Aim. This retrospective study evaluated the outcome of treatment for unhealed fracture-related infections (FRI). Methods. We identified a consecutive, single-centre cohort of patients having treatment for an FRI Consensus confirmed FRI. All fractures were unhealed at the time of treatment. Patients were followed up for at least one year. Successful outcome was a healed fracture without recurrent infection. Lack of union, persistent infection and/or unplanned reoperation defined failure. Results. Demographics: 183 patients (184 FRIs) with mean age 52.1 years (range 17-96) were treated and followed up for a mean of 2.8 years (range 1-9.4). Mean duration of FRI was 1.1 years with 65 (35.5 %) presenting within 6 months of injury. 118 patients had established infected non-union. FRI was most frequent in the tibia (74), femur (48) and humerus (24). 171 patients were BACH Complex. 75.5% of FRIs were culture positive, with Staph. aureus being the most frequent organism. Polymicrobial infection and Gram negative cultures were common (25.5% and 33.6%). Treatment: 98.3% of surgeries were performed in one stage with just 3
Aim. The SOLARIO trial is a randomised controlled non-inferiority trial of antibiotic strategy for bone and joint infection. SOLARIO compares short or long post-operative systemic antibiotic duration, for patients with confirmed infections, who had local antibiotics implanted and no infected metalwork retained when undergoing surgery. This analysis compared systemic antibiotic use in the short (intervention) and long (standard of care) arms of the trial, in the 12 months after index surgery. Method. Data was collected prospectively from study randomisation, within 7 days of index surgery. All systemic antibiotics prescribed for the index infection were recorded, from health records and patient recall, at randomisation, 6 weeks, 3-6 months and 12 months after study entry. Start and end dates for each antibiotic were recorded. Results. 251 patients were randomised to short systemic antibiotics (up to 7 post-operative days) and 249 patients, to long systemic antibiotics. 5 participants in the short group and 2 participants in the long group withdrew from study follow-up. Complete data for all systemic antibiotics taken in the 12 months following surgery, were available for 237 participants in the short group and 236 participants in the long group. 80 participants across both groups were noted as having deviated from their assigned treatment strategy. Both groups received empiric antibiotics, predominantly vancomycin and meropenem, for up to 7 days after surgery. Considering each prescribed antibiotic as a separate duration (even when administered concurrently), participants assigned to standard care received a mean of 74.9 antibiotic-days. Participants assigned to short systemic antibiotics received a mean of 27.5 antibiotic-days in the 12 months after surgery. The most commonly prescribed antibiotics in both treatment groups were vancomycin and meropenem: these antibiotics accounted for 7.1 days prescribed per participant in the long group, and 6.3 days in the short group (p=0.37). Reasons for post-randomisation antibiotic prescribing in the short treatment group included later
Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve
Introduction. The current methods for measuring femoral torsion have limitations, including variability and inaccuracies. Existing 3D methods are not reliable for abnormal femoral anteversion measurement. A new 3D method is needed for accurate measurement and
Introduction. Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for
Introduction. Three-dimensional (3D) morphological understanding of the hip joint, specifically the joint space and surrounding anatomy, including the proximal femur and the pelvis bone, is crucial for a range of orthopedic diagnoses and surgical
Introduction. The human wrist is a highly complex joint, offering extensive motion across various planes. This study investigates scapholunate ligament (SLL) injuries’ impact on wrist stability and arthritis risks using cadaveric experiments and the finite element (FE) method. It aims to validate experimental findings with FE analysis results. Method. The study utilized eight wrist specimens on a custom rig to investigate Scapho-Lunate dissociation. Contact pressure and flexion were measured using sensors. A CT-based 3D geometry reconstruction approach was used to create the geometries needed for the FE analysis. The study used the Friedman test with pairwise comparisons to assess if differences between testing conditions were statistically significant. Result. The study found significant variations in scaphoid and lunate bone movement based on ligament condition. Full tears increased scapholunate distance in the distal-proximal direction and decreased in the medial-lateral direction. Lunate angles shifted from flexion to extension with fully torn ligaments. Conversely, the scaphoid shifted significantly from extension to flexion with full tears. A proximal movement was observed in the distal-proximal direction in all groups, with significant differences in the partial tear group. Lateral deviation of the scaphoid and lunate occurred with ligament damage, being more pronounced in the partial tear group. All groups exhibited statistically significant movement in the volar direction, with the full tear group showing the least movement. Also, radiocarpal joint and finger contact pressure and contact area were studied. Whereas the differences in contact area were not significant, scapholunate ligament tears resulted in significantly decreased finger contact pressures. FEA confirmed these findings, showing notable peak radiocarpal contact pressure differences between intact and fully torn ligaments. Conclusion. Our study found that SLL damage alters wrist stability, potentially leading to early arthritis. The FEA model confirmed these findings, indicating the potential for the clinical use of computer models from CT scans for treatment
Introduction. Achieving an appropriate primary stability after implantation is a prerequisite for the long-term viability of a dental implant. Virtual testing of the bone-implant construct can be performed with finite element (FE) simulation to predict primary stability prior to implantation. In order to be translated to clinical practice, such FE modeling must be based on clinically available imaging methods. The aim of this study was to validate an FE model of dental implant primary stability using cone beam computed tomography (CBCT) with ex vivo mechanical testing. Method. Three cadaveric mandibles (male donors, 87-97 years old) were scanned by CBCT. Twenty-three bone samples were extracted from the bones and conventional dental implants (Ø4.0mm, 9.5mm length) were inserted in each. The implanted specimens were tested under quasi-static bending-compression load (cf. ISO 14801). Sample-specific homogenized FE (hFE) models were created from the CBCT images and meshed with hexahedral elements. A non-linear constitutive model with element-wise density-based material properties was used to simulate bone and the implant was considered rigid. The experimental loading conditions were replicated in the FE model and the ultimate force was evaluated. Result. The experimental ultimate force ranged between 67 N and 789 N. The simulated ultimate force correlated better with the experimental ultimate force (R. 2. =0.71) than the peri-implant bone density (R. 2. =0.30). Conclusion. The developed hFE model was demonstrated to provide stronger prediction of primary stability than peri-implant bone density. Therefore, hFE Simulations based on this clinically available low-radiation imaging modality, is a promising technology that could be used in future as a surgery
