Periprosthetic femoral fracture (PPF) is a major complication following total hip arthroplasty (THA). Uncemented femoral components are widely preferred in primary THA, but are associated with higher PPF risk than cemented components. Collared components have reduced PPF rates following uncemented primary THA compared to collarless components, while maintaining similar prosthetic designs. The purpose of this study was to analyze PPF rate between collarless and collared component designs in a consecutive cohort of posterior approach THAs performed by two high-volume surgeons. This retrospective series included 1,888 uncemented primary THAs using the posterior approach performed by two surgeons (PKS, JMV) from January 2016 to December 2022. Both surgeons switched from collarless to collared components in mid-2020, which was the only change in surgical practice. Data related to component design, PPF rate, and requirement for revision surgery were collected. A total of 1,123 patients (59.5%) received a collarless femoral component and 765 (40.5%) received a collared component. PPFs were identified using medical records and radiological imaging. Fracture rates between collared and collarless components were analyzed. Power analysis confirmed 80% power of the sample to detect a significant difference in PPF rates, and a Fisher’s exact test was performed to determine an association between collared and collarless component use on PPF rates.Aims
Methods
The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with
Introduction. This study aims to evaluate the effect of using different types of fixator on the quality of callus and complications during distraction osteogenesis in patients with achondroplasia. Materials and Methods. Forty-nine achondroplasia patients with a minimum follow-up of 36 months who underwent limb lengthening between 2005 and 2017 with external fixator only were included. Thirty-three of the patients underwent lengthening using classical Ilizarov frame, while spatial frame used for sixteen. Regenerate quality is evaluated according to the Li classification on the X-ray taken one month after the end of the distraction. Complications were noted in the follow-up period. Results. The mean age at the time of surgery was 8,6 years. The mean external fixation index (EFI) was 34,3 and 30,1 day/cm for spatial frame and Ilizarov frame respectively. Mean follow-up period of 161,62 months and mean fixator period of 257 days. Amount of lengthening was 7,2 cm for Ilizarov frame, and 7,5 cm for spatial frame. Rate of callus with good morphological quality seen at consolidation was 72,4% and 50% for Ilizarov and spatial frames respectively. Two groups show similar results of complication rates in terms of pin site infection, premature fibular consolidation, regenerate fracture, plastic deformation, knee contracture. However fibular nonunion rates were higher for Ilizarov-type fixator. Conclusions. Although spatial frame with
The current study aimed to compare robotic arm-assisted (RA-THA), computer-assisted (CA-THA), and manual (M-THA) total hip arthroplasty regarding in-hospital metrics including length of stay (LOS), discharge disposition, in-hospital complications, and cost of RA-THA versus M-THA and CA-THA versus M-THA, as well as trends in use and uptake over a ten-year period, and future projections of uptake and use of RA-THA and CA-THA. The National Inpatient Sample was queried for primary THAs (2008 to 2017) which were categorized into RA-THA, CA-THA, and M-THA. Past and projected use, demographic characteristics distribution, income, type of insurance, location, and healthcare setting were compared among the three cohorts. In-hospital complications, LOS, discharge disposition, and in-hospital costs were compared between propensity score-matched cohorts of M-THA versus RA-THA and M-THA versus CA-THA to adjust for baseline characteristics and comorbidities.Aims
Methods
INTRODUCTION. Total knee arthroplasty (TKA) is considered a highly successful procedure. Survival rates of more than 90% after 10 years are generally reported. However, complications and revisions may still occur for many reasons, and some of them may be related to the operative technique.
At a minimum 12 years follow-up the Authors performed a matched paired study between 2 groups: Bi-Unicompartimental (femoro-tibial) versus Total Knee Replacements, both navigated, they hypothesised that Bi-UKR guarantees a clinical score and patient satisfaction at least similar to TKR without differences in survivorship. 19 BI-UKR (1999–2003) were included in the study (group A). Every single patients in group A was matched to a computer-assisted TKR implanted in the same period (group B). The clinical outcome was evaluated using the Knee Society Score, the GIUM Score and the WOMAC Arthritis Index. Radiographically the HKA angle and the Frontal Tibial Component angle (FTC) were. Statistical analysis of the results was performed and Kaplan-Meir survival rate was assessed in both the groups.Introduction
Materials and Methods
INTRODUCTION. Unicompartmental knee arthroplasty (UKA) is considered a highly successful procedure. However, complications and revisions may still occur, and some may be related to the operative technique.
