing the extracellular osmolarity above plasma level to more physiological valuesinduces chondrogenic marker expression and the differentiation of chondroprogenitor cells. Calcineurin inhibitor FK506 modulates the differentiation of primary chondrocytes under such conditions and its effect on cell proliferation, extracellular matrix quality, and BMP- and TGF-β signaling will be described. Supraphysiological osmolarity compromises chondrocyte proliferation, while physosmolarity or FK506 did not. Rather, the combination of the latter increased proteoglycan and collagen expression in chondrocytesin vitro and in situ, affecting expression of TGF-β-inducible protein TGFBI and chondrogenic (SOX9, Col2) as well as terminal differentiation markers (e.g., Col10). Surprisingly, expression of particularly minor collagens (e.g., Col9, Col11) was improved. Physiological osmolarity seems to promote terminal chondrogenic differentiation of progenitor cells through sensitization of TGF-β superfamily signaling at the type I receptor. While hyperosmolarity alone facilitates TGF-β superfamily signaling, FK506 seems to enhance signaling by releasing the FKBP12 break from the type I receptor to improve collagenous marker expression. Our data help explaining seemingly contradictory earlier findings and potentially benefit future cell-based cartilage repair strategies


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims

Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown.

Methods

We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 702 - 711
1 Dec 2023
Xue Y Zhou L Wang J

Aims

Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA.

Methods

First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 53 - 53
17 Nov 2023
Wright K McDonald J Mennan C Perry J Peffers M Hulme C
Full Access

Abstract. Objectives. A promising therapy for early osteoarthritis (OA) is the transplantation of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). The synovial fluid (SF) from a pre-clinical ovine model treated with hUC-MSCs has been profiled using proteomics and bioinformatics to elucidate potential mechanisms of therapeutic effect. Methods. Four weeks after a medial meniscus transection surgery, sheep were injected with 10. 7. hUC-MSCs in Phosphate Buffered Saline (PBS) or PBS only (n=7) and sacrificed at 12 weeks. SF was normalised for protein abundance (ProteoMiner. TM. ) and analysed using label-free quantitation proteomics. Bioinformatics analyses (Ingenuity Pathway Analysis (IPA) and STRING) were used to assess differentially regulated functions from the proteomic data. Human orthologues were identified for the ovine proteins using UniProt and DAVID resources and proteins that were ≥±1.3 fold differentially abundant between treatment groups, were included in the bioinformatics analyses. Results. hUC-MSC treated animals demonstrated significantly less joint space narrowing. Nineteen SF proteins were differentially abundant in treated cf. control sheep (FC±2.0; p<0.05). Biglycan (a small leucine-rich proteoglycan of the cartilage extracellular matrix) abundance was increased by 2.1 fold in treated compared to untreated sheep (p=0.024). IPA indicated that lipid synthesis (z-score=1.772; p=0.00267) and immune cell migration pathways (cell movement of mononuclear leukocytes: z-score=1.761; p=0.00259), amongst others, were likely to be activated in the treated sheep. Conversely, tissue damage (z-score=−2; p=0.00019), senescence (z-score=−1.981; p=0.00007) and necrosis (z-score=−1.728; p=0.00829) associated pathways as well as inflammation (z-score=−1.718; p=0.00057) and vascular permeability (z-score=−1.698; p=0.00002) were likely to be inhibited in treated cf. untreated sheep. Conclusions. hUC-MSC treatment prevented/delayed OA progression, demonstrated via a reduction in joint space narrowing. SF proteome bioinformatics revealed potential mechanisms of therapeutic action related to immunomodulation and the inhibition of multiple cell death, and tissue damage associated pathways. Further, a potential predicted upregulation in lipid synthesis in treated sheep represents a novel mechanism warranting further investigation. Additional work is required to validate these discovery phase proteomic findings in studies which specifically target and manipulate the proposed mechanisms highlighted. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 56 - 56
17 Nov 2023
Algarni M Amin A Hall A
Full Access

Abstract. Objectives. Osteoarthritis (OA) is a complex joint disorder characterised by the loss of extracellular matrix (ECM) leading to cartilage degeneration. Changes to cartilage cell (chondrocyte) behaviour occur including cell swelling, the development of fine cytoplasmic processes and cell clustering leading to changes in cell phenotype and development of focal areas of mechanically-weak fibrocartilaginous matrix. [1]. To study the sequence of events in more detail, we have investigated the changes to in situ chondrocytes within human cartilage which has been lightly scraped and then cultured with serum. Methods. Human femoral heads were obtained with Ethical permission and consent from four female patients (mean age 74 yrs) undergoing hip arthroplasty following femoral neck fracture. Osteochondral explants of macroscopically-normal cartilage were cultured as a non-scraped control, or scraped gently six times with a scalpel blade and both maintained in culture for up to 2wks in Dulbecco's Modified Eagle's Medium (DMEM) with 25% human serum (HS). Explants were then labelled with CMFDA (5-chloromethylfluorescein-diacetate) and PI (propidium iodide) (10μM each) to identify the morphology of living or dead chondrocytes respectively. Explants were imaged using confocal microscopy and in situ chondrocyte morphology, volume and clustering assessed quantitatively within standardised regions of interest (ROI) using Imaris. ®. imaging software. Results. Within 2wks of culture with HS, chondrocyte volume increased significantly from 412±9.3µm. 3. (unscraped) at day 0 to 724±16.6 µm. 3. (scraped) [N(n) = 4(380)] (P=0.0002). Chondrocyte clustering was a prominent feature of HS culture as the percentage of clusters in the cell population increased with scraping from 4.8±1.4% to 14.9±3.9% [N(n) = 4(999)] at week 2 (P=0.0116). In addition, the % of the chondrocyte population within clusters increased from approximately 38% to 60%, and the number of cells per cluster increased significantly from 3.2±0.08 to 4±0.22 (P=0.031). The development of abnormal ‘fibroblastic-like’ chondrocyte morphology demonstrating long (>5µm) cytoplasmic processes also occurred, however the time course of this was more variable. For some samples, clustering occurred before abnormal morphology, but for others the opposite occurred. Typically, by the second week, 17±2.64% of the cell population had processes and this increased to 22±4.02% [N(n) = 4(759)] with scraping. Conclusions. Scraping the cartilage will remove surface constituents including lubricants (e.g. lubricin, hyaluronic acid, phospholipids), extracellular matrix constituents (collagen, proteoglycans – potentially the ‘lamina splendens’) and cells (chondrocytes and mesenchymal stromal cells (MSCs)). Although we do not know which of these component(s) is important, the effect is to dramatically increase the permeation of serum factors into the cartilage matrix and signal the development of cytoplasmic processes, cell clustering and swelling. It is notable that these cellular changes are similar to those occurring in early OA. [1]. This raises the interesting possibility that scraped cartilage cultured with human serum recapitulates some of the changes to in situ chondrocytes during early stages of cartilage degeneration and as such, could be a useful model for following the deleterious changes to matrix metabolism. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project