Introduction. Hip prosthetic joint infection (PJI) is a debilitating complication following joint replacement surgery, with significant impact on patients and healthcare systems. The INFection ORthopaedic Management: Evidence into Practice (INFORM: EP) study, builds upon the 6-year INFORM programme by developing evidence-based guidelines for the identification and management of hip PJI. Methods. A panel of 21 expert stakeholders collaborated to develop best practice guidelines based on evidence from the previous INFORM research programme. An expert consensus process was used to refine guidelines using RAND/UCLA criteria. The guidelines were then implemented over a 12-month period through a Learning Collaborative of 24 healthcare professionals from 12 orthopaedic centres in England. Qualitative interviews were conducted with 17 members of the collaborative and findings used to inform the development of an implementation support toolkit. Patient and public involvement contextualised the implementation of the guidelines. The study is registered with the ISCRTN (34710385). Result. The INFORM guidelines, structured around the stages of PJI management, were largely supported by surgeons, although barriers included limited awareness among non-surgical team members, lack of job
Introduction. The Achilles tendon is the thickest and strongest tendon in the human body. Even though the tendon is so strong, it is one of the most frequently injured tendons. Treatment of patients after rupture is
Introduction. Assessment of the humeral head translation with respect to the glenoid joint, termed humeral head migration (HHM), is crucial in total shoulder arthroplasty pre-operative
Introduction. Intraoperative navigation systems for lumbar spine surgery allow to perform preoperative
Introduction. Inaccurate identification of implants on X-rays may lead to prolonged surgical duration as well as increased complexity and costs during implant removal. Deep learning models may help to address this problem, although they typically require large datasets to effectively train models in detecting and classifying objects, e.g. implants. This can limit applicability for instances when only smaller datasets are available. Transfer learning can be used to overcome this limitation by leveraging large, publicly available datasets to pre-train detection and classification models. The aim of this study was to assess the effectiveness of deep learning models in implant localisation and classification on a lower limb X-ray dataset. Method. Firstly, detection models were evaluated on their ability to localise four categories of implants, e.g. plates, screws, pins, and intramedullary nails. Detection models (Faster R-CNN, YOLOv5, EfficientDet) were pre-trained on the large, freely available COCO dataset (330000 images). Secondly, classification models (DenseNet121, Inception V3, ResNet18, ResNet101) were evaluated on their ability to classify five types of intramedullary nails. Localisation and classification accuracy were evaluated on a smaller image dataset (204 images). Result. The YOLOv5s model showed the best capacity to detect and distinguish between different types of implants (accuracy: plate=82.1%, screw=72.3%, intramedullary nail=86.9%, pin=79.9%). Screw implants were the most difficult implant to detect, likely due to overlapping screw implants visible in the image dataset. The DenseNet121 classification model showed the best performance in classifying different types of intramedullary nails (accuracy=73.7%). Therefore, a deep learning model pipeline with the YOLOv5s and DenseNet121 was proposed for the most optimal performance of automating implants localisation and classification for a relatively small dataset. Conclusion. These findings support the potential of deep learning techniques in enhancing implant detection accuracy. With further development, AI-based implant identification may benefit patients, surgeons and hospitals through improved surgical
Introduction. Polyacrylamide hydrogel (iPAAG. 1. ), is CE marked for treating symptomatic knee osteoarthritis (OA), meeting the need for an effective, long-lasting, and safe non-surgical option. This study evaluates the efficacy and safety of a single 6 ml intra-articular injection of iPAAG in participants with moderate to severe knee OA over a 5-year post-treatment period, presenting data from the 4-year follow up. Method. This prospective multicentre study (3 sites in Denmark) involved 49 participants (31 females) with an average age of 70 (range 44 – 86 years). They received a single 6 mL iPAAG injection. All participants provided informed consent and re-consented to continue after 1 year. The study followed GCP principles and was approved by Danish health authorities and local Health Research Ethics committees. Twenty-seven participants completed the 4-year follow-up. The study evaluated WOMAC pain, stiffness, function, and Patient Global Assessment (PGA) of disease impact. Changes from baseline were analysed using a mixed model for repeated measurement (MMRM). Sensitivity analyses were applied on the extension data, where the MMRM analysis was repeated only including patients in the extension phase and an ANCOVA model was used, replacing missing values at 4-years with baseline values (BOCF). Results. The
Introduction. Bernese periacetabular osteotomy (PAO) repositions the acetabulum to increase femoral head coverage (FHC) in hip dysplasia. Currently, there is a paucity of objective peri-operative metrics to
Introduction. The management of pathologic fractures (PF) following osteomyelitis (especially acute subtype) has not been widely investigated. This is challenging due to the infection-induced destructive process causing bone architecture defects. Therefore, this study aims to assess a stepwise treatment
Aims. The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation
Aims. For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis. Methods. We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical
Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group. The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.Aims
Methods
While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes. This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.Aims
Methods