Advertisement for orthosearch.org.uk
Results 1 - 20 of 114
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 32 - 32
2 Jan 2024
Depboylu F Yasa E Poyraz Ö Korkusuz F
Full Access

Decreasing the bulk weight without losing the biomechanical properties of commercial pure titanium (Cp-Ti) medical implants is now possible by using Laser Powder Bed Fusion (L-PBF) technology. Gyroid lattice structures that have precious mechanical and biological advantages because of similarity to trabecular bone. The aim of the study was to design and develop L-PBF process parameter optimization for manufacturing gyroid lattice Cp-Ti structures. The cleaning process was then optimized to remove the non-melted powder from the gyroid surface without mechanical loss. Gyroid cubic designs were created with various relative densities by nTopology. L-PBF process parameter optimization was progressed using with Cp-Ti (EOS TiCP Grade2) powder in the EOS M290 machine to achieve parts that have almost full dense and dimensional accuracy. The metallography method was made for density. Dimensional accuracy at gyroid wall thicknesses was investigated between designed and manufactured via stereomicroscope, also mechanical tests were applied with real time experiment and numerical analysis (ANSYS). Mass loss and strut thickness loss were investigated for chemical etching cleaning process. Gyroid parts had 99,5% density. High dimensional accuracy was achieved during L-PBF process parameters optimization. Final L-PBF parameters gave the highest 19% elongation and 427 MPa yield strength values at tensile test. Mechanical properties of gyroid were controlled with changing relative density. A minute chemical etching provided to remove non-melted powders. Compression test results of gyroids at numerical and real-time analysis gave unrelated while deformation behaviors were compatible with each other. Gyroid Cp-Ti osteosynthesis mini plates will be produced with final L-PBF process parameters. MTT cytotoxicity test will be characterized for cell viability. Acknowledgements This project is granted by TUBITAK (120N943). Feza Korkusuz MD is a member of the Turkish Academy of Sciences (TÜBA)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 72 - 72
17 Apr 2023
Hsieh Y Hsieh M Shu Y Lee H
Full Access

A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone. In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed. In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation. The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 67 - 67
11 Apr 2023
Britton M Schiavi J Vaughan T
Full Access

Type-2 Diabetic (T2D) patients experience up to a 3-fold increase in bone fracture risk[1]. Paradoxically, T2D-patients have a normal or increased bone mineral density when compared to non-diabetic patients. This implies that T2D has a deleterious effect on bone quality, whereby the intrinsic material properties of the bone matrix are altered. Creating clinical challenges as current diagnostic techniques are unable to accurately predict the fracture probability in T2D-patients. To date, the relationship between cyclic fatigue loading, mechanical properties and microdamage accumulation of T2D-bone tissue has not yet been examined and thus our objective is to investigate this relationship. Ethically approved femoral heads were obtained from patients, with (n=8) and without (n=8) T2D. To obtain the mechanical properties of the sample, one core underwent a monotonic compression test to 10% strain, the other core underwent a cyclic compression test at a normalized stress ratio between 0.0035mm/mm and 0.016mm/mm to a maximum strain of 3%. Microdamage was evaluated by staining the tissue with barium sulfate precipitate [2] and conducting microcomputed tomography scanning with a voxel size of 10μm. The monotonically tested T2D-group showed no statistical difference in mechanical properties to the non-T2D-group, even when normalised against BV/TV. There was also no difference in BV/TV. For the cyclic test, the T2D-group had a significantly higher initial modulus (p<0.01) and final modulus (p<0.05). There was no difference in microdamage accumulation. Previous population-level studies have found that T2D-patients have been shown to have an increased fracture risk when compared to non-T2D-patients. This research indicates that T2D does not impair the mechanical properties of trabecular bone from the femoral heads of T2D-patients, suggesting that other mechanisms may be responsible for the increased fracture risk seen in T2D-patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 147 - 147
4 Apr 2023
Tohidnezhad M Kubo Y Gonzalez J Weiler M Pahlavani H Szymanski K Mirazaali M Pufe T Jahr H
Full Access