To assess the accuracy of patient-specific instruments (PSIs) CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student’s Objectives
Methods
The objective of this paper is to demonstrate the difference in post-operative complication rates between Computer-assisted surgery (CAS) and conventional techniques in spine surgery. Several studies have shown that the accuracy of pedicle screw placement significantly improves with use of CAS. Yet, few studies have compared the incidence of post-operative complications between CAS and conventional techniques. The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was used to identify patients that underwent posterior lumbar fusion from 2011 to 2013. Multivariate analysis was conducted to demonstrate the difference in post-operative complication rates between CAS and conventional techniques in spine surgery. Out of 15,222 patients, 14,382 (95.1%) were operated with conventional techniques and 740 (4.90%) were operated with CAS. Multivariate analysis showed that patients in the CAS group had less odds to experience adverse events post-operatively (OR 0.57, P <0.001). This paper examined the complications in lumbar spinal surgery with or without the use of CAS. These results suggest that CAS may provide a safer technique for implant placement in lumbar fusion surgeries.
Despite many new methods with preoperative or intra-operative assistance to improve the accuracy of leg alignment, traditional intramedullary (IM) method of bone cutting is still the most commonly used. Traditional TKR using IM guide has more outliers comparing to new computer aided methods, especially in bowing femur which is more prevalent in Asian population. And IM guide could not be used when there is a medullary bony pathology. Avoiding entrance of medullary cavity has been proposed as one of criteria of minimally invasive TKA. We have designed an extramedullary (EM) guide for the distal femoral bone cutting with millimeter to millimeter increment which is compatible with all posterior referencing instrumentation systems. With mechanical line as the guide line on long leg X-ray film taking with the knee and foot facing anteriorly, the amount of distal femoral bone cutting was measured and recorded on computer screen pre-operatively. During surgery, distal femoral cutting was performed using the EM cutting jig for coronal alignment adjustment tool and anterior femoral cortex and a guide post as sagittal alignment guide. We retrogratively compared the post-operation long leg X-ray film of two hundreds patients using IM or EM guides, the mechanical alignment of femoral components were measured in coronal and sagittal planes. The results showed no significant difference in distribution and the ratio of outliers. However, if the bowing of femur is more than 8 degree, the outlier is more in the IM group. We have applied this technique in 8 patients having medullary pathology including plates or nails in femur. All patients got good post-operative limb alignment without the needs of
The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.
We report our experience of using a computer
navigation system to aid resection of malignant musculoskeletal tumours
of the pelvis and limbs and, where appropriate, their subsequent
reconstruction. We also highlight circumstances in which navigation
should be used with caution. We resected a musculoskeletal tumour from 18 patients (15 male,
three female, mean age of 30 years (13 to 75) using commercially
available computer navigation software (Orthomap 3D) and assessed
its impact on the accuracy of our surgery. Of nine pelvic tumours,
three had a biological reconstruction with extracorporeal irradiation,
four underwent endoprosthetic replacement (EPR) and two required
no bony reconstruction. There were eight tumours of the bones of
the limbs. Four diaphyseal tumours underwent biological reconstruction.
Two patients with a sarcoma of the proximal femur and two with a
sarcoma of the proximal humerus underwent extra-articular resection
and, where appropriate, EPR. One soft-tissue sarcoma of the adductor
compartment which involved the femur was resected and reconstructed
using an EPR. Computer navigation was used to aid reconstruction
in eight patients. Histological examination of the resected specimens revealed tumour-free
margins in all patients. Post-operative radiographs and CT showed
that the resection and reconstruction had been carried out as planned
in all patients where navigation was used. In two patients, computer
navigation had to be abandoned and the operation was completed under
CT and radiological control. The use of computer navigation in musculoskeletal oncology allows
accurate identification of the local anatomy and can define the
extent of the tumour and proposed resection margins. Furthermore,
it helps in reconstruction of limb length, rotation and overall
alignment after resection of an appendicular tumour. Cite this article:
Introduction. Valgus knee deformity is associated especially with differences in anatomy between medial and lateral femoral condyles. Vertically smaller lateral condyle and more distally located medial condyle cause valgus deformity in extension. The anteroposterior dimensions of both condyles influence the knee axis in flexion. In a „true“ valgus knee there is a mismatch between both condyles in both the vertical and anteroposterior dimensions, the lateral condyle is generally smaller. In a „false“ valgus knee there is no mismatch between anteroposterior dimensions of both condyles, the knee axis changes from valgus into varus with increased degree of flexion and lateral soft tissue structures are that's why not so contracted as in „true“ valgus knee deformity, where the knee stays in valgus deviation during the whole range of motion. The aim of the study was to preoperatively identify and analyse patterns of passive movement of osteoarthritic valgus knees with imageless navigation system to optimise surgical approach and intra-operative tissue handling during subsequent total knee replacement (TKR) surgery. Material and