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Aims
Extracellular matrix (ECM) is a critical determinant of tissue mechanobiology, yet remains poorly
characterized in joint tissues beyond cartilage in osteoarthritis (OA). This review aimed to define
the composition and architecture of non-cartilage soft joint tissue structural ECM in human OA,
and to compare the changes observed in humans with those seen in animal models of the
disease.

Methods
A systematic search strategy, devised using relevant matrix, tissue, and disease nomenclature,
was run through the MEDLINE, Embase, and Scopus databases. Demographic, clinical, and
biological data were extracted from eligible studies. Bias analysis was performed.

Results
A total of 161 studies were included, which covered capsule, ligaments, meniscus, skeletal
muscle, synovium, and tendon in both humans and animals, and fat pad and intervertebral
disc in humans only. These studies covered a wide variety of ECM features, including individ-
ual ECM components (i.e. collagens, proteoglycans, and glycoproteins), ECM architecture (i.e.
collagen fibre organization and diameter), and viscoelastic properties (i.e. elastic and compres-
sive modulus). Some ECM changes, notably calcification and the loss of collagen fibre organiza-
tion, have been extensively studied across osteoarthritic tissues. However, most ECM features
were only studied by one or a few papers in each tissue. When comparisons were possible, the
results from animal experiments largely concurred with those from human studies, although
some findings were contradictory.

Conclusion
Changes in ECM composition and architecture occur throughout non-cartilage soft tissues in the
osteoarthritic joint, but most of these remain poorly defined due to the low number of studies
and lack of healthy comparator groups.

Article focus
• Extracellular matrix (ECM) is a critical

determinant of tissue mechanobiology
and cell behaviour, but it is poorly descri-
bed in osteoarthritic joint tissues beyond
cartilage.

• The main aim of this systematic review is
to consolidate existing data describing the
architecture and composition of structural
ECM in the synovium, joint capsule,

skeletal muscle, tendon, ligament,
meniscus, intervertebral disc, and fat pad
of osteoarthritic joints.

Key messages
• Our study highlights the global nature of

ECM dysregulation across the osteoar-
thritic joint.

• While some ECM changes, notably
calcification and the loss of collagen fibre
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organization, have been extensively studied across
osteoarthritic tissues, most ECM features were only studied
by one or a few papers in each tissue.

• Results from animal studies generally concurred with
human studies, but some findings contradicted observa-
tions from human studies, highlighting the importance of
the choice of animal model and the need for validation
from human studies.

Strengths and limitations
• This systematic review consolidates existing knowledge of

a poorly defined aspect of osteoarthritis pathophysiology.
• While a wide range of tissues and ECM components have

been reported on, the qualitative nature of papers, the lack
of control groups, and the paucity of reports on each ECM
component means that the depth of knowledge remains
poor.

Introduction
Osteoarthritis (OA) is the most common joint disease globally,
affecting over 500 million people. OA is typically attributed
to mechanically driven joint damage and is characterized
by articular cartilage degeneration and subchondral bone
remodelling.1 However, these tissues are not affected in
isolation from the wider joint, with pathology in other soft
joint tissues contributing to the symptoms and progression
of OA.2,3 Damage to menisci and ligaments disrupts joint
biomechanics, while inflammation, fibrosis, and distension of
the synovium and joint capsule are associated with joint pain
and stiffness.4-8 Despite significant clinical need and substan-
tial efforts to identify disease-modifying OA drugs, there is
no effective way of inhibiting or decelerating OA-related joint
damage by targeting cartilage directly. Given the important
role of other soft-tissues in joint biomechanics and the release
of pro-inflammatory and matrix-degrading mediators into
the synovial fluid,9,10 understanding the biological landscape
of the whole joint in OA might provide novel therapeutic
strategies and prognostic markers.

