Decreasing the bulk weight without losing the biomechanical properties of commercial pure titanium (Cp-Ti) medical implants is now possible by using Laser Powder Bed Fusion (L-PBF) technology. Gyroid lattice structures that have precious mechanical and biological advantages because of similarity to trabecular bone. The aim of the study was to design and develop L-PBF process parameter optimization for manufacturing gyroid lattice Cp-Ti structures. The cleaning process was then optimized to remove the non-melted powder from the gyroid surface without mechanical loss. Gyroid cubic designs were created with various relative densities by nTopology. L-PBF process parameter optimization was progressed using with Cp-Ti (EOS TiCP Grade2) powder in the EOS M290 machine to achieve parts that have almost full dense and dimensional accuracy. The metallography method was made for density. Dimensional accuracy at gyroid wall thicknesses was investigated between designed and manufactured via stereomicroscope, also mechanical tests were applied with real time experiment and numerical analysis (ANSYS). Mass loss and strut thickness loss were investigated for chemical etching cleaning process. Gyroid parts had 99,5% density. High dimensional accuracy was achieved during L-PBF process parameters optimization. Final L-PBF parameters gave the highest 19% elongation and 427 MPa yield strength values at tensile test. Mechanical properties of gyroid were controlled with changing relative density. A minute chemical etching provided to remove non-melted powders.
A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material
Type-2 Diabetic (T2D) patients experience up to a 3-fold increase in bone fracture risk[1]. Paradoxically, T2D-patients have a normal or increased bone mineral density when compared to non-diabetic patients. This implies that T2D has a deleterious effect on bone quality, whereby the intrinsic material properties of the bone matrix are altered. Creating clinical challenges as current diagnostic techniques are unable to accurately predict the fracture probability in T2D-patients. To date, the relationship between cyclic fatigue loading, mechanical properties and microdamage accumulation of T2D-bone tissue has not yet been examined and thus our objective is to investigate this relationship. Ethically approved femoral heads were obtained from patients, with (n=8) and without (n=8) T2D. To obtain the mechanical properties of the sample, one core underwent a monotonic
Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor to maintain cellular redox homeostasis, but is also affecting bone metabolism. As the association between Nrf2 and osteoporosis in elderly females is not fully elucidated, our aim was to shed light on the potential contribution of Nrf2 to the development of age-dependent osteoporosis using a mouse model. Female wild-type (WT, n=18) and Nrf2-knockout (KO, n=12) mice were sacrificed at different ages (12 weeks=young mature adult, and 90 weeks=old), morphological cortical and trabecular properties of femoral bone analyzed by micro-computed tomography (µCT), and compared to histochemistry. Mechanical properties were derived from quasi-static
Abstract. Decellularised porcine superflexor tendon (pSFT) provides an off-the-shelf, cost-efficient option for ACL reconstruction (ACLR). During decellularisation, phosphate buffered saline (PBS) is used for washing out cytotoxic solutes and reagents, maintaining tissue hydration. It has been shown to increase water content in tendon, swelling the tissue reducing mechanical properties. End stage PBS washes in the standard protocol were substituted with alternative solutions to study tissue swelling and its impact on the mechanical behaviour and matrix composition of pSFTs. 25%, 100% Ringers and physiological saline test groups were used (n=6 for all groups). pSFTs were subject to tensile and confined
Abstract. Introduction. Bone grafts are utilised in a range of surgical procedures, from joint replacements to treatment of bone loss resulting from cancer. Decellularised allograft bone is a regenerative, biocompatible and immunologically safe potential source of transplant bone. Objectives. To compare the structural and biomechanical parameters of decellularised and unprocessed (cellular) trabecular bone from the human femoral head (FH) and tibial plateau (TP). Methods. Bone pins were harvested from 10 FHs and 11 TPs (27, 34 respectively). Pins were decellularised (0.1% w/v sodium dodecyl sulphate) or retained as cellular controls. QA testing was carried out to assess protocol efficacy (total DNA and histological analysis). Cellular and decellularised FH (n=7) and TP (n=10) were uCT scanned. Material density (MD); apparent density (BV/TV); trabecular connectivity; trabecular number; trabecular thickness (Tb-t) and trabecular spacing were measured. Pins were then
Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by
Introduction and Objective. Local cartilage defects in the knee are painful and mostly followed by arthritis. In order to avoid impaired mobility, the osteochondral defect might be bridged by a synthetic compound material: An osteoconductive titanium foam as an anchoring material in the subchondral bone and an infiltrated polymer as gliding material in contact with the surrounding natural cartilage. Materials and Methods. Titanium foam cylinders (Ø38 mm) with porosities ranging from 57% to 77% were produced by powder metallurgy with two different grain sizes of the space holder (fine: 340 ± 110 μm, coarse: 530 ± 160 μm). The sintered titanium foam cylinders were infiltrated with UHMWPE powder on one end and UHMWPE bulk at the other end, at two different temperatures (160 °C, 200 °C), using a pressure of 20 MPa for 15 minutes. Smaller cylinders (Ø16 mm) were retrieved from the compound material by water jet cutting. The infiltration depths were determined by optical microscopy. The anchoring of the UHMWPE was measured by a shear test and the mechanical properties of the titanium foam were verified by a subsequent
Introduction. A clinical case of catastrophic ring failure in a 13 year old autistic overweight patient during treatment for tibial lengthening and deformity using a Taylor Spatial Frame is reported. Ring failure was noted during the later stages of bone healing and the frame was removed. The clinical outcome was not affected by the catastrophic ring failure. The photograph of the deformed ring is presented below:. Materials and Methods. The patient's notes and X-rays were reviewed and a macroscopic examination of the deformed ring was performed. Mechanical tests of different Taylor Spatial frame constructs were performed in an attempt to simulate the deformity that was clinically observed. Different constructs of TSF of different ring sizes were fixed to polyurethane cylinders simulating bone, were mechanically tested to failure and load/deflection curves were produced. Results. Macroscopically the ring looked otherwise normal. Gradual mechanical
Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days.Aims
Methods
Abstract. Objectives. Assess and characterise the suitability of a novel silk reinforced biphasic 3D printed scaffold for osteochondral tissue regeneration. Methods. Biphasic hybrid scaffolds consisted of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene terephthalate)(PEGT/PBT) scaffold frame work (pore size 0.75mm), which has been infilled with a cast and freeze dried porous silk scaffold (5×5×2mm. 3. ), in addition to a seamless silk top layer (1mm). Silk scaffolds alone were used as controls. Both the biphasic and control scaffolds were characterised via uniaxial
Abstract. Objectives. This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups. Methods. 7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically
Great strides have been made in the early detection and treatment of cancer which is resulting in improved survivability and more Canadians living with cancer. Approximately 80% of primary breast, lung, and prostate cancers metastasize to the spine. Poly-methyl methacrylate (PMMA) bone cement is one of the most commonly used bone substitutes in spine surgery. In clinical practice it can be loaded with various drugs, such as antibiotics or chemotheraputic drugs, as a means of local drug delivery. However, studies have shown that drugs loaded into PMMA cement tend to release in small bursts in the first 48–72 hours, and the remaining drug is trapped without any significant release over time. The objective of this study is to develop a nanoparticle-functionalized PMMA cement for use as a sustained doxorubicin delivery device. We hypothesize that PMMA cement containing mesoporous silica nanoparticles will release more doxorubicin than regular PMMA. High viscosity SmartSet ™ PMMA cement by DePuy Synthes was used in this study. The experimental group consisted of 3 replicates each containing 0.24 g of mesoporous silica nanoparticles, 1.76 g of cement powder, 1ml of liquid cement monomer and 1 mg of doxorubicin. The control group consisted 3 replicates each containing 2.0 g of cement powder, 1ml of liquid cement monomer and 1 mg of doxorubicin. The experimental group contained an average of 8.18 ± 0.008 % (W/W) mesoporous silica nanoparticles. Each replicate was casted into a cylindrical block and incubated in a PBS solution which was changed at predetermined intervals for 45 days. The concentration of eluted doxorubicin in each solution was measured using a florescent plate reader. The mechanical properties of cement were assessed by unconfined
