Advertisement for orthosearch.org.uk
Results 1 - 20 of 54
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 31 - 31
22 Nov 2024
Yoon S Jutte P Soriano A Sousa R Zijlstra W Wouthuyzen-Bakker M
Full Access

Aim. This study aimed to externally validate promising preoperative PJI prediction models in a recent, multinational European cohort. Method. Three preoperative PJI prediction models (by Tan et al., Del Toro et al., and Bülow et al.) which previously demonstrated high levels of accuracy were selected for validation. A multicenter retrospective observational analysis was performed of patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) between January 2020 and December 2021 and treated at centers in the Netherlands, Portugal, and Spain. Patient characteristics were compared between our cohort and those used to develop the prediction models. Model performance was assessed through discrimination and calibration. Results. A total of 2684 patients were included of whom 60 developed a PJI (2.2%). Our patient cohort differed from the models’ original cohorts in terms of demographic variables, procedural variables, and the prevalence of comorbidities. The c-statistics for the Tan, Del Toro, and Bülow models were 0.72, 0.69, and 0.72 respectively. Calibration was reasonable, but precise percentage estimates for PJI risk were most accurate for predicted risks up to 3-4%; the Tan model overestimated risks above 4%, while the Del Toro model underestimated risks above 3%. Conclusions. In this multinational cohort study, the Tan, Del Toro, and Bülow PJI prediction models were found to be externally valid for classifying high risk patients for developing a PJI. These models hold promise for clinical application to enhance preoperative patient counseling and targeted prevention strategies. Keywords. Periprosthetic Joint Infection (PJI), High Risk Groups, Prediction Models, Validation, Infection Prevention


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 57 - 57
14 Nov 2024
Birkholtz F Eken M Boyes A Engelbrecht A
Full Access

Introduction. With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”. Method. Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested. Result. Detection models without pre-training on the large datasets were the least precise when tested on the small distal radius dataset. The model with the best accuracy to detect and classify wrist fractures was the YOLOv8 model pretrained on the GRAZPEDWRI-DX fracture detection dataset (mean average precision at intersection over union of 50=59.7%). This model showed up to 33.6% improved detection precision compared to the same models with no pre-training. Conclusion. Optimisation of machine-learning models can be challenging when only relatively small datasets are available. The findings of this study support the potential of transfer learning from large datasets to improve model performance in smaller datasets. This is encouraging for wider application of machine-learning technology in medical imaging evaluation, including less common orthopaedic pathologies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 105 - 105
14 Nov 2024
Spoo S Garcia F Braun B Cabri J Grimm B
Full Access

Introduction. The objective assessment of shoulder function is important for personalized diagnosis, therapies and evidence-based practice but has been limited by specialized equipment and dedicated movement laboratories. Advances in AI-driven computer vision (CV) using consumer RGB cameras (red-blue-green) and open-source CV models offer the potential for routine clinical use. However, key concepts, evidence, and research gaps have not yet been synthesized to drive clinical translation. This scoping review aims to map related literature. Method. Following the JBI Manual for Evidence Synthesis, a scoping review was conducted on PubMed and Scholar using search terms including “shoulder,” “pose estimation,” “camera”, and others. From 146 initial results, 27 papers focusing on clinical applicability and using consumer cameras were included. Analysis employed a Grounded Theory approach guided iterative refinement. Result. Studies primarily used Microsoft Kinect (infrared-based depth sensing, RGB camera; discontinued) or monocular consumer cameras with open-source CV-models, sometimes supplemented by LiDAR (laser-based depth sensing), wearables or markers. Technical validation studies against gold standards were scarce and too inconsistent for comparison. Larger range of motion (RoM) movements were accurately recorded, but smaller movements, rotations and scapula tracking remained challenging. For instance, one larger validation study comparing shoulder angles during arm raises to a marker-based gold-standard reported Pearson's R = 0.98 and a standard error of 2.4deg. OpenPose and Mediapipe were the most used CV-models. Recent efforts try to improve model performance by training with shoulder specific movements. Conclusion. Low-cost, routine clinical movement analysis to assess shoulder function using consumer cameras and CV seems feasible. It can provide acceptable accuracy for certain movement tasks and larger RoM. Capturing small, hidden or the entirety of shoulder movement requires improvements such as via training models with shoulder specific data or using dual cameras. Technical validation studies require methodological standardization, and clinical validation against established constructs is needed for translation into practice