Joint tissues are rich in extracellular matrix (ECM), a
network of structural and regulatory macromolecules within
which cells are embedded.11 The role of ECM as a major
determinant of the biophysical properties of a tissue has clear
relevance in a disease such as OA.12,13 ECM not only pro-
vides structure to the tissue, but can also affect cell func-
tion through receptor engagement, mechanical cues, and the
sequestration of growth factors and cytokines.14-17 Signifi-
cant crosstalk occurs between cells and matrix components,
such that pathological ECM may exacerbate cellular dysfunc-
tion in disease.16,18 Therefore, ECM composition and architec-
ture cannot be disregarded when attempting to understand
OA pathophysiology. However, outside of cartilage, ECM
remodelling in OA tissues has received relatively little
attention.

Studying OA in the clinical setting is challenging due
to the slow and unpredictable nature of the course of the
disease. In addition, clinical symptoms often appear late in
the disease process, making it difficult to study its onset and
early progression. Therefore, many animal models for OA have
been developed to overcome these issues and facilitate the
development and evaluation of new therapies and diagnostic

tools.19 However, since there is no single “gold standard”
animal model that accurately reflects all aspects of human
disease, a major challenge is selecting the “right” model for
each study.20

The main aim of this systematic review is to consolidate
existing data describing the architecture and composition of
structural ECM in the synovium, joint capsule, skeletal muscle,
tendon, ligament, meniscus, intervertebral disc, and fat pad of
osteoarthritic joints. The second aim is to define the changes
in the architecture and composition of structural ECM in these
tissues in animal models of OA, in order to address their ability
to replicate human disease pathophysiology.

Methods
Systematic review protocol and registration number
This review was conducted according to a protocol registered
on the PROSPERO database (CRD42021231241) and guidelines
set out in the PRISMA statement.21

Database and search strategy
The search strategy, written by JYM and a medical
librarian, can be found in the Supplementary Material.  ECM
components and architectural features were defined  using
National Centre for Biotechnology Information Medical
Subject Heading terms.22  Non-cartilage soft joint tissues
and disease nomenclature were also specified.  The search
strategy was validated against relevant papers identified  in
a preliminary literature search. The search strategy was run
on the Ovid MEDLINE, Ovid EMBASE, and Scopus platforms
on 30 October 2020 and repeated on 1 October 2021 and
1 June 2023.

Eligibility criteria and screening
Abstracts were de-duplicated in Mendeley Reference Manager
(Elsevier B.V., Netherlands) before being imported into the
Covidence platform. The remaining studies were screened
independently at title/abstract and full-text stages by two
reviewers (JYM, IGAR), with conflicts resolves through
consensus or a third reviewer (SJBS). Included studies were
required to have ≥ three OA participants.

In human studies, eligible patients and controls were
aged ≥ 18 years. Non-OA diseases, including inflammatory
arthritides and crystalline arthropathies, were excluded. The
presence of a valid control group was not a requirement
for human studies. However, control groups were included if
present and a minimum of three participants were included in
this group. Valid control groups included tissues from healthy
people or near-healthy tissues, including cadavers, individu-
als with osteosarcoma, and traumatic joint injuries provided
that the comparator tissue was not directly damaged by the
trauma.

In contrast to human studies, all animal studies
required a control group. Studies that induced OA unilaterally
and only used a contralateral control joint were excluded, as
non-physiological loading of the contralateral joint induces
ECM remodelling.23,24 Excluded animal models included the
genetic deletion of ECM components, the introduction of
matrix-degrading enzymes into the joint, surgical damage of
a tissue subsequently reported on, and the ovariectomized
rat model, as this is more commonly used as a model for
osteoporosis.25,26
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Regarding outcome measures, included studies
evaluated at least one of the following tissues: intervertebral
disc, ligament, skeletal muscle, tendon, meniscus, articular
capsule, synovium, and fat pad. Papers that only studied
these tissues after treatment, including – but not limited
to – surgical or drug treatment, or after these tissues were
purposely injured to induce the development of OA, were
excluded. Papers evaluating non-ECM tissue components
(cells, cytokines, matrix-degrading enzymes) were ineligible
for inclusion. Given the focus on structural ECM, regulatory
matricellular proteins, as well as neoepitopes generated

during ECM turnover, were not included. Studies using in
vitro or ex vivo culture systems were excluded as the ECM
proteins that cells synthesize differ in culture and in vivo.
Transcriptomic analyses were excluded as gene expression is
a determinant, not a measure, of protein abundance. Finally,
only English-language articles were included.