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor to maintain cellular redox homeostasis, but is also affecting bone metabolism. As the association between Nrf2 and osteoporosis in elderly females is not fully elucidated, our aim was to shed light on the potential contribution of Nrf2 to the development of age-dependent osteoporosis using a mouse model. Female wild-type (WT, n=18) and Nrf2-knockout (KO, n=12) mice were sacrificed at different ages (12 weeks=young mature adult, and 90 weeks=old), morphological cortical and trabecular properties of femoral bone analyzed by micro-computed tomography (µCT), and compared to histochemistry. Mechanical properties were derived from quasi-static compression tests and digital image correlation (DIC) used to analyze full-field strain distribution. Bone resorbing cells and aromatase expression by osteocytes were evaluated immunohistochemically and empty osteocyte lacunae counted in cortical bone. Wilcoxon rank sum test was used for data comparison and differences considered statistically significant at p<0.05. When compared to old WT mice, old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness (Ct.Th), cortical area (Ct.Ar), and cortical bone fraction (Ct.Ar/Tt.Ar). Surprisingly, these parameters were not different in skeletally mature young adult mice. Metaphyseal trabeculae were thin but present in all old WT mice, while no trabecular bone was detectable in 60% of old KO mice. Occurrence of empty osteocyte lacunae did not differ between both groups, but a significantly higher number of osteoclast-like cells and fewer aromatase-positive osteocytes were found in old KO mice. Furthermore, female Nrf2-KO mice showed an age-dependently reduced fracture resilience when compared to age-matched WT mice. Our results confirmed lower bone quantity and quality as well as an increased number of bone resorbing cells in old female Nrf2-KO mice. Additionally, aromatase expression in osteocytes of old Nrf2-KO mice was compromised, which may indicate a chronic lack of estrogen in bones of old Nrf2-deficient mice. Thus, chronic Nrf2 loss seems to contribute to age-dependent progression of female osteoporosis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 25 - 25
1 Dec 2021
Solis J Edwards JH Fermor H Brockett C Herbert A
Full Access

Abstract. Decellularised porcine superflexor tendon (pSFT) provides an off-the-shelf, cost-efficient option for ACL reconstruction (ACLR). During decellularisation, phosphate buffered saline (PBS) is used for washing out cytotoxic solutes and reagents, maintaining tissue hydration. It has been shown to increase water content in tendon, swelling the tissue reducing mechanical properties. End stage PBS washes in the standard protocol were substituted with alternative solutions to study tissue swelling and its impact on the mechanical behaviour and matrix composition of pSFTs. 25%, 100% Ringers and physiological saline test groups were used (n=6 for all groups). pSFTs were subject to tensile and confined compression testing. Relative hydroxyproline (HYP), glycosaminoglycan (GAG) and denatured collagen content (DNC) were quantified. Modified decellularised tendon groups were compared to tendons decellularised using the standard protocol and native tendons. Specimen dimensions reduced (p=0.004) post-decellularisation only in 25% Ringers group. In all other modified groups, less swelling was apparent but not statistically different from standard group. Only 25% Ringers group had higher linear modulus (p=0.0035) and UTS (p=0.013) compared to standard group. All decellularised groups properties were reduced compared to native pSFTs. Stress relaxation properties showed a significant reduction in decellularised groups compared to native. Compression testing showed no significant differences in peak stress for modified decellularised groups compared to native. A reduction (p=0.036) was observed in standard group. Quantification of GAGs and DNC showed no significant differences between groups. HYP content was higher (p<0.0001) for saline group. A significant reduction in tissue swelling could be related to improved mechanical properties of decellularised pSFTs. Alternative solutions in end stage washes had no significant effect on quantities of matrix components, but altered structure/function could explain the differences in tensile and compressive behaviour, and should be further studied. In all decellularised groups, pSFTs retained suitable mechanical properties for ACLR


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 22 - 22
1 Dec 2021
Norbertczak H Fermor H Edwards J Rooney P Ingham E Herbert A
Full Access

Abstract. Introduction. Bone grafts are utilised in a range of surgical procedures, from joint replacements to treatment of bone loss resulting from cancer. Decellularised allograft bone is a regenerative, biocompatible and immunologically safe potential source of transplant bone. Objectives. To compare the structural and biomechanical parameters of decellularised and unprocessed (cellular) trabecular bone from the human femoral head (FH) and tibial plateau (TP). Methods. Bone pins were harvested from 10 FHs and 11 TPs (27, 34 respectively). Pins were decellularised (0.1% w/v sodium dodecyl sulphate) or retained as cellular controls. QA testing was carried out to assess protocol efficacy (total DNA and histological analysis). Cellular and decellularised FH (n=7) and TP (n=10) were uCT scanned. Material density (MD); apparent density (BV/TV); trabecular connectivity; trabecular number; trabecular thickness (Tb-t) and trabecular spacing were measured. Pins were then compression tested to determine ultimate compressive stress (UCS), Young's modulus and 0.2% proof stress. Results. Total DNA levels of decellularised bone were below 50 ng.mg. −1. dry weight. Cell nuclei and marrow were largely removed. No significant differences in properties were found between decellularised and cellular bone from either anatomical region (p>0.05, Mann-Whitney). No significant differences in biomechanical properties were found between cellular FH and cellular TP (p>0.05) though significant differences in structural properties were found (MD: TP>FH, p=0.001; BV/TV: FH>TP, p=0.001; and Tb-t: FH>TP, p=0.005). Significant differences were found between decellularised FH and decellularised TP (UCS: FH>TP, p=0.001; Young's modulus: FH>TP, p=0.002; proof stress; FH>TP, p=0.001; MD: TP>FH, p<0.001; BV/TV: FH>TP, p<0.001 and Tb-t: FHT>P p<0.001. Conclusion. Decellularisation did not affect the properties of human trabecular bone. Differences were found between the mechanical and structural properties of decellularised FH and TP which could facilitate stratified bone grafts for different applications. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme. Results. The bench test showed that a weight loading < 500 g did not affect the operation of experimental device. The compression test demonstrated that the stiffness of the device was sufficient to keep the uncontrollable motion between fracture ends, resulting from the rat’s daily activities, within 1% strain. In vivo results on 15 rats prove that the device works reliably, without overburdening the experimental animals, and provides standardized micromotion reproductively at the fracture site according to the set parameters. Conclusion. Our device was able to investigate the effect of micromotion parameters on fracture healing by generating standardized micromotion to small animal models. Cite this article: Bone Joint Res 2021;10(11):714–722


