Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.Aims
Methods
Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training. Methods. The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the
Introduction. Excessive standing posterior pelvic tilt (PT), lumbar spine stiffness, low pelvic Incidence (PI), and severe sagittal spinal deformity (SSD) have been linked to increased dislocation rates. We aimed to compare the prevalence of these 4 parameters in unstable and stable primary Total Hip Arthroplasty (THA) patients. Methods. In this retrospective cohort study, 40 patients with instability following primary THA for osteoarthritis were referred for functional analysis. All patients received lateral X-rays in standing and flexed seated positions to assess functional pelvic tilt and lumbar lordosis (LL). Computed tomography scans were used to measure pelvic incidence and
Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement. Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. CT scans of each cadaver were imported in an imaging software. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. The offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs. The CT analysis revealed that the original orientation (inclination/anteversion) of the shells implanted in 3 cadavers were as follows: Left1: 44.7°/23.3°, Right1: 41.7°/33.8°, Left2: 40/17, Right2: 31.7/23.5, Left3: 33/2908, Right3: 46.7/6.3. For the offset center shells, the shell to cable distance in all the above cases were positive indicating that there was clearance between the shells and psoas. For the hemispherical shells, in 3 out of 6 cases, the distance was negative indicating impingement of psoas. With the virtual implantation of both shell designs at orientations 40°/10°, 40°/20°, 40°/30° we found that greater anteversion helped decrease psoas impingement in both shell designs. When we analyzed the influence of inclination angle on psoas impingement by comparing wire distances for three orientations (30°/20°, 40°/20°, 50°/20°), we found that the effect was less pronounced. Further analysis comparing the offset head center shell to the conventional hemispherical shell revealed that the offset design was favored (greater clearance between the shell and the wire) in 17 out of 18 cases when the effect of anteversion was considered and in 15 out of 18 cases when the effect of inclinations was considered. Our results indicate that psoas impingement is related to both cup position and implant geometry. For an oversized jumbo cup, psoas impingement is reduced by greater anteversion while cup inclination has little effect. An offset head center cup with an anterior recess was effective in reducing psoas impingement in comparison to a conventional hemispherical geometry. In conclusion, adequate anteversion is important to avoid psoas impingement with jumbo acetabular shells and an implant with an anterior recess may further mitigate the risk of psoas impingement.
Introduction & aims. Apparently well-orientated total hip replacements (THR) can still fail due to functional component malalignment. Previously defined “safe zones” are not appropriate for all patients as they do not consider an individual's spinopelvic mobility. The Optimized Positioning System, OPS. TM. (Corin, UK), comprises preoperative planning based on a patient-specific dynamic analysis, and patient-specific instrumentation for delivery of the target component alignment. The aim of this study was to determine the early revision rate from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) for THRs implanted using OPS. TM. . Method. Between January 4. th. 2016 and December 20. st. 2017, a consecutive series of 841 OPS. TM. cementless total hip replacements were implanted using a Trinity acetabular cup (Corin, UK) with either a TriFit TS stem (98%) or a non-collared MetaFix stem (2%). 502 (59%) procedures were performed through a posterior approach, and 355 (41%) using the direct superior approach. Mean age was 64 (range; 27 to 92) and 51% were female. At a mean follow-up of 15 months (range; 3 to 27), the complete list of 857 patients was sent to the AOANJRR for analysis. Results. There were 5 revisions:
. a periprosthetic femoral fracture at 1-month post-op in a 70F. a ceramic head fracture at 12-months post-op in a 59M. a femoral stem loosening at 7-months post-op in a 58M. a femoral stem loosening at 16-months post-op in a 64M. an anterior dislocation in a 53M, that was revised 9 days after the primary procedure. CT analysis, prior to revision surgery, revealed
Introduction. Most of studies on Total Hip Arthroplasty (THA) are focused on
Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying
Background. Virtual Reality (VR) uses headsets and motion-tracked controllers so surgeons can perform simulated total hip arthroplasty (THA) in a fully-immersive, interactive 3D operating theatre. The aim of this study was to investigate the effect of laboratory-based VR training on the ability of surgical trainees to perform direct anterior approach THA on cadavers. Methods. Eighteen surgical trainees (CT1-ST4) with no prior experience of direct anterior approach (DAA) THA completed an intensive 1-day course (lectures, dry-bone workshops and technique demonstrations). They were randomised to either a 5-week protocol of VR simulator training or conventional preparation (operation manuals and observation of real surgery). Trainees performed DAA-THA on cadaveric hips, assisted by a passive scrub nurse and surgical assistant. Performance was measured on the Intercollegiate Surgical Curriculum Project (ISCP) procedure-based assessment (PBA), on a 9-point global summary score (Table 1). This was independently assessed by 2 hip surgeons blinded to group allocation. The secondary outcome measure was error in cup orientation from a predefined target (40° inclination and 20° anteversion). Results. Surgeons trained using VR performed a cadaveric DAA-THA significantly better than those using conventional preparation, as assessed by
Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement. Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. The relatively large shell sizes were chosen to simulate THA revision cases. At least one fixation screw was used with each shell. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. Following the procedure, CT scans were performed on each cadaver. The CT images were imported in an imaging software for further analysis. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. To compare the offset head center shell to a conventional hemispherical shell in the same orientation, the offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. enabled us to assess the relationship between the conventional shells and the cable. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs.Introduction
