Robotic-assisted unicompartmental knee arthroplasty (R-UKA) has been proposed as an approach to improve the results of the conventional manual UKA (C-UKA). The aim of this meta-analysis was to analyze the studies comparing R-UKA and C-UKA in terms of clinical outcomes, radiological results, operating time, complications, and revisions. The literature search was conducted on three databases (PubMed, Cochrane, and Web of Science) on 20 February 2024 according to the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Inclusion criteria were comparative studies, written in the English language, with no time limitations, on the comparison of R-UKA and C-UKA. The quality of each article was assessed using the Downs and Black Checklist for Measuring Quality.Aims
Methods
Majority of ultra-high molecular weight polyethylene (UHMWPE) medical devices used in total joint arthroplasty are crosslinked using gamma radiation to improve wear resistance. Alternative methods of crosslinking are urgently needed to replace gamma radiation due to rapid decline in its supply. Peroxide crosslinking is a candidate method with widespread industrial applications. Oxidative stability and biocompatibility, which are critical requirements for medical device applications, can be achieved using vitamin-E as an additive and by removing peroxide by-products through high temperature melting, respectively. We investigated compression molded UHMWPE/vitamin-E/di-cumyl peroxide blends followed by high-temperature melting in inert gas as a material candidate for tibial
Aim of this study was the development of a dynamic FE-framework to identify worst-case size combinations and kinematics in a virtual wear simulator setup covering five daily activities and high, dynamic loads. Two cruciate sacrificing knee designs (D1 & D2) were tested physically on a wear-testing machine prior the model development using a high demanding, daily activity protocol (HDA) [1]. A simplified FE-setup was generated, reduced to the 3D geometries of the assembly whereas the representation of the mechanical wear simulator conditions and the load transmission was achieved by joint elements. Inertial and other time-related effects of the physical situation were compensated by a system of spring- and damper elements. Using a time-series signal optimization approach on the anterior-posterior translation and the internal-external rotation results for each activity, 38 variable parameters were varied in between pre-defined limits in a semiautomatic workflow. For each design, two consecutive cycles of a single activity were analysed and the results of the second cycle were used for the optimization. Based on the determined values, a single set of averaged parameter settings was identified that covers all activity cycles sufficiently. A total of 1010 dynamic analyses were carried out in order to find a sharable set of parameter values. In this study, an efficient simulation workflow for design evaluation was developed. Therefore, a HDA wear-testing machine was simplified to boundary conditions and stabilizing elements, using a single set of parameters for all activities. The calculated kinematics were in a comparable range to the machine output. Further applications of the method were found in systematic analyses of entire implant systems to achieve consistent kinematics over the size compatibility range in the design process of new implant systems.
The purpose of the study was to compare the mechanical properties, oxidation and wear resistance of a vitamin E blended and moderately crosslinked polyethylene for total knee arthroplasty (MXE) in comparison with clinically established polyethylene materials. The following polyethylene materials were tested: CPE (30 kGy e-beam sterilized), XLPE (75 kGy gamma crosslinked @ 100°C), ViXLPE (0.1 % vitamin E blended, 80 kGy e-beam crosslinked @ 100°C), and MXE (0.1 % vitamin E blended polyethylene, 30 kGy gamma sterilized). For the different tests, the polyethylene materials were either unaged or artificially aged for two or six weeks according to ASTM F2003-02. The oxidation index was measured based on ASTM F2102 at a 1 mm depth. Small punch testing was performed based on ASTM F2977. Mechanical properties were measured on unaged materials according to ASTM D638. Wear simulation was performed on a load controlled 3 + 1 station
Aims. Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. Methods. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate. Results. Five patient-specific variables and seven implant-specific variables were evaluated for significant association with lower insert wear rate. Six were significant when controlling for other factors: greater patient age, female sex, shorter duration in vivo, polished tray, highly cross-linked PE (HXLPE), and constrained knee design. Conclusion. This study confirmed that
Aims. The aims of this study were to evaluate wear on the surface of cobalt-chromium (CoCr) femoral components used in total knee arthroplasty (TKA) and compare the wear of these components with that of ceramic femoral components. Methods. Optical profilometry was used to evaluate surface roughness and to examine the features created by the wear process in a
Introduction. Orthopedic implants are subject to wear and release ultra-high molecular weight polyethylene (UHMWPE) debris. Analysis of UHMWPE wear particles is critical in determining the safety and effectiveness of novel orthopedic implants. Complete digestion of periprosthetic tissue and wear fluid is necessary to ensure accurate morphological and quantitative particle analysis. Acid digestion methods are more effective than enzymatic and base digestion approaches [Baxter+ 2009]. However, optimal digestion times, quantity, and type of acid are unclear for particle isolation. In addition, imaging and analysis techniques are critical to ensure accurate reporting of particle characteristics. Here, we 1) compared the efficacy of three acid-based digestion methods in isolating particles from a) bovine serum and b) animal/human tissue, and 2) analyzed the effects of imaging location on particle quantity/morphology results. Methods. 1a) UHMWPE (GUR 150) particles were generated by Mode I