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 11 - 11
1 Nov 2021
Imwinkelried T Heuberger R Eggli S
Full Access

Introduction and Objective. Local cartilage defects in the knee are painful and mostly followed by arthritis. In order to avoid impaired mobility, the osteochondral defect might be bridged by a synthetic compound material: An osteoconductive titanium foam as an anchoring material in the subchondral bone and an infiltrated polymer as gliding material in contact with the surrounding natural cartilage. Materials and Methods. Titanium foam cylinders (Ø38 mm) with porosities ranging from 57% to 77% were produced by powder metallurgy with two different grain sizes of the space holder (fine: 340 ± 110 μm, coarse: 530 ± 160 μm). The sintered titanium foam cylinders were infiltrated with UHMWPE powder on one end and UHMWPE bulk at the other end, at two different temperatures (160 °C, 200 °C), using a pressure of 20 MPa for 15 minutes. Smaller cylinders (Ø16 mm) were retrieved from the compound material by water jet cutting. The infiltration depths were determined by optical microscopy. The anchoring of the UHMWPE was measured by a shear test and the mechanical properties of the titanium foam were verified by a subsequent compression test. The tribological behaviour was investigated in protein containing liquid using fresh cartilage pins (Ø5 mm) sliding against a UHMWPE disc with or without a notch to simulate the gap between the implant and the surrounding cartilage. Friction coefficients were determined in a rotation tribometer and the cartilage wear in a multidirectional six-station tribometer from AMTI (load 10 – 50 N, sliding speed 20 mm/s, 37 °C). Results. UHMWPE could be infiltrated into titanium foam by 1.1 – 1.3 mm with fine pores and by 1.5 – 1.8 mm with coarse pores. The infiltration was neither dependent on the type of UHMWPE (powder or bulk) nor on the temperature. The polymer was so well anchored inside the titanium foam pores that the shear forces for the compounds exceeded the shear strength obtained for a UHMWPE-cylinder. This effect was due to the increased stiffness of the compound plug. Uniaxial compression of the titanium foams after the shear-off of the polymer revealed yield strengths ranging from 50 – 88 MPa for porosities of 62 – 73%. The Ø16 mm samples yielded beyond physiological loads in the knee (≥ 10x body weight) and behaved in a strain hardening and fully ductile manner, reaching deformations of at least 50 % of their initial height without the appearance of macroscopically visible cracks. For smaller plug diameters down to Ø8 mm, however, the lower porosity / higher strength foam should be used to limit elastic deformation of the compound to < 0.1 mm. Pore size did not significantly influence the strength and stiffness values. The elevated coefficient of friction between cartilage and UHMWPE of about 1 was not negatively affected by the presence of the gap. The height loss of the cartilage pin after 1 hour (respectively after 3600 reciproque wear cycles) was 0.2 ± 0.1 mm using a flat disc. For discs with a 1 mm wide V-notch, the wear increased to 0.9 ± 0.3 mm. Conclusions. The tested titanium foams are well suited to act as an anchoring material in the subchondral bone as mechanical properties can be tailored by choosing the adequate porosity and as bone ingrowth has previously been demonstrated for the used pore sizes. UHMWPE is not an ideal gliding partner against cartilage because the friction coefficients of frictions were high. The presence of a V-notched gap was detrimental for cartilage wear. More hydrophilic polymers like PCU should be tested as potential gliding materials


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 45 - 45
1 May 2021
Zenios M Oyadiji T Zamani-Farahani A
Full Access

Introduction. A clinical case of catastrophic ring failure in a 13 year old autistic overweight patient during treatment for tibial lengthening and deformity using a Taylor Spatial Frame is reported. Ring failure was noted during the later stages of bone healing and the frame was removed. The clinical outcome was not affected by the catastrophic ring failure. The photograph of the deformed ring is presented below:. Materials and Methods. The patient's notes and X-rays were reviewed and a macroscopic examination of the deformed ring was performed. Mechanical tests of different Taylor Spatial frame constructs were performed in an attempt to simulate the deformity that was clinically observed. Different constructs of TSF of different ring sizes were fixed to polyurethane cylinders simulating bone, were mechanically tested to failure and load/deflection curves were produced. Results. Macroscopically the ring looked otherwise normal. Gradual mechanical compression tests of Taylor Spatial frame constructs showed that ring deformation increased by increasing the ring diameter and by using jointed rather than full joints without a ring. The ring deformation observed clinically was reproduced at the lab by applying high loads on frame constructs composed of large diameter jointed rings not rigidly fixed to bone. Conclusions. Taylor Spatial frame ring failure during treatment is a serious complication that has not been described in the literature. Possible causes are discussed. Clinicians are advised to use the smaller possible diameter rings. Where large diameter rings are required, these rings should preferably be not jointed. Half rings when used should be carefully and securely joined together by the operating surgeon in order to make a complete ring. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims

Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading.