Data extraction and bias analysis
Data were extracted from all included studies by one reviewer
(JYM or IGAR) using a standardized extraction form in
Microsoft Excel (Microsoft, USA); the extraction was verified

Fig. 1
PRISMA 2022 flow diagram. ECM, extracellular matrix; OA, osteoarthritis.
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by the other reviewer (IGAR or JYM). Where there was
uncertainty, extraction was performed in duplicate by both
reviewers. Number of participants (or animals) in each group
was recorded as well as the presence/absence of a control
group; if a control group was present, the control population
and control tissue were described. For animal studies, the
species, strain, and type of OA model were recorded. When
available, participant age, sex, BMI, and disease severity were
recorded, as were the joint and tissue being studied. Relevant
ECM components and architectural features were described;
comparisons to control tissues and statistical analysis were
noted when applicable. Results were grouped by tissue,
followed by ECM feature, and finally the direction of change
compared to control (increase, no change, decrease, or no
control group present) and presented in Supplementary Table
i (human studies) and Supplementary Table ii (animal studies).
Due to the large number of different included ECM features,
accepted research methods, and accepted measures of effect,
a quantitative meta-analysis was not deemed appropriate. Bias
analysis was performed by IGAR, with all included studies
assessed using the 2015 Office of Health Assessment and
Translation (OHAT) Risk of Bias Rating Tool for Human and
Animal Studies. The results of the bias analysis can be found in
Supplementary Table iii.

Results
Study overview
A total of 22,140 potentially relevant articles were identified
by the search strategy (Figure 1). Following the removal
of duplicates, 10,204 abstracts were screened. Of the 456
studies assessed for eligibility at full-text screening, 161 met
all criteria for inclusion in this review. The characteristics of all
included studies are summarized in Supplementary Tables iv
and v (human and animal studies, respectively). A schematic
overview of the included studies can be found in Figure 2.

Human studies
Most studies investigated meniscus (n = 46) and synovium
(n = 42), followed by ligaments (n = 18), capsule (n = 7),
tendon (n = 5), skeletal muscle (n = 4), fat pad (n = 2), and
intervertebral disc (n = 1) (Supplementary Table i). Studies
most commonly investigated the knee joint (n = 86), but
papers on hip (n = 10), spine (n = 3), thumb (n = 2), tempor-
omandibular joint (TMJ) (n = 2), and shoulder (n = 2) were
also identified. While most studies on synovium, tendon, and
capsule focused on the presence/absence and distribution of
specific ECM components, a large proportion of the papers
on meniscus and ligaments investigated ECM architecture and
viscoelastic properties (Supplementary Table i).

Fig. 2
Schematic overview of the study population, anatomical locations, and extracellular matrix (ECM) features studied in the included studies. One study
investigated ECM in both human osteoarthritis (OA) and an animal model of OA. Created with BioRender.com. TMJ, temporomandibular joint.
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Capsule in human OA
Of seven studies which assessed the capsule (hip (n = 3), knee
(n = 3), and spine (n = 1)),27–33 four were published before the
year 2000. These studies covered both ECM components and
architectural features, but only collagen content was covered
by more than one study, with two papers describing increased
collagen staining.28,29 Voelker et al30 looked at several ECM
components, showing an increase in type I collagen and no
difference in type III collagen and elastin in OA facet joint
capsule compared to cadaver controls.30 Of note, DiFrancesco
et al27 studied several ECM features (calcification, collagen fibre
organization, elastic fibres, and GAG/proteoglycan content)
in parallel,27 providing an overview of hip capsule in OA.
Other studies showed decreased collagen fibre organization,32

the presence of several GAGs,33 and an increase in collagen
cross-links in OA.31

Fat pad in human OA
Two studies were identified for infrapatellar fat pad.34,35

Grevenstein et al35 found no change in cartilage oligomeric
matrix protein (COMP) content between OA and control fat
pads,35 while Belluzzi et al34 showed that the osteoarthritic fat
pad contains less collagen type I and III than controls.