We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.Aims
Methods
The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee.Aims
Methods
Background. The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing. Methods. Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled
Background. Additive manufacturing (AM) has created many new avenues for material and manufacturing innovation. In orthopaedics, metal additive manufacturing is now widely used for production of joint replacements, spinal fusion devices, and cranial maxillofacial reconstruction. Plastic additive manufacturing on the other hand, has mostly been utilized for pre-surgical planning models and surgical cutting guides. The addition of pharmaceuticals to additively manufactured plastics is novel, particularly when done at the raw material level. The purpose of this study was to prove the concept of antibiotic elution from additively manufactured polymeric articles and demonstrate feasibility of application in orthopaedics. Methods. Using patented processes, three heat-stable antibiotics commonly used in orthopaedics were combined with six biocompatible polymers (2 bioresorbable) into filament and powder base materials for fused deposition modeling (FDM) and selective laser sintering (SLS) AM processes. Raw materials of 1%, 2%, and 5% antibiotic concentrations (by mass) were produced as well as a blend of all three antibiotics each at 1% concentration. Thin disks of 25 mm diameter were manufactured of each polymer with each antibiotic at all concentrations. Disks were applied to the center of circular petri dishes inoculated with a bacterium as per a standard zone of inhibition, or Kirby-Bauer disk diffusion tests. After 72 hours incubation, the zone of inhibited bacterial growth was measured. Periprosthetic joint infection (PJI) of the knee was selected as the proof-of-concept application in orthopaedics. A series of tibial inserts mimicking those of a common TKR system were manufactured via SLS using a bioresorbable base material (Figure 1). Three prototype inserts were tested on a
Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions.Objectives
Methods
Introduction. Wear of polyethylene tibial inserts has been cited as being responsible for up to 25% of revision surgeries, imposing a very significant cost burden on the health care system and increasing patient risk. Accurate measurement of material loss from retrieved knee bearings presents difficult challenges because gravimetric methods are not useful with retrievals and unworn reference dimensions are often unavailable. Geometry and the local anatomy restrict in vivo radiographic wear analysis, and no large-scale analyses have illuminated long-term comparative wear rates and their dependence on design and patient factors. Our study of a large retrieval archive of knee inserts indicates that abrasive/adhesive wear of polyethylene inserts, both on the articular surface and on the backside of modular knees is an important contributor to wear, generation of debris and integrity of locking geometry. The objective of the current study is to quantify wear performance of tibial inserts in a large archive of retrieved knees of different designs. By assessing wear in a large and diverse series, the goal is to discern the effect on wear performance of a number of different factors: patient factors that might help guide treatment, knee design factors and bearing material factors that may inform a surgeon's choice from among the array of arthroplasty device options. Methods. An IRB approved retrieval database was queried for TKA designs implanted between 1997 and 2017. 1385 devices from 5 TKA designs were evaluated. Damage was ranked according to Hood's method, oxidation was determined through FTIR, and wear was determined through direct measurement of retrieved inserts using a previously established protocol. Design features (e.g. materials, conformity, locking mechanisms, stabilization, etc.) and patient demographics (e.g. age, weight, BMI, etc.) were cataloged. Multivariate analysis was performed to isolate factors contributing to wear, oxidation, and damage. Results. Wear and oxidation were both found to scale with time in vivo in conventional and crosslinked polyethylene. Wear rate was also found to scale with time in vivo, but was not found to be a function of oxidation. Regression shows patient age and female sex to correlate negatively with wear rate. Polished trays, crosslinked polyethylene, and constrained knee designs are all correlated with decreased wear rates. Discussion. While this study indicates that loosening and infection are predominant causes for TKA revision, wear related failure remains common. We believe this to be the largest existing comparative study of modern TKA wear rates. Insert wear is shown to correlate with several patient factors. Wear performance also varies significantly between knee designs, polyethylene material choice and tray surface finish. When compared to a historical standard for
Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs.Objectives
Methods
Total knee arthroplasty is a well-established treatment for degenerative joint disease, on the other hand metal ion release of cobalt or chromium and particle formation can trigger intolerance reactions. Biotribological examinations can help to assess the metal ion release in different settings. The purpose of this study was the evaluation of inter-laboratory differences in the metal ion concentration analysis. Samples were generated in a 3+1 station
Total knee arthroplasty is a well established treatment for degenerative joint disease with good clinical results. However, complications may occur due to a biological response to polyethylene wear particles, leading to osteolysis and aseptic loosening, as well as local and systemic hypersensitivity reactions triggered by metal ions and particles such as chromium, cobalt and molybdenum. Moreover, there is an increasing demand on the performance of these implants, as this treatment is also performed in heavier, younger and middle-aged adults who have a significant physical activity and higher life expectancy. The purpose of the following study was to compare the wear characteristics and performance of a zirconium nitride (ZrN) coated knee implant, designed for patients with metal ion hypersensitivity, against the clinically established cobalt-chromium (CoCr) version under a high demanding activities wear simulation. Medium size AS Columbus® DD (Aesculap AG, Tuttlingen, Germany) femoral and tibial components with a ZrN surface were tested in comparison with the cobalt-chromium version Columbus® DD. For both groups, ultra-high-molecular weight polyethylene (UHMWPE) gliding surfaces (size T3, high 10 mm) were used. Wear simulation was performed on a load controlled 4 station