Methods

For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 4 - 4
1 Mar 2021
Braxton T Lim K Rnjak-Kovacina J Alcala-Orozco C Woodfield T Jiang L Jia X Yang X
Full Access

Abstract. Objectives. Assess and characterise the suitability of a novel silk reinforced biphasic 3D printed scaffold for osteochondral tissue regeneration. Methods. Biphasic hybrid scaffolds consisted of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene terephthalate)(PEGT/PBT) scaffold frame work (pore size 0.75mm), which has been infilled with a cast and freeze dried porous silk scaffold (5×5×2mm. 3. ), in addition to a seamless silk top layer (1mm). Silk scaffolds alone were used as controls. Both the biphasic and control scaffolds were characterised via uniaxial compression testing (strain rate 0.1mm/min), and the potential biocompatibility of the scaffolds was tested via in vitro culture of seeded bone marrow stromal cells post fabrication. Results. Uniaxial compression testing showed that the biphasic scaffolds (N=4) initially demonstrated similar behaviour on a stress-strain curve to a silk scaffold alone control group (N=6), until a strain of 30% was reached. After 30% strain, load was transitioned from the silk only chondral layer to the 3D printed PEGT/PBT scaffold which resisted further compression and exhibited a significantly greater compressive modulus of 12.6±0.9MPa compared to 0.113±0.01MPa (p<0.001) in the silk scaffold control group. Following 24hours of seeding, no difference was noticed in cell adhesion behaviour under fluorescent microscopy between silk scaffolds and biphasic scaffolds (n=5). Discussion. The use of 3D printing within this novel scaffold provides a solid framework and increases its versatility. The reinforced silk not only provides the secondary Porous structure to the 3D printed scaffold for the bone phase, but also a superficial layer for the cartilage phase. This unique structure has the potential to fill a niche within osteochondral tissue regeneration, especially with the possibility for its use within personalised medicine. Conclusions. These results demonstrate that the novel silk reinforced biphasic 3D printed scaffold is biocompatible and has suitable mechanical properties for osteochondral tissue regeneration. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 60 - 60
1 Mar 2021
Munford M Ng G Jeffers J
Full Access

Abstract. Objectives. This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups. Methods. 7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically compression tested. Modulus was estimated from a load cycle hysteresis loop, between 40% and 20% of yield stress. Sequential testing order in 3 orthogonal directions was randomised. Group differences were identified via an analysis of variance for the factors density, age, gender, testing order, subchondral depth, condyle and sub-meniscal location. Regression models were fit for significant factor sub-groups, predicting properties from density. Results. Axial modulus was 1.5 times greater than the two transverse directions (p<0.001), between which no difference was found. For all test directions, differences were quantified for density and modulus across all subchondral depths (p<0.001). 60% of transverse modulus variation was explained by density within subgroups for each subchondral depth. Medial axial modulus was 1.3 times greater than the lateral side (p = 0.011). Lateral axial modulus halved over a 25mm depth whilst remaining constant for the medial side. Density explained 75% of variation when grouped by subchondral depth and condyle. Yield strength was well predicted across all test directions, with density explaining 81% of axial strength variation and no differences over subchondral depth. Conclusions. The quantification of bone multiaxial modulus based on condyle and subchondral depth has been shown for the first time in a clinically viable protocol using conventional CT. Accounting for spatial variation improves upon literature property prediction models. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 39 - 39
1 Mar 2021
Aziz M Rosenzweig D Weber M
Full Access