Intervertebral disc in human OA
One study was identified for intervertebral disc. Cheng et al36

showed an increase in calcification with increasing OA grade in
intervertebral discs.

Ligaments in human OA
Of the 18 studies on ligaments, 14 focused on anterior
cruciate ligament (ACL) and/or posterior cruciate ligament
(PCL) of the knee.37–50 Two studies looked at ligaments in the
thumb (palmar beak ligament,51 volar anterior oblique (AOL),
and dorsoradial (DRL)52), while two other studies investiga-
ted ligaments in the spine (transverse ligament53 and the
ligamentum flavum).30 Studies mostly focused on collagen
fibre organization, which generally decreased in OA com-
pared to control.42–44 Studies without controls also reported
disorganized and irregular collagen fibre organization in OA
ligaments. Other identified studies confirmed the presence of
collagens I, II, and III, but found no change in overall collagen
content compared to control. In contrast, calcification and
proteoglycan content appear to increase in OA.

Meniscus in human OA
Studies on human meniscus (n = 46) covered a wide range
of ECM components, architectural changes, and viscoelas-
tic properties.54–99 Most studies concur on an increase in
calcification and proteoglycan content, and consistently show
a decrease in collagen fibre diameter and organization. The
presence or change in many other ECM components has been
studied, including aggrecan, biglycan, cartilage intermedi-
ate layer protein, collagens and collagen cross-links, COMP,
decorin, fibromodulin, glycosaminoglycan (GAG) components,
hydroxyproline, keratocan, lubricin, and lumican. Notably,
three out of four proteomics studies included in this system-
atic review evaluated human OA meniscus, identifying a range
of ECM and ECM-associated proteins.97–99 Two of these studies
(Folkesson et al97 and Roller et al98) also analyzed control
samples and found several proteins to be changed in OA

compared to control tissue. For example, both studies report
an increase in type VI α 1 collagen and type VI α 2 colla-
gen in OA, and Folkesson et al97 found a change in protein
abundance in several small leucin-rich proteoglycans, such as
an increase in lumican and decrease in decorin, an increase
in the proteoglycans aggrecan and versican, and a decrease
in type III and V collagens.97,98 Finally, the results on viscoe-
lastic properties are conflicting: while some studies show an
increase in elastic modulus89 and instantaneous modulus,90

another study showed a decrease in these parameters.61

Skeletal muscle in human OA
All four studies on human skeletal muscle studied the ECM
components in the vastus medialis or vastus lateralis of
the quadriceps muscle.100–103 These studies demonstrated the
presence103 or increase102 in type I, III, and IV collagens
compared to control. In addition, these studies show the
presence of calcification and laminin,100,102 and an increase in
collagen and GAG content.101

Synovium in human OA
Synovial tissue was studied in several joints, including the
knee (n = 18),94,104–120 hip (n = 5),121–125 both knee and hip (n =
6),126–131 TMJ (n = 2),132,133 or an unspecified joint (n = 12).130,134–

144 The ECM components most often studied in human
synovium were collagens, fibronectins, and laminins. Other
ECM features covered by the included studies are aggre-
can, calcification, collagen content, collagen fibre organiza-
tion, collagen cross-links, COMP, elastin, fibromodulin, GAG
components, latent transforming growth factor (TGF)-β-bind-
ing protein 1, lumican, reticulin, and vitronectin. While the
presence and tissue distribution of these components has
been clearly shown by several studies, the changes between
OA and normal tissue remain unclear, with most studies
lacking healthy control groups; instead, OA is often the
comparator group in studies investigating rheumatoid arthritis
(RA). This includes the identified proteomics study, which
compared the OA and RA synovium. They found that several
ECM proteins, including type 2 α 1 collagen, versican, and
cartilage intermediate layer protein 1 were higher in OA than
RA synovium.143