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 55 - 55
14 Nov 2024
Vinco G Ley C Dixon P Grimm B
Full Access

Introduction. The ability to walk over various surfaces such as cobblestones, slopes or stairs is a very patient centric and clinically meaningful mobility outcome. Current wearable sensors only measure step counts or walking speed regardless of such context relevant for assessing gait function. This study aims to improve deep learning (DL) models to classify surfaces of walking by altering and comparing model features and sensor configurations. Method. Using a public dataset, signals from 6 IMUs (Movella DOT) worn on various body locations (trunk, wrist, right/left thigh, right/left shank) of 30 subjects walking on 9 surfaces were analyzed (flat ground, ramps (up/down), stairs (up/down), cobblestones (irregular), grass (soft), banked (left/right)). Two variations of a CNN Bi-directional LSTM model, with different Batch Normalization layer placement (beginning vs end) as well as data reduction to individual sensors (versus combined) were explored and model performance compared in-between and with previous models using F1 scores. Result. The Bi-LSTM architecture improved performance over previous models, especially for subject-wise data splitting and when combining the 6 sensor locations (e.g. F1=0.94 versus 0.77). Placement of the Batch Normalization layer at the beginning, prior to the convolutional layer, enhanced model understanding of participant gait variations across surfaces. Single sensor performance was best on the right shank (F1=0.88). Conclusion. Walking surface detection using wearable IMUs and DL models shows promise for clinically relevant real-world applications, achieving high F1 levels (>0.9) even for subject-wise data splitting enhancing the model applicability in real-world scenarios. Normalization techniques, such as Batch Normalization, seem crucial for optimizing model performance across diverse participant data. Also single-sensor set-ups can give acceptable performance, in particular for specific surface types of potentially high clinical relevance (e.g. stairs, ramps), offering practical and cost-effective solutions with high usability. Future research will focus on collecting ground-truth labeled data to investigate system performance in real-world settings


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims. The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. Methods. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%). Results. For detection and classification, the algorithm was trained on 1,709 radiographs (n = 803), tested on 567 radiographs (n = 244), and subsequently externally validated on 535 radiographs (n = 227). For characterization, healthy shoulders and glenohumeral dislocation were excluded. The overall accuracy for fracture detection was 94% (area under the receiver operating characteristic curve (AUC) = 0.98) and for classification 78% (AUC 0.68 to 0.93). Accuracy to detect greater tuberosity fracture displacement ≥ 1 cm was 35.0% (AUC 0.57). The CNN did not recognize NSAs ≤ 100° (AUC 0.42), nor fractures with ≥ 75% shaft translation (AUC 0.51 to 0.53), or with ≥ 15% articular involvement (AUC 0.48 to 0.49). For all objectives, the model’s performance on the external dataset showed similar accuracy levels. Conclusion. CNNs proficiently rule out proximal humerus fractures on plain radiographs. Despite rigorous training methodology based on CT imaging with multi-rater consensus to serve as the reference standard, artificial intelligence-driven classification is insufficient for clinical implementation. The CNN exhibited poor diagnostic ability to detect greater tuberosity displacement ≥ 1 cm and failed to identify NSAs ≤ 100°, shaft translations, or articular fractures. Cite this article: Bone Joint J 2024;106-B(11):1348–1360


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 588 - 595
17 Oct 2024
Breu R Avelar C Bertalan Z Grillari J Redl H Ljuhar R Quadlbauer S Hausner T

Aims

The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support.

Methods

The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1111 - 1117
1 Oct 2024
Makaram NS Becher H Oag E Heinz NR McCann CJ Mackenzie SP Robinson CM

Aims

The risk factors for recurrent instability (RI) following a primary traumatic anterior shoulder dislocation (PTASD) remain unclear. In this study, we aimed to determine the rate of RI in a large cohort of patients managed nonoperatively after PTASD and to develop a clinical prediction model.