Great strides have been made in the early detection and treatment of cancer which is resulting in improved survivability and more Canadians living with cancer. Approximately 80% of primary breast, lung, and prostate cancers metastasize to the spine. Poly-methyl methacrylate (PMMA) bone cement is one of the most commonly used bone substitutes in spine surgery. In clinical practice it can be loaded with various drugs, such as antibiotics or chemotheraputic drugs, as a means of local drug delivery. However, studies have shown that drugs loaded into PMMA cement tend to release in small bursts in the first 48–72 hours, and the remaining drug is trapped without any significant release over time. The objective of this study is to develop a nanoparticle-functionalized PMMA cement for use as a sustained doxorubicin delivery device. We hypothesize that PMMA cement containing mesoporous silica nanoparticles will release more doxorubicin than regular PMMA. High viscosity SmartSet ™ PMMA cement by DePuy Synthes was used in this study. The experimental group consisted of 3 replicates each containing 0.24 g of mesoporous silica nanoparticles, 1.76 g of cement powder, 1ml of liquid cement monomer and 1 mg of doxorubicin. The control group consisted 3 replicates each containing 2.0 g of cement powder, 1ml of liquid cement monomer and 1 mg of doxorubicin. The experimental group contained an average of 8.18 ± 0.008 % (W/W) mesoporous silica nanoparticles. Each replicate was casted into a cylindrical block and incubated in a PBS solution which was changed at predetermined intervals for 45 days. The concentration of eluted doxorubicin in each solution was measured using a florescent plate reader. The mechanical properties of cement were assessed by unconfined compression testing. The effect of the doxorubicin released from cement on prostate and breast tumor cell metabolic activity was assessed using the Alamar Blue test. After 45 days the experimental group released 3.24 ± 0.25 % of the initially loaded doxorubicin which was more than the 2.12 ± 0.005% released by the control group (p 0.03). There was no statistically significant difference in Young's elasticity modulus between groups (p 0.53). Nanoparticle functionalized PMMA suppressed the metabolic activity of prostate cancer by more than 50 percent but did not reach statistical significance. Nanoparticle functionalized PMMA suppressed the metabolic activity of breast cancer cells by 69 % (p < 0.05). Nanoparticle-functionalized PMMA cement can release up to 1.53 times more doxorubicin than the standard PMMA. The use of mesoporous silica nanoparticles to improve drug release from PMMA cement shows promise. In the future, in vivo experiments are required to test the efficacy of released doxorubicin on tumor cell growth


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 36 - 36
1 Feb 2021
Spece H Kurtz S Yu T Marcolongo M Law A
Full Access

Introduction. The ability to create patient-specific implants (PSI) at the point-of-care has become a desire for clinicians wanting to provide affordable and customized treatment. While some hospitals have already adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments, recent innovations have allowed for the printing of high-temperature implantable polymers including polyetheretherketone (PEEK). With interest in FFF PEEK implants growing, it is important to identify methods for printing favorable implant characteristics such as porosity for osseointegration. In this study, we assess the effect of porous geometry on the cell response and mechanical properties for FFF-printed porous PEEK. We also demonstrate the ability to design and print customized porous implants, specifically for a sheep tibial segmental defect model, based on CT images and using the geometry of triply periodic minimal surfaces (TPMS). Methods. Three porous constructs – a rectilinear pattern and gyroid/diamond TPMSs – were designed to mimic trabecular bone morphology and manufactured via PEEK FFF. TPMSs were designed by altering their respective equation approximations to achieve desired porous characteristics, and the meshes were solidified and shaped using a CAD workflow. Printed samples were mCT scanned to determine the resulting pore size and porosity, then seeded with pre-osteoblast cells for 7 and 14 days. Cell proliferation and alkaline phosphatase activity (ALP) were evaluated, and the samples were imaged via SEM. The structures were tested in compression, and stiffness and yield strength values were determined from resulting stress-strain plots. Roughness was determined using optical profilometry. Finally, our process of porous structure design/creation was modified to establish a proof-of-concept workflow for creating PSIs using geometry established from segmented sheep tibia CT images. Results. ALP activity measurements of the porous PEEK samples at 7 and 14 days were significantly greater than for solid controls (p < 0.001 for all three designs, 14 days). No difference between the porous geometries was found. SEM imaging revealed cells with flat, elongated morphology attached to the surface of the PEEK and into the pore openings, with filopodia and lamellipodia extensions apparent. mCT imaging showed average pore size to be 545 ± 43 µm (porosity 70%), 708 ± 64 µm (porosity 68%), and 596 ± 94 µm (porosity 69%) for the rectilinear, gyroid, and diamond structures, respectively. The average error between the theoretical and actual values was −16.3 µm (pore size) and −3.3 % (porosity). Compression testing revealed elastic moduli ranging from 210 to 268 MPa for the porous samples. Yield strengths were 6.6 ± 1.2 MPa for lattice, 14.8 ± 0.7 MPa for gyroid, and 17.1 ± 0.6 for diamond. Average roughness ranged from 0.8 to 3 µm. Finally, we demonstrated the ability to design and print a fully porous implant with the geometry of a sheep tibia segment. Assessments of implant geometrical accuracy and mechanical performance are ongoing. Discussion. We created porous PEEK with TPMS geometries via FFF and demonstrated a positive cellular response and mechanical characteristics similar to trabecular bone. Our work offers an innovative approach for advancing point-of-care 3D printing and PSI creation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2021
Soltanihafshejani N Bitter T Janssen D Verdonschot N
Full Access