Tendon in human OA
Human tendon studies covered a range of different tendons
across the body, including Achilles, (long head of ) biceps,
subscapularis, gluteus medius, and internal obturator.145–149

Discordant results between studies of anatomically distinct
tendons are unsurprising, but disagreement was also seen for
two studies on biceps tendon. For example, GAG/proteoglycan
content was increased in the long head of biceps and internal
obturator tendon,145,148 unchanged in another study on biceps
tendon and subscapularis tendon,146 and decreased in gluteus
medius tendon in OA compared to control.149 Similarly,
increased calcification was seen in obturator tendon,145 while
there was no difference in subscapularis, and a decrease
in biceps tendon.146 In terms of architecture, three out of
four studies reporting on collagen fibre organization report
a decrease in organization,145,146,149 while the last reported no
difference compared to control.148 An increase in collagen
fibre diameter was found in internal obturator and biceps
tendon,145,146 while no difference was seen in subscapularis and
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gluteus medius tendons.146,149 Finally, no difference was found
in the percentage area stained for type I and II collagen and
decorin.148

Animal studies
Animal studies followed a similar pattern as human stud-
ies regarding the most studied tissues: synovium (n = 18),
meniscus (n = 14), ligament (n = 7), skeletal muscle (n = 2),
tendon (n = 1), and capsule (n = 1) (Supplementary Table
ii). A broad range of species, strains, and models were used,
all looking at the stifle joint of these animals. Overall, these
studies generally found increases in ECM components such as
collagen and disrupted ECM architecture, including a decrease
in collagen fibre organization in most tissues (Supplemen-
tary Table ii). Viscoelastic properties were mainly studied
in meniscus, where the elastic and instantaneous modulus
tended to decrease.

Capsule in animal models of OA
Only one study was identified on capsule. Loeser et al150

studied capsule in the DMM model in C57BL/6 mice.150 Type
III collagen was found to be diffusely expressed in OA capsule,
predominantly in vascular endothelium. Interestingly, this
study also assessed the meniscus, ligament, and synovium,
taking a whole-joint approach to OA; they report a diffuse
distribution of type III collagen similar to capsule in ligaments
and synovium, while there was a pericellular distribution in
meniscus.

Ligament in animal models of OA
Ligaments were studied in OA models in mice (n = 4),150–153

rabbits (n = 2),154,155 and sheep (n = 2).156,157 A decrease in
collagen fibre organization was reported by two studies.155,157

While one study reported an increase in GAG staining using
toluidine blue in ACL of STR/ort mice,151 another showed a
decrease in Raman spectroscopy peaks related to GAG content
in MCL/LCL of ACL transection (ACLT) rabbits.154 All other
reported ECM features were only present in one study. These
features include calcification, mineralization, collagen content,
types II and III collagen, collagen cross-links, collagen fibre
diameter, and mechanical strength.

Meniscus in animal models of OA
ECM changes in meniscus in animal models of OA were
investigated by six studies using mouse models,150,151,158–161

five studies using rabbit models,162–166 one study using a rat
model,167 and two studies using a pig model.168,169 Overall,
these studies show an increase in calcification/mineralization
and types I, II, III, and X collagen, and a decrease in colla-
gen fibre organization. Most studies show a decrease in GAG/
proteoglycan content and viscoelastic properties in at least
parts of the meniscus. In addition, thickening of the collagen
fibres and no change in fibromodulin were found.