Methods

A total of 1,293 patients with PTASD managed nonoperatively were identified from a trauma database (mean age 23.3 years (15 to 35); 14.3% female). We assessed the prevalence of RI, and used multivariate regression modelling to evaluate which demographic- and injury-related factors were independently predictive for its occurrence.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 507 - 512
18 Sep 2024
Farrow L Meek D Leontidis G Campbell M Harrison E Anderson L

Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles (https://www.ideal-collaboration.net/). Adherence to the framework would provide a robust evidence-based mechanism for developing trust in AI applications, where the underlying algorithms are unlikely to be fully understood by clinical teams.

Cite this article: Bone Joint Res 2024;13(9):507–512.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 688 - 695
1 Jul 2024
Farrow L Zhong M Anderson L

Aims. To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports. Methods. Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation. Results. For THA, there were 5,558 patient radiology reports included, of which 4,137 were used for model training and testing, and 1,421 for external validation. Following training, model performance demonstrated average (mean across three folds) accuracy, F1 score, and area under the receiver operating curve (AUROC) values of 0.850 (95% confidence interval (CI) 0.833 to 0.867), 0.813 (95% CI 0.785 to 0.841), and 0.847 (95% CI 0.822 to 0.872), respectively. For TKA, 7,457 patient radiology reports were included, with 3,478 used for model training and testing, and 3,152 for external validation. Performance metrics included accuracy, F1 score, and AUROC values of 0.757 (95% CI 0.702 to 0.811), 0.543 (95% CI 0.479 to 0.607), and 0.717 (95% CI 0.657 to 0.778) respectively. There was a notable deterioration in performance on external validation in both cohorts. Conclusion. The use of routinely available preoperative radiology reports provides promising potential to help screen suitable candidates for THA, but not for TKA. The external validation results demonstrate the importance of further model testing and training when confronted with new clinical cohorts. Cite this article: Bone Joint J 2024;106-B(7):688–695


To examine whether Natural Language Processing (NLP) using a state-of-the-art clinically based Large Language Model (LLM) could predict patient selection for Total Hip Arthroplasty (THA), across a range of routinely available clinical text sources. Data pre-processing and analyses were conducted according to the Ai to Revolutionise the patient Care pathway in Hip and Knee arthroplasty (ARCHERY) project protocol (. https://www.researchprotocols.org/2022/5/e37092/. ). Three types of deidentified Scottish regional clinical free text data were assessed: Referral letters, radiology reports and clinic letters. NLP algorithms were based on the GatorTron model, a Bidirectional Encoder Representations from Transformers (BERT) based LLM trained on 82 billion words of de-identified clinical text. Three specific inference tasks were performed: assessment of the base GatorTron model, assessment after model-fine tuning, and external validation. There were 3911, 1621 and 1503 patient text documents included from the sources of referral letters, radiology reports and clinic letters respectively. All letter sources displayed significant class imbalance, with only 15.8%, 24.9%, and 5.9% of patients linked to the respective text source documentation having undergone surgery. Untrained model performance was poor, with F1 scores (harmonic mean of precision and recall) of 0.02, 0.38 and 0.09 respectively. This did however improve with model training, with mean scores (range) of 0.39 (0.31–0.47), 0.57 (0.48–0.63) and 0.32 (0.28–0.39) across the 5 folds of cross-validation. Performance deteriorated on external validation across all three groups but remained highest for the radiology report cohort. Even with further training on a large cohort of routinely collected free-text data a clinical LLM fails to adequately perform clinical inference in NLP tasks regarding identification of those selected to undergo THA. This likely relates to the complexity and heterogeneity of free-text information and the way that patients are determined to be surgical candidates


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 49 - 49
2 May 2024
Green J Khanduja V Malviya A
Full Access