Introduction. The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear bone biomechanics that influences implant fixation. Methods. Mechanical testing of human tibial trabecular bone was done under uniaxial and confined compression configurations. We examined 62 human trabecular bone samples taken from 8 different cadaveric tibiae to obtain all the required parameters defining the CFM, dependent on local bone mineral density (BMD). The derived constitutive rule was subsequently applied using an in-house subroutine to the FE models of the bone specimens, to compare the model predictions against the experimental results. Results. The crushable foam model provided an accurate simulation of the experimental compression test, and was able to replicate the ultimate compression strength measured in the experiments [Figure 1]. The CFM was able to simulate the post-failure behavior that was observed in the experimental specimens up to strain levels of 50% [Figure 2]. Also, the distribution of yield strains and permanent displacement was qualitatively very similar to the experimental deformation of the bone specimens [Figure 3]. Conclusion. The crushable foam model developed in the current study was able to accurately replicate the mechanical behavior of the human trabecular bone under compression loading beyond the yield point. This advanced bone model enables realistic simulations of the primary fixation of orthopaedic devices, allowing for the analysis of the influence of interference fit and frictional properties on implant stability. In addition, the model is suitable for failure analysis of reconstructions, such as the tibial collapse of total knee arthroplasty. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 65 - 65
1 Dec 2020
Panagiotopoulou V Ovesy M Gueorguiev B Richards G Zysset P Varga P
Full Access

Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the glenohumeral joint. Secondary screw perforation is a complex and not yet fully understood process. Biomechanical testing and finite element (FE) analysis are expected to help understand the importance of various risk factors. Validated FE simulations could be used to predict perforation risk. This study aimed to (1) develop an experimental model for single screw perforation in the humeral head and (2) evaluate and compare the ability of bone density measures and FE simulations to predict the experimental findings. Screw perforation was investigated experimentally via quasi-static ramped compression testing of 20 cuboidal bone specimens at 1 mm/min. They were harvested from four fresh-frozen human cadaveric proximal humeri of elderly donors (aged 85 ± 5 years, f/m: 2/2), surrounded with cylindrical embedding and implanted with a single 3.5 mm locking screw (DePuy Synthes, Switzerland) centrally. Specimen-specific linear µFE (ParOSol, ETH Zurich) and nonlinear explicit µFE (Abaqus, SIMULIA, USA) models were generated at 38 µm and 76 µm voxel sizes, respectively, from pre- and post-implantation micro-Computed Tomography (µCT) images (vivaCT40, Scanco Medical, Switzerland). Bone volume (BV) around the screw and in front of the screw tip, and tip-to-joint distance (TJD) were evaluated on the µCT images. The µFE models and BV were used to predict the experimental force at the initial screw loosening and the maximum force until perforation. Initial screw loosening, indicated by the first peak of the load-displacement curve, occurred at a load of 64.7 ± 69.8 N (range: 10.2 – 298.8 N) and was best predicted by the linear µFE (R. 2. = 0.90), followed by BV around the screw (R. 2. = 0.87). Maximum load was 207.6 ± 107.7 N (range: 90.1 – 507.6 N) and the nonlinear µFE provided the best prediction (R. 2. = 0.93), followed by BV in front of the screw tip (R. 2. = 0.89). Further, the nonlinear µFE could better predict screw displacement at maximum force (R. 2. = 0.77) than TJD (R. 2. = 0.70). The predictions of non-linear µFE were quantitatively correct. Our results indicate that while density-based measures strongly correlate with screw perforation force, the predictions by the nonlinear explicit µFE models were even better and, most importantly, quantitatively correct. These models have high potential to be utilized for simulation of more realistic fixations involving multiple screws under various loading cases. Towards clinical applications, future studies should investigate if explicit FE models based on clinically available CT images could provide similar prediction accuracies


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 40 - 40
1 Aug 2020
Li A Glaris Z Goetz TJ
Full Access

Physical examination is critical to formation of a differential diagnosis in patients with ulnar-sided wrist pain. Although the specificity and sensitivity of some of those tests have been reported in the literature, the prevalence of positive findings of those provocative maneuvers has not been reported. The aim of the study is to find the prevalence of positive findings of the most commonly performed tests for ulnar sided wrist pain in a population presenting to UE surgeon clinics, and to correlate those findings with wrist arthroscopy findings. Patients with ulnar sided wrist pain were identified from a prospective database of patients presented with wrist pain from September 2014. Prevalence of positive findings for the following tests were gathered: ECU synergy test, ECU instability test (Ice cream and Fly Swatter), Lunotriquetral ballottement, Kleinman shear, triquetrum tenderness, triquetrum compression test, triquetral-hamate tenderness, pisotriquetral shuck test, ulnar fovea test, ulnocarpal impaction (UCI) maneuver, UCI maneuver with fovea pressure (ulnar carpal plus test), piano key sign. A subgroup was then created for those who underwent wrist arthroscopy, and analysis of the sensitivities, the specificities and the predictive values of these provocative tests was carried out with correlation to arthroscopic finding. Prevalence of ECU instability tests was t 1.13% (ice cream scoop) and 1.5% (fly swatter). Lunotriquetral ballottement test's positive findings range from 4.91% (excessive laxity) to 14.34% (pain reproducing symptoms. The Kleinman shear test yielded pain in 13.58% of patients, and instability in only 2.26%. Triquetrum compression test reproduces pain in 32.83% of patients, and triquetral-hamate tenderness reproduced pain in 13.21%. Pisotriquetral grind test yields 15.85% positive findings for pain, and 10.57% for crepitus with radioulnar translation. The ulnar fovea test revealed pain in 69.05% of cases. The UCI maneuver yielded pain in 70.19%. The UCI maneuver plus ulnar fovea test reproduced pain in 80.38% of cases. Finally, the piano key sign yields positive finding in 2.64% of cases. For patients who underwent surgery, sensitivities, specificities and predictive values were calculated based on arthroscopic findings. The lunotriquetral ballottement test has 59.6% sensitivity, 39.6% specificity, 20.3% positive predictive value and 85.4% negative predictive value. The sensitivity of Kleinman test was 62.4%, the specificity was 41.3%, the positive predictive value was 23.5%, and the negative predictive value was 83.2%. The sensitivity of fovea test was 94.3%, the specificity was 82.5%, the positive predictive value was 89.5% and the negative predictive value was 92.3%. The UCI maneuver plus ulnar fovea test has 96.5% sensitivity, 80.7% specificity 86.4% positive predictive value, and 95.3% negative predictive value. Among the provocative tests, the prevalence of positive findings is low in the majority of those maneuvers. The exceptions are the fovea test, the UCI maneuver, and the UCI plus maneuver. With regard to the sensitivity and the specificity of those tests, the current study reproduces the numbers reported in the literature. Of those patients who underwent wrist arthroscopy, the tests are better at predicting at the absence of injury rather than at predicting its presence