Skeletal muscle in animal models of OA
Two studies were identified that investigated skeletal muscle.
Shi et al170 studied the elastic modulus in biceps femoris
and rectus femoris muscles in an adapted Videman method
in rabbits; they report an increase in elastic modulus in OA
compared to control.170 Lee et al171 investigated the rectus
femoris muscle using a monoiodoacetate (MIA) model in rats;

they reported a decrease in collagen levels on days 56 and 87
in OA rats compared to the naïve group.171

Synovium in animal models of OA
Synovium was investigated in three studies using mouse
models,150,158,172 13 studies using rat models,104,173–184 and two
studies using rabbit models.185,186 All studies on calcification,
collagen content, and collagen I showed an increase in
OA compared to control. However, results on collagen fibre
organization and collagen fibre diameter were less clear, with
some studies reporting no change, while others reported
a decrease in collagen fibre organization and increase in
collagen fibre diameter. Other studied features included types
III, V, and XIV collagen, COMP, fibromodulin, lubricin, and
viscoelastic properties (elastic modulus), which were each
reported on by a single study.

Tendon in animal models of OA
Tendon was investigated in one study by McErlain et al187

using an ACLT model in rats. They found calcification of the
patellar tendon to be more common in OA than control
animals.187

Bias analysis
The risk of bias varied between studies but was generally high
(Supplementary Table iii). The potential for confounding bias
was common, with many human studies failing to report on
the age, sex, and BMI of participants. Frequently, OA diagnoses
were stated without reference to the diagnostic criteria used.
Most studies failed to report on the blinding of assessors, even
when qualitative histological observations were made. Purely
qualitative observations were common, although semiquanti-
tative scoring systems were increasingly used in more recent
studies. However, many quantitative and semiquantitative
differences between healthy and osteoarthritic tissues were
not statistically analyzed.

Discussion
Despite OA becoming more widely accepted as a whole joint
disease, the role of and the changes to non-cartilage soft
joint tissues remain underexplored. This study aimed to collate
current knowledge on the structural ECM of these tissues
to summarize and highlight gaps in existing knowledge. For
instance, tissues such as the joint capsule and fat pad are very
poorly defined, perhaps reflecting their perceived importance
in OA. Overall, the studies included in this review show
that the presence and/or abundance of many structural ECM
components changes in disease, within an ECM that becomes
less organized with increasing cartilage damage or increasing
tissue-specific degeneration scores.

Human studies covered a range of tissues and ECM
features, but focused mainly on calcification, the presence and
abundance of proteoglycans, and the presence, abundance,
fibre diameter, and fibre organization of collagens. While
recent studies begin to define the presence and distribution
of many ECM components, a frequent absence of well-defined
control groups limits our understanding of the changes in
disease. Most ECM features are only described by one or a few
studies, highlighting the need for studies that cover multiple
ECM features. While studies that did look at the same ECM
feature mostly agreed, this was not always the case. This
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included studies with control groups that investigated the
collagen content in meniscus,54,72 elastic modulus in menis-
cus,61,89 chondroitin sulphate in synovium,119,130 and calcifi-
cation and GAG/proteoglycan content in tendon,145,146,148,149

which all contradict each other in terms of the direction
of change. The summary and results tables highlight sev-
eral potential factors for these differences already, includ-
ing differences in analysis methods, tissue joint origin, and
microanatomical area of studied tissue, emphasizing the
importance of in-depth reporting of tissue metadata and
methods.

Several recent human studies, mostly in ligaments,
tendon, and meniscus, have begun to interrogate both
compositional and architectural ECM features within a single
tissue. Importantly, such studies can begin to dissect the
relationship, including causality, between changes in ECM
composition, ECM architecture, and viscoelastic properties.
For example, studies in the field have shown that calcifica-
tion of tendon changes its viscoelastic properties,188 while
the mechanical properties of fibril-forming collagens are
dependent on covalent cross-linking,189 and different matrix
proteoglycans differ in their effects on cell-mediated collagen
reorganization.190

Whole tissue proteomics, which can be used to study
the ECM composition of a tissue holistically, was performed in
four studies: three on meniscus97–99 and one on synovium.143

While the study of ECM proteins using proteomic techni-
ques is subject to methodological biases due to their large
size, extensive post-translational modification, and insolubil-
ity,191 they are a powerful tool to better understand relative
abundance of ECM proteins and overall tissue composition
and formulate new research questions. The application of this
technique to other osteoarthritic tissues is likely to provide
important insights.