Femoroacetabular Impingement (FAI) syndrome, characterised by abnormal hip contact causing symptoms and osteoarthritis, is measured using the International Hip Outcome Tool (iHOT). This study uses machine learning to predict patient outcomes post-treatment for FAI, focusing on achieving a minimally clinically important difference (MCID) at 52 weeks. A retrospective analysis of 6133 patients from the NAHR who underwent hip arthroscopic treatment for FAI between November 2013 and March 2022 was conducted. MCID was defined as half a standard deviation (13.61) from the mean change in iHOT score at 12 months. SKLearn Maximum Absolute Scaler and Logistic Regression were applied to predict achieving MCID, using baseline and 6-month follow-up data. The model's performance was evaluated by accuracy, area under the curve, and recall, using pre-operative and up to 6-month postoperative variables. A total of 23.1% (1422) of patients completed both baseline and 1-year follow-up iHOT surveys. The best results were obtained using both pre and postoperative variables. The machine learning model achieved 88.1% balanced accuracy, 89.6% recall, and 92.3% AUC. Sensitivity was 83.7% and specificity 93.5%. Key variables determining outcomes included MCID achievement at 6 months, baseline iHOT score, 6-month iHOT scores for pain, and difficulty in walking or using stairs. The study confirmed the utility of machine learning in predicting long-term outcomes following arthroscopic treatment for FAI. MCID, based on the iHOT 12 tools, indicates meaningful clinical changes. Machine learning demonstrated high accuracy and recall in distinguishing between patients achieving MCID and those who did not. This approach could help early identification of patients at risk of not meeting the MCID threshold one year after treatment


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 203 - 211
1 Feb 2024
Park JH Won J Kim H Kim Y Kim S Han I

Aims. This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. Methods. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival. Results. The SORG model demonstrated the highest discriminatory accuracy with AUC (0.80 (95% confidence interval (CI) 0.76 to 0.85)) at 12 months. In calibration analysis, the PATHfx3.0 and OPTIModel models underestimated survival, while the SPRING13 and IOR models overestimated survival. The SORG model exhibited excellent calibration with intercepts of 0.10 (95% CI -0.13 to 0.33) at 12 months. The SORG model also had lower Brier scores than the null score at three and 12 months, indicating good overall performance. Decision curve analysis showed that all five survival prediction models provided greater net benefit than the default strategy of operating on either all or no patients. Rapid growth cancer and low serum albumin levels were associated with three-, six-, and 12-month survival. Conclusion. State-of-art survival prediction models for BM-E (PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models) are useful clinical tools for orthopaedic surgeons in the decision-making process for the treatment in Asian patients, with SORG models offering the best predictive performance. Rapid growth cancer and serum albumin level are independent, statistically significant factors contributing to survival following surgery of BM-E. Further refinement of survival prediction models will bring about informed and patient-specific treatment of BM-E. Cite this article: Bone Joint J 2024;106-B(2):203–211


Bone & Joint Open
Vol. 5, Issue 1 | Pages 9 - 19
16 Jan 2024
Dijkstra H van de Kuit A de Groot TM Canta O Groot OQ Oosterhoff JH Doornberg JN

Aims

Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool.

Methods

A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 19 - 19
2 Jan 2024
Castagno S Birch M van der Schaar M McCaskie A
Full Access

Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA). Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. To create a reliable and interpretable precision health tool that predicts rapid knee OA progression over a 2-year period from baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”. All available 2-year follow-up periods of 600 patients from the FNIH OA Biomarker Consortium were analysed using “Autoprognosis 2.0” in two separate approaches, with distinct definitions of clinical outcomes: multi-class predictions (categorising disease progression into pain and/or radiographic progression) and binary predictions. Models were developed using a training set of 1352 instances and all available variables (including clinical, X-ray, MRI, and biochemical features), and validated through both stratified 10-fold cross-validation and hold-out validation on a testing set of 339 instances. Model performance was assessed using multiple evaluation metrics. Interpretability analyses were carried out to identify important predictors of progression. Our final models yielded higher accuracy scores for multi-class predictions (AUC-ROC: 0.858, 95% CI: 0.856-0.860) compared to binary predictions (AUC-ROC: 0.717, 95% CI: 0.712-0.722). Important predictors of rapid disease progression included WOMAC scores and MRI features. Additionally, accurate ML models were developed for predicting OA progression in a subgroup of patients aged 65 or younger. This study presents a reliable and interpretable precision health tool for predicting rapid knee OA progression. Our models provide accurate predictions and, importantly, allow specific predictors of rapid disease progression to be identified. Furthermore, the transparency and explainability of our methods may facilitate their acceptance by clinicians and patients, enabling effective translation to clinical practice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 23 - 23
17 Nov 2023
Castagno S Birch M van der Schaar M McCaskie A
Full Access