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 29 - 29
1 Jul 2020
Tee CA Yang Z Yin L Wu Y Denslin V Ren X Lim CT Han J Lee EH
Full Access

The zonal organization of articular cartilage is crucial in providing the tissue with mechanical properties to withstand compression and shearing force. Current treatments available for articular cartilage injury are not able to restore the hierarchically organized architecture of the tissue. Implantation of zonal chondrocyte as a multilayer tissue construct could overcome the limitation of current treatments. However, it is impeded by the lack of efficient zonal chondrocyte isolation protocol and dedifferentiation of chondrocytes during expansion on tissue culture plate (TCP). This study aims to develop a protocol to produce an adequate number of high-quality zonal chondrocytes for clinical application via size-based zonal chondrocyte separation using inertial spiral microchannel device and expansion under dynamic microcarrier culture. Full thickness (FT) chondrocytes isolated from porcine femoral condyle cartilage were subjected to two serial of size-based sorting into three subpopulations of different cell sizes, namely small (S1), medium (S2), and large (S3) chondrocytes. Zonal phenotype of the three subpopulations was characterised. To verify the benefit of stratified zonal chondrocyte implantation in the articular cartilage regeneration, a bilayer hydrogel construct composed of S1 chondrocytes overlaying a mixture of S2 and S3 (S2S3) chondrocytes was delivered to the rat osteochondral defect model. For chondrocyte expansion, two dynamic microcarrier cultures, sort-before-expansion and sort-after-expansion, which involved expansion after or before zonal cells sorting, were studied to identify the best sort-expansion strategy. Size-sorted zonal chondrocytes showed zone-specific characteristics in qRT-PCR with a high level of PRG4 expression in S1 and high level of aggrecan, Type II and IX collagen expression in S2 and S3. Cartilage reformation capability of sorted zonal chondrocytes in three-dimensional fibrin hydrogel showed a similar trend in qRT-PCR, histology, extracellular matrix protein quantification and mechanical compression test, indicating the zonal characteristics of S1, S2 and S3 as superficial (SZ), middle (MZ) and deep (DZ) zone chondrocytes, respectively. Implantation of bilayered zonal chondrocytes resulted in better cartilage tissue regeneration in a rat osteochondral defect model than FT control group, with predominantly Type II hyaline cartilage tissue and significantly lower Type I collagen. Dynamic microcarrier expansion of sorted zonal chondrocytes was able to retain the zonal cell size difference that correlate to zonal phenotype, while maintaining the rounded chondrocyte morphology and F-actin distribution similar to that in mature articular cartilage. With the better retention of zonal cell size and zonal phenotype relation on microcarrier, zonal cells separation was achievable in the sort-after-expansion strategy with cells expanded on microcarrier, in comparison to cells expanded on TCP. Inertial spiral microchannel device provides a label-free and high throughput method to separate zonal chondrocytes based on cell size. Stratified implantation of zonal chondrocytes has the potential to improve articular cartilage regeneration. Dynamic microcarrier culture allows for size-based zonal chondrocyte separation to be performed on expanded chondrocytes, thus overcoming the challenge of limited tissue availability from the patients. Our novel zonal chondrocyte isolation and expansion protocol provide a translatable strategy for stratified zonal chondrocyte implantation that could improve articular cartilage regeneration of critical size defects


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 14 - 14
1 Feb 2020
Munford M Hossain U Jeffers J
Full Access

