Introduction. The biomechanical behavior of lumbar spine instrumentation is critical in understanding its efficacy and durability in clinical practice. In this study, we aim to compare the biomechanics of the lumbar spine instrumented with single-level posterior rod and screw systems employing two distinct screw designs: paddle screw versus conventional screw system. Method. A fully cadaveric-validated 3D ligamentous model of the lumbopelvic spine served as the foundation for our
Introduction. A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures. Method. An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A
In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo sheep model. The question arises to whether such a strain sensing system could be used to monitor bone fusion following lumbar interbody fusion surgery, where the intervertebral space is supported by a cage. Therefore, the aim of this study was to test human cadaveric lumbar spines in two states: after a transforaminal lumbar interbody fusion (TLIF) procedure combined with a pedicle-screw-rod-construct (PSR) and subsequently after simulating bone fusion. The study hypothesized that the load on the posterior instrumentation decreases as the segment stiffens due to simulated fusion. A TLIF procedure with PSR was performed on eight human cadaveric spines at level L4-L5. Strain sensors were attached bilaterally to the rods to derive implant load changes during unconstrained flexion-extension (FE), lateral bending (LB) and axial rotation (AR) loads up to ±7.5Nm. The specimens were retested after simulating bone fusion between vertebrae L4-L5. In addition, the range of motion (ROM) was measured during each loading mode.Introduction
Method
Treatment strategies for irreparable Massive Rotator Cuff Tears (MRCTs) are debatable, especially for younger, active patients. Superior Capsular Reconstruction (SCR) acts as a static stabilizer, while Lower Trapezius Transfer (LTT) serves as a dynamic stabilizer. This study compares the biomechanical effectiveness of SCR and LTT, hypothesizing that their combination will enhance shoulder kinematics. Eight human shoulders from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement.Introduction
Methods
Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM. This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.Aims
Methods
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
This study aims to evaluate the impact of metabolic syndrome in the setting of obesity on in-hospital outcomes and resource use after total joint replacement (TJR). A retrospective analysis was conducted using the National Inpatient Sample from 2006 to the third quarter of 2015. Discharges representing patients aged 40 years and older with obesity (BMI > 30 kg/m2) who underwent primary TJR were included. Patients were stratified into two groups with and without metabolic syndrome. The inverse probability of treatment weighting (IPTW) method was used to balance covariates.Aims
Methods
We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach. We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography.Aims
Methods
The October 2024 Children’s orthopaedics Roundup360 looks at: Cost-effectiveness analysis of soft bandage and immediate discharge versus rigid immobilization in children with distal radius torus fractures: the FORCE trial; Percutaneous Achilles tendon tenotomy in clubfoot with a blade or a needle: a single-centre randomized controlled noninferiority trial; Treatment of hip displacement in children with cerebral palsy: a five-year comparison of proximal femoral osteotomy and combined femoral-pelvic osteotomy in 163 children; The Core outcome Clubfoot (CoCo) study: relapse, with poorer clinical and quality of life outcomes, affects 37% of idiopathic clubfoot patients; Retention versus removal of epiphyseal screws in paediatric distal tibial fractures: no significant impact on outcomes; Predicting the resolution of residual acetabular dysplasia after brace treatment in infant DDH; Low prevalence of acetabular dysplasia following treatment for neonatal hip instability: a long-term study; How best to distract the patient?.
Two-stage exchange arthroplasty is traditionally used to treat periprosthetic hip infection. Nevertheless, particularly in high-risk patients, there has been increased attention towards alternatives such as 1.5-stage exchange arthroplasty which takes place in one surgery. Therefore, we sought to compare (1) operative time, length-of-stay (LOS), transfusions, (2) causative organism identification and polymicrobial infection rates, (3) re-revision rates and re-revision reasons, (4) mortality, and determine (5) independent predictors of re-revision. Retrospective chart review of 71 patients who underwent either 1.5- (n=38) or 2-stage (n=33) exchange hip arthroplasty at a single institution (03/2019-05/2023). Demographics, surgical, inpatient, and infection characteristics were noted. Main outcomes evaluated were re-revision rates, re-revision reasons, mortality, and cause of death. Independent predictors of re-revision were assessed utilizing logistic regression. Mean follow: 675 days (range, 23–1,715). Demographics were not significantly different except for a higher proportion of 1.5-stage patients classified as American-Society-of-Anesthesiologists (ASA) status 3 or 4 (84.2 vs. 48.5%, p=0.002). Length of follow-up was significantly longer in the 2-stage group (924.4 vs. 458 days, p<0.001) as well as operative time (506 vs. 271 minutes, p<0.001). In the 1.5-stage group, there was a higher proportion of polymicrobial infections (23.7 vs. 3.0%, p=0.016), re-revision rates (28.9 vs. 9.1%, p=0.042) and periprosthetic infections as a cause of revision (90.9 vs. 0%, p=0.007). Mortality rates were not significantly different, and no patient died for causes related to infection. Type of surgery (1.5-stage vs. 2-stage) was the only independent predictor of re-revision (odds-ratio 4.0, 95% confidence-interval 1.02–16.16, p=0.046). Our data suggests that patients who undergo 1.5-stage exchange arthroplasty have a significantly higher re-revision rate (mostly due to infection) when compared to 2-stage patients. We acknowledge potential benefits of the 1.5-stage strategy, especially in high-risk patients since it involves single surgery. However, higher re-revision rates must be considered when counseling patients.