Abstract. Introduction. Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA), a degenerative joint disease affecting over 300 million people worldwide. Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. Objectives. This study aims to create a trustworthy and interpretable precision health tool that predicts rapid knee OA progression based on baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”. Methods. All available 2-year follow-up periods of 600 patients from the FNIH OA Biomarker Consortium were analysed using “Autoprognosis 2.0” in two separate approaches, with distinct definitions of clinical outcomes: multi-class predictions (categorising patients into non-progressors, pain-only progressors, radiographic-only progressors, and both pain and radiographic progressors) and binary predictions (categorising patients into non-progressors and progressors). Models were developed using a training set of 1352 instances and all available variables (including clinical, X-ray, MRI, and biochemical features), and validated through both stratified 10-fold cross-validation and hold-out validation on a testing set of 339 instances. Model performance was assessed using multiple evaluation metrics, such as AUC-ROC, AUC-PRC, F1-score, precision, and recall. Additionally, interpretability analyses were carried out to identify important predictors of rapid disease progression. Results. Our final models yielded high accuracy scores for both multi-class predictions (AUC-ROC: 0.858, 95% CI: 0.856–0.860; AUC-PRC: 0.675, 95% CI: 0.671–0.679; F1-score: 0.560, 95% CI: 0.554–0.566) and binary predictions (AUC-ROC: 0.717, 95% CI: 0.712–0.722; AUC-PRC: 0.620, 95% CI: 0.616–0.624; F1-score: 0.676, 95% CI: 0.673–0679). Important predictors of rapid disease progression included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and MRI features. Our models were further successfully validated using a hold-out dataset, which was previously omitted from model development and training (AUC-ROC: 0.877 for multi-class predictions; AUC-ROC: 0.746 for binary predictions). Additionally, accurate ML models were developed for predicting OA progression in a subgroup of patients aged 65 or younger (AUC-ROC: 0.862, 95% CI: 0.861–0.863 for multi-class predictions; AUC-ROC: 0.736, 95% CI: 0.734–0.738 for binary predictions). Conclusions. This study presents a reliable and interpretable precision health tool for predicting rapid knee OA progression using “Autoprognosis 2.0”. Our models provide accurate predictions and offer insights into important predictors of rapid disease progression. Furthermore, the transparency and interpretability of our methods may facilitate their acceptance by clinicians and patients, enabling effective utilisation in clinical practice. Future work should focus on refining these models by increasing the sample size, integrating additional features, and using independent datasets for external validation. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint 360
Vol. 12, Issue 5 | Pages 42 - 45
1 Oct 2023

The October 2023 Children’s orthopaedics Roundup360 looks at: Outcomes of open reduction in children with developmental hip dislocation: a multicentre experience over a decade; A torn discoid lateral meniscus impacts lower-limb alignment regardless of age; Who benefits from allowing the physis to grow in slipped capital femoral epiphysis?; Consensus guidelines on the management of musculoskeletal infection affecting children in the UK; Diagnosis of developmental dysplasia of the hip by ultrasound imaging using deep learning; Outcomes at a mean of 13 years after proximal humeral fracture during adolescence; Clubfeet treated according to Ponseti at four years; Controlled ankle movement boot provides improved outcomes with lower complications than short leg walking cast.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 702 - 710
1 Jun 2023
Yeramosu T Ahmad W Bashir A Wait J Bassett J Domson G

Aims

The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients.

Methods

Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset.


Bone & Joint Open
Vol. 4, Issue 6 | Pages 399 - 407
1 Jun 2023
Yeramosu T Ahmad W Satpathy J Farrar JM Golladay GJ Patel NK

Aims

To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA.

Methods

Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models.