Introduction. Integrating additively manufactured structures, such as porous lattices into implants has numerous potential benefits, such as custom mechanical properties, porosity for osseointegration/fluid flow as well as improved fixation features. Component anisotropic stiffness can be controlled through varying density and lattice orientation. This is useful due to the influence of load on bone remodelling. Matching implant and bone anisotropy/stiffness may help reduce problems such as stress shielding and prevent implant loosening. It is therefore beneficial to be able to design AM parts with a desired anisotropic stiffness. In this study we present a method that predicts the anisotropic stiffness of an additively manufactured lattice structure from its CAD data, and validate this model with experimental testing. The model predicts anisotropic stiffness in terms of density (ρ), fabric (M) and fabric eigen values (m) and is matched to stiffness data of the structure in 3 principal directions, based on an orthotropic assumption. This model was described in terms of 10 constants and had the form shown in Equation 1. Eq.1. S. =. ∑. i. ,. j. =. 1.  .  .  .  . i. ,. j. =. 3. λ. (. i. ,. j. ). ρ. k. m. (. i. ). 1. (. i. ). m. (. j. ). 1. (. i. ). |. M. i. M. j. '. |. 2. Methods. A stochastic line structure was formed in CAD by joining pseudo-random points generated using the Poisson-disk method Lines at an angle lower than 30° to the x-y plane removed to allow for AM manufacturing. Lines were converted to struts with 330 µm diameter. Second order fabric tensors were determined from CAD files of the AM specimens using the mean intercept length (MIL), the gold standard for determining a measure of the ‘average orientation’ of material within trabecular bone structures. 10 × 10 × 12 mm specimens of the CAD model were manufactured on a Renishaw AM250 powder bed fusion machine. The structure was built in 10 different orientations to enable stiffness measurement in 10 different directions (n=5 for each direction). Compression testing in a servohydraulic materials testing machine was performed according to ISO13314 with LVDTs used to measure displacement to remove compliance effects. Stress-strain curves were obtained and elastic moduli were estimated from a hysteresis loop in the load application, from 70% to 20% of the plateau stress. Specimen density and fabric data were fit to the observed stiffnesses using least squares linear regression. Experimental stiffnesses of the structure in 10 directions were compared to the model to evaluate the accuracy of model predictions. Results & Discussion. The model predicted the stiffness of the structure across all 10 orientations to within 13% absolute error compared to the observed stiffness data, with an R. 2. value of 0.969. The three dimensional stiffness plot formed by the model was similar to the experimental data, displaying an hourglass shape. Our model is the first to predict the anisotropic stiffness of stochastic structures and will be highly useful in predicting stiffness of lattice structures and could also be applied to bone to measure anisotropic stiffness. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 150 - 150
1 Feb 2020
Morlock M Dickinson E Sellenschloh K
Full Access

The disadvantage of removing a well-fixed femoral stem are multiple (operating time, risk of fracture, bone and blood loss, recovery time and post-op complications. Ceramic heads with titanium adapter sleeves (e.g. BIOLOX®OPTION, Ceramtec) are a possibility for putting a new ceramic head on slightly damaged used tapers. ‘Intolerable’ taper damages even for this solution are qualitatively specified by the manufacturers. The aim of this study was to determine the fracture strength of ceramic heads with adapter sleeves on stem tapers with such defined damage patterns. Pristine stem tapers (Ti-6Al-4V, 12/14) were damaged to represent the four major stem taper damage patterns specified by the manufacturers: . -. ‘Truncated’: Removal of 12.5% of the circumference along the entire length of the stem taper at a uniform depth of 0.5mm parallel to the taper slope. -. ‘Slanted’: Removal of 33.3% of the proximal diameter perimeter with decreasing damage down to 3.7mm from the proximal taper end. -. ‘Cut’: Removal of the proximal 25% (4mm) of the stem taper. -. ‘Scratched’: Stem tapers from a previous ceramic fracture test study with a variety of scratches and crushing around the upper taper edge from multiple ceramic head fractures. -. The ‘Control’ group consisted of three pristine tapers left undamaged. BIOLOX®OPTION heads (Ø 32mm, length M) with Ti adapter sleeves were assembled to the damaged stem tapers and subjected to ISO7206-10 ultimate compression strength testing. The forces required to fracture the head were high and caused complete destruction of the ceramic heads in all cases. The ‘Truncated’ group showed the lowest values (136kN ± 4.37kN; Fig. 3). Forces were higher and similar for the ‘Cut’ (170kN ± 8.89kN), ‘Control’ (171.8 ± 16.5kN) and ‘Slanted’ (173kN ± 21.9kN) groups, the ‘Scratched’ group showed slightly higher values (193kN ± 11.9kN). The Ti adapter sleeves were plastically deformed but did not fail catastrophically. The present study suggests that manufacturer's recommendations for removal of a well fixed femoral stem could be narrowed down to the ‘Truncated’ condition. Even this might not be necessary since the fracture load is still substantially higher than the ASTM standard requires. Surgeons should consider to keep stems with larger taper damages as previously thought and spare the patient from stem revision. The greatest reservation regarding adapter sleeves is the introduction of the new metal-on-metal interface between stem and sleeve, which could possibly facilitate fretting-corrosion, which is presently one of the major concerns for modular junctions (3). Clinically such problems have not been reported yet. Ongoing FE-simulations are performed to investigate whether micromotions between stem and head taper are altered by the investigated damages