Background. Wear simulation in total knee arthroplasty (TKA) is currently based on the most frequent activity – level walking. A decade ago multi-station
Generic walking profiles applied to mechanical knee simulators are the gold standard in wear testing of total knee replacements (TKRs). Recently, there was a change in the international standard (ISO) for
Artificial knee joints are continuously loaded by higher contact stress than artificial hip joints due to a less conformity and much smaller contact area between the femoral and tibial surfaces. The higher contact stress causes severe surface damage such as pitting or delamination of polyethylene (PE) tibial inserts. To decrease the risks of these surface damages, the oxidation degradation of cross-linked polyethylene (PE) induced by residual free radicals resulting from gamma-ray irradiation for cross-linking or sterilization should be prevented. Vitamin E (VE), as an antioxidant, blended PE (PE(VE)) has been used to solve the problems. In addition, osteolysis induced by PE wear particles, bone cement and metallic debris is recognized as one of the important problems for total knee arthroplasty (TKA). To decrease the generation of PE wear particles, we have developed the bearing surface mimicking the articular cartilage; grafting a biocompatible polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), onto the PE surface having high wear resistance. In this study, we have evaluated the surface, mechanical under severe oxidative condition, and wear properties of PMPC-grafted cross-linked PE(VE) (PMPC-CLPE(VE)) material for artificial knee joints. Untreated and PMPC-grafted 0.1 mass% VE-blended PE (GUR1020E resin) with a gamma-ray irradiation of 100 kGy for cross-linking and 25 kGy for sterilization were prepared (CLPE(VE) and PMPC-CLPE(VE), respectively). Surface properties were evaluated by Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscope (TEM) observations. Surface wettability and frictional property were measured by static water contact angle measurement and ball-on-plate friction test. To evaluate the oxidation degradation resistance, mechanical and physical properties such tensile test, izod impact test, small punch test and cross-link density measurement before and after accelerated aging were measured. Wear properties of the tibial inserts were examined by using knee simulator in the combination of Co-Cr-Mo femoral components according to ISO14243-3. Gravimetric wear, volumetric penetration and the number of generated wear particles were measured. By the FT-IR measurements and TEM observation, P–O peaks attributed to MPC unit and uniform PMPC layer with 100–200 nm thick was observed only on PMPC-CLPE(VE) surface. Static water contact angle of CLPE(VE) was almost 100 degree, while that of PMPC-CLPE(VE) decreased significantly to almost 35 degree. There was no significant difference in the mechanical and physical properties between CLPE(VE) and PMPC-CLPE(VE). Moreover, both the CLPE(VE) and PMPC-CLPE(VE) maintained these properties even after the accelerated aging of 12 weeks [Fig. 1]. Blended VE in CLPE would act as radical scavengers to prevent oxidation degradation. In the
Introduction. Total knee replacement (TKR) implant designs and materials have been shown to have a significant impact on tibial insert wear. A medial-pivot (MP) design theoretically should generate less wear due to a large contact area in the medial compartment and lower contact stresses. Synovial fluid aspiration studies have confirmed that a first generation MP TKR system (ADVANCE®, MicroPort Orthopedics Inc., Arlington, TN, USA) generates less wear debris than is seen with other implant designs articulating against conventional polyethylene (CP). Objectives. The objective of this study was to evaluate the in vitro wear rate of a second generation MP TKR system (EVOLUTION® Cruciate-Sacrificing, MicroPort Orthopedics Inc., Arlington, TN, USA) using CP tibial inserts and compare to previously published values for other TKR designs with CP and first or second generation crosslinked polyethylene (XLPE) tibial inserts. Methods. In vitro wear was assessed for five MP CP tibial inserts, each loaded for 5 megacycles (Mc) of simulated gait in accordance with ISO 14243–3. Insert cleaning and wear measurements were performed every 0.5 Mc in accordance with ISO 14243–2. Manufacturer websites and the MEDLINE database were searched for previously published in vitro wear rates for other TKR designs used in combination with CP and first or second generation XLPE inserts. Second generation XLPE inserts are those with additives or additional manufacturing, such as sequentially annealed and irradiated XLPE (X3®, Stryker, Mahwah, NJ, USA) and vitamin E infused polyethylene (E1®, Biomet, Warsaw, IN, USA). All TKR designs utilized cobalt-chrome (CoCr) femoral components, except Legion-Verilast that included Oxinium™ femoral components (Smith & Nephew, Memphis, TN, USA). Results. The mean wear rate for the MP system (2.0+0.2 mg/Mc) was less than half the wear rates reported for other TKR designs using CP inserts (Figure 1). The wear was also reduced or similar to those reported for all but three designs used in combination with XLPE inserts (Figure 2). Interestingly, wear rates for the MP system were approximately one-third of those reported for E1 and X3 used in combination with the Scorpio and Triathlon CR TKR systems (Stryker, Mahwah, NJ, USA). The main limitation to the current study is the use of literature comparators. While the comparison studies were all conducted using similar methods on