In animal models, OA is induced in a range of spe-
cies using varied surgical techniques and pharmacological
interventions, with no animal model truly replicating human
disease.19,192 Joint mechanics, inflammatory responses, and
disease chronicity all vary between animal models.192,193 If
ECM remodelling also differs between species and procedures,
it can be assumed that not all animal models are equally
suited to the study of changes in osteoarthritic ECM. Certain
models may be generally more representative of changes
seen in human OA, or better suited to the study of particu-
lar joint tissues or ECM features. This review covers a range
of ECM changes in several different musculoskeletal soft-tis-
sues across different species and models. Although limited
animal studies were eligible for inclusion in this review, some
changes in ECM features could be compared between human
OA and animal models. Generally similar trends could be
seen as in humans, including a decrease in collagen fibre
organization and an increase in calcification across ligaments,
meniscus, and synovium. However, other observations seem
to contradict those in humans; for example, the presence
and abundance of collagens seemed to decrease in human
osteoarthritic menisci, especially with increasing degeneration
of the meniscus,54,73,75 while this is not reflected in data from
any of the animal models in this review, which mainly showed
increases in collagens in OA menisci.151,161,163 Therefore, the
models used by these studies, namely the mouse STR/ort,
rabbit ACLT, and mouse DMM models, respectively, might not

be suitable to infer OA-related changes in human menisci.
These results emphasize that more studies on ECM changes
in non-cartilage soft joint tissues in human OA and animal
models must be compared before the validity of the latter can
be accurately defined.

Another important point to note is the difference in
the ratio of female/male subjects in human studies compared
to this ratio in animal studies: while most human studies
include a higher ratio of female than male subjects, many
animal studies are done exclusively using male animals. The
predominance of women in human studies likely reflects
disease prevalence; sex-specific differences in pain, inflamma-
tion, cartilage volume, and physical difficulty exist in OA,194

as well as in the presence of risk factors for the incidence
of radiological knee OA.195 The presence of a sex bias in
preclinical research is well established, with many fields having
a strong male bias during animal studies.196 Encouragingly,
sex-specific differences in animal models of OA are increas-
ingly being addressed and reported on, including differences
in the progression of the disease and response to pain.197–201

This emphasizes the importance of accounting for sex during
the interpretation of results from both human and animal
research studies to the human OA patient population.

The strength of any systematic review is partly
contingent on the quality of included studies. As discussed
in the Results section on bias analysis, the methodology of
many studies conferred a high risk of bias, resulting in a
low confidence in the evidence provided. In basic science
studies utilizing human samples, the baseline characteristics
and clinical characterization of OA patients are often miss-
ing, or lack necessary detail. Clinical background is a partic-
ularly important consideration in the context of soft-tissue
calcification, given that crystal depositional diseases, such as
pseudogout, can drive OA.202 Patients’ clinical background
is poorly reported throughout the literature, as is disease
severity, despite ECM and other tissue components differing
more from the physiological state with OA progression.42

As clinical information might not always be available for
collection due to ethical constraints, making this clear to
readers allows findings to be interpreted in the correct clinical
context. Although the search strategy covered many non-carti-
lage soft joint tissues, some tissues, such as the temporoman-
dibular joint disc and acetabular labrum, were not included. In
addition, the focus of this review was on structural compo-
nents of the ECM, which are the elements that are studied
most extensively and make up the majority of tissue ECM.
However, this does mean that this work does not provide
a complete account of all OA ECM, as non-structural matrix
elements such as matricellular proteins or neoepitopes have
not been reported on. Finally, a limitation of the review
process is the data extraction, which was not done by two
independent reviewers, but rather extracted by one reviewer
and verified by the other reviewer. However, the effect of
this is likely limited as a previous study has reported that
while extraction by two independent reviewers is prefera-
ble, extraction by one reviewer with verification by a sec-
ond reviewer has limited influence on the conclusions of a
systematic review, especially considering a meta-analysis was
not performed in the current work.203