Kinematic variables have been identified as potential biomarkers for low back pain patients; however, an in-depth comparison between chronic (n=22), acute (n=15), and healthy controls (n=136) has not been done. This retrospective data analysis compared intervertebral lumbar motion parameters, angular range of motion, translation, maximum disc height, motion share inequality (MSI) and variability (MSV), and laxity, between these groups. Kinematic parameters were determined using video tracking techniques utilising quantitative fluoroscopy (QF), during both weight-bearing and recumbent controlled sagittal bending tasks. Data was analysed for normality, and appropriate statistical tests were applied to determine differences between groups. There were no significant differences between the groups for age, height, weight and sex. Whilst few differences were found between acute and healthy groups, differences were shown between both chronic and healthy, and acute and chronic groups for all six parameters. Of particular note were examples of differences in the motion share parameters between the acute and chronic populations, with an increased MSI in the chronic group during recumbent flexion, and MSV during recumbent extension, and inversely an increase in MSV in the acute group during weight-bearing flexion.Study purpose and background
Methods and results
The August 2024 Hip & Pelvis Roundup360 looks at: Understanding perceived leg length discrepancy post-total hip arthroplasty: the role of pelvic obliquity; Influence of femoral stem design on revision rates in total hip arthroplasty; Outcomes of arthroscopic labral treatment of femoroacetabular impingement in adolescents; Characteristics and quality of online searches for direct anterior versus posterior approach for total hip arthroplasty; Rapid return to braking after anterior and posterior approach total hip arthroplasty; How much protection does a collar provide?; Timing matters: reducing infection risk in total hip arthroplasty with corticosteroid injection intervals; Identifying pain recovery patterns in total hip arthroplasty using PROMIS data.
Aims. The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a
The primary aim of this study was to assess the feasibility of recruiting and retaining patients to a patient-blinded randomized controlled trial comparing corticosteroid injection (CSI) to autologous protein solution (APS) injection for the treatment of subacromial shoulder pain in a community care setting. The study focused on recruitment rates and retention of participants throughout, and collected data on the interventions’ safety and efficacy. Participants were recruited from two community musculoskeletal treatment centres in the UK. Patients were eligible if aged 18 years or older, and had a clinical diagnosis of subacromial impingement syndrome which the treating clinician thought was suitable for treatment with a subacromial injection. Consenting patients were randomly allocated 1:1 to a patient-blinded subacromial injection of CSI (standard care) or APS. The primary outcome measures of this study relate to rates of recruitment, retention, and compliance with intervention and follow-up to determine feasibility. Secondary outcome measures relate to the safety and efficacy of the interventions.Aims
Methods
The June 2024 Trauma Roundup. 360. looks at: Skin antisepsis before surgical fixation of limb fractures;
This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry.Aims
Methods
As patient data continues to grow, the importance of efficient and precise analysis cannot be overstated. The employment of Generative Artificial Intelligence (AI), specifically Chat GPT-4, in the realm of medical data interpretation has been on the rise. However, its effectiveness in comparison to manual data analysis has been insufficiently investigated. This quality improvement project aimed to evaluate the accuracy and time-efficiency of Generative AI (GPT-4) against manual data interpretation within extensive datasets pertaining to patients with orthopaedic injuries. A dataset, containing details of 6,562 orthopaedic trauma patients admitted to a district general hospital over a span of two years, was reviewed. Two researchers operated independently: one utilised GPT-4 for insights via prompts, while the other manually examined the identical dataset employing Microsoft Excel and IBM® SPSS® software. Both were blinded on each other's procedures and outcomes. Each researcher answered 20 questions based on the dataset including injury details, age groups, injury specifics, activity trends and the duration taken to assess the data. Upon comparison, both GPT-4 and the manual researcher achieved consistent results for 19 out of the 20 questions (95% accuracy). After a subsequent review and refined prompts (prompt engineering) to GPT-4, the answer to the final question aligned with the manual researcher's findings. GPT-4 required just 30 minutes, a stark contrast to the manual researcher's 9-hour analytical duration. This quality improvement project emphasises the transformative potential of Generative AI in the domain of medical data analysis. GPT-4 not only paralleled the accuracy of manual analysis but also achieved this in significantly less time. For optimal accurate results, data analysis by AI can be enhanced through human oversight. Adopting AI-driven approaches, particularly in orthopaedic data interpretation, can enhance efficiency and ultimately improve patient care. We recommend future investigations on large and more varied datasets to reaffirm these outcomes.
The purpose of this study was to assess the success rate and functional outcomes of bone grafting for periprosthetic bone cysts following total ankle arthroplasty (TAA). Additionally, we evaluated the rate of graft incorporation and identified associated predisposing factors using CT scan. We reviewed a total of 37 ankles (34 patients) that had undergone bone grafting for periprosthetic bone cysts. A CT scan was performed one year after bone grafting to check the status of graft incorporation. For accurate analysis of cyst volumes and their postoperative changes, 3D-reconstructed CT scan processed with 3D software was used. For functional outcomes, variables such as the Ankle Osteoarthritis Scale score and the visual analogue scale for pain were measured.Aims
Methods
There are limited long-term studies reporting on outcomes of the Zimmer Modular Revision (ZMR) stem, and concerns remain regarding failure. Our primary aim was to determine long-term survival free from all-cause revision and stem-related failure for this modular revision stem in revision total hip arthroplasty (THA). Secondary aims included evaluating radiological and functional outcomes. We retrospectively identified all patients in our institutional database who underwent revision THA using the ZMR system from January 2000 to December 2007. We included 106 patients (108 hips) with a mean follow-up of 14.5 years (2.3 to 22.3). Mean patient age was 69.2 years (37.0 to 89.4), and 51.9% were female (n = 55). Indications for index revision included aseptic loosening (73.1%), infection (16.7%), fracture (9.3%), and stem fracture (0.9%). Kaplan-Meier analysis was used to determine the all-cause and stem-related failure revision-free survival. At most recent follow-up, Oxford Hip Scores (OHS) were collected, and radiological stem stability was determined using the Engh classification.Aims
Methods