Materials
Background. Complications such as dislocations, impingement and early wear following total hip arthroplasty (THA) increase with acetabular cup implant malorientation. These errors are more common with low-volume centres or in novice hands. Currently, this skill is most commonly taught during real surgery with an expert trainer, but simulated training may offer a safer and more accessible solution. This study investigated if a novel MicronTracker® enhanced Microsoft HoloLens® augmented reality (EAR) headset was as effective as one-on-one expert surgeon (ES) training for teaching novice surgeons hip cup orientation skill. Methods. Twenty-four medical students were randomly assigned to EAR or ES training groups. Participants used a modified sawbone/foam pelvis model for hip cup orientation simulation. A validated EAR headset measured the
Background. Trust in the validity of a measurement tool is critical to its function in both clinical and educational settings. Acetabular cup malposition within total hip arthroplasty (THA) can lead to increased dislocation rates, impingement and increased wear as a result of edge loading. We have developed a THA simulator incorporating a foam/Sawbone pelvis model with a modified Microsoft HoloLens® augmented reality (AR) headset. We aimed to measure the trueness, precision, reliability and reproducibility of this platform for translating spatial measurements of
INTRODUCTION. Acetabular cup malpositioning has been implicated in instability and wear-related complications after total hip arthroplasty. Although computer navigation and robotic assistance have been shown to improve the precision of implant placement, most surgeons use mechanical and visual guides to place acetabular components. Authors have shown that, when using a bean bag positioner, mechanical guides are misleading as they are unable to account for the variability in pelvic orientation during positioning and surgery. However, more rigid patient positioning devices may allow for more accurate free hand cup placement. To our knowledge, no study has assessed the ability of rigid devices to afford surgeons with ideal pelvic positioning throughout surgery. The purpose of this study is to utilize robotic-arm assisted computer navigation to assess the reliability of pelvic position in total hip arthroplasty performed on patients positioned with rigid positioning devices. METHODS. 100 hips (94 patients) prospectively underwent total hip Makoplasty in the lateral decubitus position from the posterior approach; 77 stabilized by universal lateral positioner, and 23 by peg board. After dislocation but prior to reaming, one fellowship trained arthroplasty surgeon manually placed the robotic arm parallel to both the longitudinal axis of the patient and the horizontal surface of the operating table, which, if the pelvis were oriented perfectly, would represent 0 degrees of anteversion and 0 degrees of inclination. The CT-templated computer software then generated true values of this perceived zero degrees of anteversion and inclination based on the position of the robot arm registered to a preoperative pelvic CT. Therefore, variations in pelvic positioning are represented by these robotic navigation generated values. To assure the accuracy of robotic measurements, cup anteversion and inclination at times of impaction were recorded and compared to those calculated via the trigonometric ellipse method of Lewinnek on standardized 3 months postoperative X-rays. RESULTS. Mean alteration in anteversion and inclination values were 1.7 degrees (absolute value 5.3 degrees, range −20 – 20 degrees) and 1.6 degrees (absolute value 2.6 degrees, range −8 – 10 degrees) respectively. 22% of anteversion values were altered by >10 degrees; 41% by > 5 degrees. There was no difference between positioners (p=0.36) and regression analysis revealed that anteversion differences were correlated with BMI (p=0.02). Robotic navigation acetabular cup anteversion (mean 21.8 degrees) was not different from postoperative X-ray anteversion (mean 21.9 degrees)(p=0.50), nor was robotic navigation acetabular cup inclination (mean 40.6 degrees) different from postoperative X-ray inclination (mean 40.5 degrees)(p=0.34). DISCUSSION AND CONCLUSION. Rigid pelvic positioning devices present 5 to 20 degrees of variability in
INTRODUCTION. Femoral stem impingement can damage an acetabular liner, create polyethylene wear, and potentially lead to dislocation. To avoid component-to-component impingement, many surgeons aim to align acetabular cups based on the “Safe Zone” proposed by Lewinnek. However, a recent study indicates that the historical target values for cup inclination and anteversion defined by Lewinnek et al. may be useful but should not be considered a safe zone. The purpose of this study was to determine the effect of altering femoral head size on hip range-of-motion (ROM) to impingement. METHODS. Ten healthy subjects were instrumented and asked to perform six motions commonly associated with hip dislocation, including picking up an object, squatting, and low-chair rising. Femur-to-pelvis relative motions were recorded throughout for flexion/extension, abduction/adduction, and internal/external rotation. A previously reported custom, validated hip ROM three-dimensional simulator was utilized. The user imports implant models, and sets parameters for pelvic tilt, stem version, and specific motions as defined by the subjects.
Introduction. Accurate
Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup. One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in inclination 40 and 45°. Combinations of these were also considered. The experimental set-up was applied according to a system previously established by Ramos et al. (2013) in the anatomic position. The femur rotates distally and the Pelvic moves vertically as model changes, such that the same boundary conditions are satisfied. This system allows compensating motions of the
Introduction. Appropriate
Introduction.
Introduction. Accurate and reproducible cup positioning is one the most important technical factors that affects outcomes of total hip arthroplasty (THA). Although Lewinnek's safe zone is the most accepted range for anteversion and abduction angles socket orientation, the effect of fixed lumbosacral spine on pelvic tilt and obliquity is not yet established. Questions:. What is the change in anteversion and abduction angle from standing to sitting in a consecutive cohort of patients undergoing THA?. What is the effect of fixed and flexible spinal deformities on
Introduction. Accurate
INTRODUCTION. Several papers have reported the efficacy of an imageless navigation system in