Introduction. The ability to create patient-specific implants (PSI) at the point-of-care has become a desire for clinicians wanting to provide affordable and customized treatment. While some hospitals have already adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments, recent innovations have allowed for the printing of high-temperature implantable polymers including polyetheretherketone (PEEK). With interest in FFF PEEK implants growing, it is important to identify methods for printing favorable implant characteristics such as porosity for osseointegration. In this study, we assess the effect of porous geometry on the cell response and mechanical properties for FFF-printed porous PEEK. We also demonstrate the ability to design and print customized porous implants, specifically for a sheep tibial segmental defect model, based on CT images and using the geometry of triply periodic minimal surfaces (TPMS). Methods. Three porous constructs – a rectilinear pattern and gyroid/diamond TPMSs – were designed to mimic trabecular bone morphology and manufactured via PEEK FFF. TPMSs were designed by altering their respective equation approximations to achieve desired porous characteristics, and the meshes were solidified and shaped using a CAD workflow. Printed samples were mCT scanned to determine the resulting pore size and porosity, then seeded with pre-osteoblast cells for 7 and 14 days. Cell proliferation and alkaline phosphatase activity (ALP) were evaluated, and the samples were imaged via SEM. The structures were
Introduction. The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear bone biomechanics that influences implant fixation. Methods. Mechanical testing of human tibial trabecular bone was done under uniaxial and confined compression configurations. We examined 62 human trabecular bone samples taken from 8 different cadaveric tibiae to obtain all the required parameters defining the CFM, dependent on local bone mineral density (BMD). The derived constitutive rule was subsequently applied using an in-house subroutine to the FE models of the bone specimens, to compare the model predictions against the experimental results. Results. The crushable foam model provided an accurate simulation of the experimental
Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the glenohumeral joint. Secondary screw perforation is a complex and not yet fully understood process. Biomechanical testing and finite element (FE) analysis are expected to help understand the importance of various risk factors. Validated FE simulations could be used to predict perforation risk. This study aimed to (1) develop an experimental model for single screw perforation in the humeral head and (2) evaluate and compare the ability of bone density measures and FE simulations to predict the experimental findings. Screw perforation was investigated experimentally via quasi-static ramped
Physical examination is critical to formation of a differential diagnosis in patients with ulnar-sided wrist pain. Although the specificity and sensitivity of some of those tests have been reported in the literature, the prevalence of positive findings of those provocative maneuvers has not been reported. The aim of the study is to find the prevalence of positive findings of the most commonly performed tests for ulnar sided wrist pain in a population presenting to UE surgeon clinics, and to correlate those findings with wrist arthroscopy findings. Patients with ulnar sided wrist pain were identified from a prospective database of patients presented with wrist pain from September 2014. Prevalence of positive findings for the following tests were gathered: ECU synergy test, ECU instability test (Ice cream and Fly Swatter), Lunotriquetral ballottement, Kleinman shear, triquetrum tenderness, triquetrum
The zonal organization of articular cartilage is crucial in providing the tissue with mechanical properties to withstand compression and shearing force. Current treatments available for articular cartilage injury are not able to restore the hierarchically organized architecture of the tissue. Implantation of zonal chondrocyte as a multilayer tissue construct could overcome the limitation of current treatments. However, it is impeded by the lack of efficient zonal chondrocyte isolation protocol and dedifferentiation of chondrocytes during expansion on tissue culture plate (TCP). This study aims to develop a protocol to produce an adequate number of high-quality zonal chondrocytes for clinical application via size-based zonal chondrocyte separation using inertial spiral microchannel device and