In the process of consolidating the current literature
on this topic, this work highlights several practical and
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methodological challenges that have limited progress in the
understanding of structural ECM components, architectural
features, and viscoelastic properties in non-cartilage soft-tis-
sues in OA. One of these problems is the cross-sectional nature
of studies, which is popular in the OA field as tissues are only
accessible at the time of joint arthroplasty. Since OA can take
decades to progress, the study of end-stage or advanced OA
might not be fully informative of the processes that are driving
these changes. In addition, the lack of a healthy, or non-OA,
comparator group, in combination with the fact that many
studies only report qualitative results, vastly reduces the depth
of knowledge that can be gained from these studies. Finally,
while many screened human and animal studies investigated
both cartilage and other soft joint tissues, ECM is often studied
exclusively in cartilage, with other features, such as cellularity
and inflammatory markers, being the focus in other tissues.
This shows that while there is access to both the tissues and
the methods to study ECM changes in non-cartilage soft-tis-
sues, the analysis of these tissues is not seen as a priority.
However, due to the limited characterization of ECM in these
tissues and their unknown contribution to disease develop-
ment and progression, it is also possible that it remains unclear
which ECM feature(s) should be focused on. Structural ECM
encompasses a wide range of features that can be investiga-
ted with a plethora of different methods. To evaluate the
most critical ECM features and applicable methods, studies
investigating multiple ECM features in non-cartilage soft-tis-
sues across different stages of disease are required.

Recent studies have started to highlight the impor-
tance of ECM as a determinant of tissue architecture and cell
behaviour in disease. For example, a recent review highlights
that the changes in microenvironment in early RA form
important extracellular cues that shape the pathogenic cell
behaviour during the onset and progression of disease.204

Therefore, the authors argue that understanding the ECM
changes across different tissues in a particular disease might
not only be able to help with disease classification and patient
stratification, but could also hold promise for the development
of treatments that target ECM.204 These treatments might not
only be able to modify pathogenic cell behaviour that could
be driving the disease, but also impact on joint stiffness, which
is one of the most common symptoms of OA.205 All in all, more
research is needed to unravel the presence and distribution of
different ECM components and architectural features in joint
tissues in health and in (different stages of ) OA, and inter-
play with tissue-resident and tissue-infiltrating cells. Future
research will also help to differentiate between the remodel-
ling process in different joint tissues, which contain unique
cell populations and are exposed to different mechanical
and inflammatory stimuli in OA. ECM remodelling may also
differ between synovial joints, given their varied anatomical
locations, mechanical functions, and the presence of joint-spe-
cific tissues such as menisci. Potential variation in pathophysi-
ology between OA joints has received little attention, with
the predominance of studies on knee OA likely due to high
disease prevalence in this joint and tissue being relatively
accessible during commonly performed knee arthroplasties.
Therefore, the future of this field is both dependent on the
thorough investigation of ECM features in non-cartilage soft
joint tissues across multiple OA joints and varied stages of

disease progression, as well as the rigorous reporting of
patient characteristics of all tissue donors.

In conclusion, this systematic review consolidates
existing knowledge of a poorly defined aspect of OA patho-
physiology. While a wide range of tissues and ECM compo-
nents have been reported on, the qualitative nature of papers,
the lack of control groups, and the paucity of reports on
each ECM component means that the depth of knowledge
remains poor. Overall, the studies included in this review show
that the presence and abundance of many structural ECM
components change in OA, and that the ECM architecture
becomes more disorganized with increasing cartilage damage
or increasing tissue-specific degeneration scores. While results
from animal studies generally concurred with human studies,
some findings contradicted observations from human studies,
highlighting the importance of the choice of animal model
and the need for validation in human studies. Given the role of
ECM in influencing cell behaviour, further research to elucidate
the broad context within which cartilage is damaged in OA
will provide more insight into the disease as well as potential
treatments.
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