Methods. TKR were prospectively performed in 50 valgus knees. Cases with severe bony destruction and enormous soft tissue laxity were excluded from the study. The kinematic navigation system used was OrthoPilot® (Aesculap, Tuttlingen, Germany). It is designed to produce a numerical output of varus/valgus deviation of the knee against the degree of flexion. Before skin incision for TKR surgery, active markers were attached percutaneusly to the femur and the tibia with bicortical screws to create two ‘rigid bodies’. After the registration process the kinematic analysis was performed by passive movement of the knee. The mechanical axis was recorded at 0°, 30°, 60°, 90°, and 120° of flexion. The valgus deformity persistent through the whole range of motion was called „true“ and the valgus deformity passing into varus with flexion was called „false“. In „true“ valgus knees the lateral approach according to Keblish was used, in „false“ valgus knees we used standard medial parapatellar approach. Results. The pre-operative valgus deformity in extension ranged from 13° to 4° (mean 7,8°). We observed „true“ valgus type deformity during passive range of movement in 34 cases (68 %) and „false“ type of kinematics in 16 cases (32 %). The average value of valgus deviation in extension in „true“ group was 7,9° (range, 13° to 4°) and in „false“ group 7,5° (range, 9° to 6°), without statistically significant difference. In the „true“ valgus deviation group the value of deformity gradually decreased with flexion in all cases. The mean difference between axis deviation in 0° and 120° of flexion was 5,5° (range, 10° to 1°) in this group. In the „false“ valgus group the varus deviation was observed either already in 60° of flexion or in most cases in 90° of flexion. The mean difference between axis deviation in 0° and 120° of flexion in this group was much more significant – 12,0° (range, 14° to 10°) – there was statistically significant difference between both groups. The mean time necessary for data collection before surgery was 6 minutes (range, 4 to 11 minutes); afterwards, tha navigation was used for TKR implantation. No complications were observed regarding to the navigation usage. Subsequently correct soft tissue balance was achieved in all TKRs using this method. Conclusions.
The use of joint-preserving surgery of the hip
has been largely abandoned since the introduction of total hip replacement.
However, with the modification of such techniques as pelvic osteotomy,
and the introduction of intracapsular procedures such as surgical
hip dislocation and arthroscopy, previously unexpected options for
the surgical treatment of sequelae of childhood conditions, including
developmental dysplasia of the hip, slipped upper femoral epiphysis
and Perthes’ disease, have become available. Moreover, femoroacetabular
impingement has been identified as a significant aetiological factor
in the development of osteoarthritis in many hips previously considered to
suffer from primary osteoarthritis. As mechanical causes of degenerative joint disease are now recognised
earlier in the disease process, these techniques may be used to
decelerate or even prevent progression to osteoarthritis. We review
the recent development of these concepts and the associated surgical
techniques. Cite this article:
INTRODUCTION. In computer-aided total knee arthroplasty (TKA), surgical navigation systems (SNS) allow accurate tibio-femoral joint (TFJ) prosthesis implantation only. Unfortunately, TKA alters also normal patello-femoral joint (PFJ) functioning. Particularly, without patellar resurfacing, PFJ kinematics is influenced by TFJ implantation; with resurfacing, this is further affected by patellar implantation. Patellar resurfacing is performed only by visual inspections and a simple calliper, i.e. without
While double-bundle anterior cruciate ligament (ACL) reconstruction attempts to recreate the two-bundle anatomy of the native ACL, recent research also indicates that double-bundle reconstruction more closely reproduces the biomechanical properties of the ACL and restores the rotatory and sagittal stability to the level of the intact knee that was not attainable with anatomic single-bundle reconstruction. Though double-bundle reconstruction provides these potential biomechanical benefits, it poses a significant challenge to the surgeon who must attempt to accurately place twice as many tunnels while avoiding tunnel convergence compared to single-bundle reconstruction. In addition, previous work has shown that tunnel malpositioning may cause grafts that fail to reproduce the native biomechanics of the ACL, increase graft tension in deep knee flexion, increase anterior tibial translation, and produce lower IKDC (International Knee Documentation Committee) scores. We hypothesise that experienced surgeons without the use of computer-assisted navigation will place tunnels on the tibial plateau and lateral femoral condyle that more closely emulate the locations of the native anteromedial (AM) and posterolateral (PL) ACL bundles than inexperienced surgeons with the use of computer-assisted navigation. A novice surgeon group comprised of three medical students each performed double-bundle ACL reconstruction using passive computer-assisted navigation on a total of eleven cadaver knees. Their individual results were compared to three experienced orthopaedic surgeons each performing the identical procedure without the use of computer-assisted navigation on a total of nine cadaver knees. There were no significant differences in placement of either the AM or PL tunnels on the tibial plateau between novice surgeons using computer-assisted navigation and experienced surgeons without the use of computer navigation. On the lateral femoral condyle, novice surgeons placed the AM and PL tunnels significantly more anterior along Blumensaat's line on average compared to experienced surgeons. Both groups placed femoral AM and PL tunnels anterior to previously described AM and PL bundle positions. Novice surgeons utilizing computer-assisted navigation and experienced surgeons without