expansion under dynamic microcarrier culture. Full thickness (FT) chondrocytes isolated from porcine femoral condyle cartilage were subjected to two serial of size-based sorting into three subpopulations of different cell sizes, namely small (S1), medium (S2), and large (S3) chondrocytes. Zonal phenotype of the three subpopulations was characterised. To verify the benefit of stratified zonal chondrocyte implantation in the articular cartilage regeneration, a bilayer hydrogel construct composed of S1 chondrocytes overlaying a mixture of S2 and S3 (S2S3) chondrocytes was delivered to the rat osteochondral defect model. For chondrocyte expansion, two dynamic microcarrier cultures, sort-before-expansion and sort-after-expansion, which involved expansion after or before zonal cells sorting, were studied to identify the best sort-expansion strategy. Size-sorted zonal chondrocytes showed zone-specific characteristics in qRT-PCR with a high level of PRG4 expression in S1 and high level of aggrecan, Type II and IX collagen expression in S2 and S3. Cartilage reformation capability of sorted zonal chondrocytes in three-dimensional fibrin hydrogel showed a similar trend in qRT-PCR, histology, extracellular matrix protein quantification and mechanical
Introduction. Integrating additively manufactured structures, such as porous lattices into implants has numerous potential benefits, such as custom mechanical properties, porosity for osseointegration/fluid flow as well as improved fixation features. Component anisotropic stiffness can be controlled through varying density and lattice orientation. This is useful due to the influence of load on bone remodelling. Matching implant and bone anisotropy/stiffness may help reduce problems such as stress shielding and prevent implant loosening. It is therefore beneficial to be able to design AM parts with a desired anisotropic stiffness. In this study we present a method that predicts the anisotropic stiffness of an additively manufactured lattice structure from its CAD data, and validate this model with experimental testing. The model predicts anisotropic stiffness in terms of density (ρ), fabric (M) and fabric eigen values (m) and is matched to stiffness data of the structure in 3 principal directions, based on an orthotropic assumption. This model was described in terms of 10 constants and had the form shown in Equation 1. Eq.1. S. =. ∑. i. ,. j. =. 1. . . . . i. ,. j. =. 3. λ. (. i. ,. j. ). ρ. k. m. (. i. ). 1. (. i. ). m. (. j. ). 1. (. i. ). |. M. i. M. j. '. |. 2. Methods. A stochastic line structure was formed in CAD by joining pseudo-random points generated using the Poisson-disk method Lines at an angle lower than 30° to the x-y plane removed to allow for AM manufacturing. Lines were converted to struts with 330 µm diameter. Second order fabric tensors were determined from CAD files of the AM specimens using the mean intercept length (MIL), the gold standard for determining a measure of the ‘average orientation’ of material within trabecular bone structures. 10 × 10 × 12 mm specimens of the CAD model were manufactured on a Renishaw AM250 powder bed fusion machine. The structure was built in 10 different orientations to enable stiffness measurement in 10 different directions (n=5 for each direction).
The disadvantage of removing a well-fixed femoral stem are multiple (operating time, risk of fracture, bone and blood loss, recovery time and post-op complications. Ceramic heads with titanium adapter sleeves (e.g. BIOLOX®OPTION, Ceramtec) are a possibility for putting a new ceramic head on slightly damaged used tapers. ‘Intolerable’ taper damages even for this solution are qualitatively specified by the manufacturers. The aim of this study was to determine the fracture strength of ceramic heads with adapter sleeves on stem tapers with such defined damage patterns. Pristine stem tapers (Ti-6Al-4V, 12/14) were damaged to represent the four major stem taper damage patterns specified by the manufacturers:
. -. ‘Truncated’: Removal of 12.5% of the circumference along the entire length of the stem taper at a uniform depth of 0.5mm parallel to the taper slope. -. ‘Slanted’: Removal of 33.3% of the proximal diameter perimeter with decreasing damage down to 3.7mm from the proximal taper end. -. ‘Cut’: Removal of the proximal 25% (4mm) of the stem taper. -. ‘Scratched’: Stem tapers from a previous ceramic fracture test study with a variety of scratches and crushing around the upper taper edge from multiple ceramic head fractures. -. The ‘Control’ group consisted of three pristine tapers left undamaged. BIOLOX®OPTION heads (Ø 32mm, length M) with Ti adapter sleeves were assembled to the damaged stem tapers and subjected to ISO7206-10 ultimate