The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures. Three-dimensional ultrasound imaging may be an option to address the clinical need for a rapid and safe point of care imaging device. The purpose of this research project is to validate the use of mechanically translated 3D-US in CMC OA patients to assess the measurement capabilities of the device in a clinically diverse population in comparison to MRI. Four CMC1-OA patients were scanned using the 3D-US device, which was attached to a Canon Aplio i700 US machine with a 14L5 linear transducer with a 10MHz operating frequency and 58mm. Complimentary MR images were acquired using a 3.0 T MRI system and LT 3D coronal photon dense cube fat suppression sequence was used. The volume of the synovium was segmented from both 3D-US and MR images by two raters and the measured volumes were compared to find volume percent differences. Paired sample t-test were used to determine any statistically significant differences between the volumetric measurements observed by the raters and in the measurements found using MRI vs. 3D-US. Interclass Correlation Coefficients were used to determine inter- and intra-rater reliability. The mean volume percent difference observed between the two raters for the 3D-US and MRI acquired synovial volumes was 1.77% and 4.76%, respectively. The smallest percent difference in volume found between raters was 0.91% and was from an MR image. A paired sample t-test demonstrated that there was no significant difference between the volumetric values observed between MRI and 3D-US. ICC values of 0.99 and 0.98 for 3D-US and MRI respectively, indicate that there was excellent inter-rater reliability between the two raters. A novel application of a 3D-US acquisition device was evaluated using a CMC OA patient population to determine its clinical feasibility and measurement capabilities in comparison to MRI. As this device is compatible with any commercially available ultrasound machine, it increases its accessibility and ease of use, while proving a method for overcoming some of the limitations associated with radiography, MRI, and 2DUS. 3DUS has the potential to provide clinicians with a tool to quantitatively measure and monitor OA progression at the patient's bedside.
Aims. Studies of infant hip development to date have been limited by considering only the changes in appearance of a single ultrasound slice (Graf’s standard plane). We used
The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC).Aims
Methods
The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.Aims
Methods
Introduction. The objective of this study is to assess the use of ultrasound (US) as a radiation free imaging modality to reconstruct three-dimensional knee anatomy. Methods. An OEM US system is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allowing for 3D tracking of probe and femur and tibia. The raw US RF signals are acquired and using real time signal processing, bone boundaries are extracted. Bone boundaries are then combined with the EM sensor information in a 3D point cloud for both femur and tibia. Using a statistical shape model, the patient specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was then conducted for 11 cadavers by comparing the 3D US models to those created using CT scans. Results. The results revealed the US bone models were accurate compared to the CT models (Mean RMS: femur: 1.03±0.15 mm, tibia:1.11± 0.13). Also, femoral landmarking proved to be accurate (transepicondylar axis: 1.07±0.65°, Posterior condylar axis: 0.73±0.41° Distal condylar axis: 1.12±0.89°, Medial AP: 1.39±1.18 mm, Lateral AP: 1.56±1.15 mm, TEA width: 1.2±0.87 mm). Tibial landmarking errors were slightly higher (Posterior slope axis: 2 ±1.19° and Tubercle axis: 1.8±1.37°). The models were then used to evaluate implant sizing as, 90% of the femurs and 60% of the tibias were sized correctly, while the others were off only one size. Discussion. The 3D US bone models were proven to be accurate compared to CT and can be used for preoperative planning.
The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”.Objectives
Methods
Introduction. At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use
Percutaneous fixation of scaphoid fractures has become popular in recent years, mainly due to its reduced complexity compared to open surgical approaches. Fluoroscopy is currently used as guidance for this percutaneous approach, however, as a projective imaging modality, it provides only a 2D view of the complex 3D anatomy of the wrist during surgery, and exposes both patient and physician to harmful X-ray radiation. To avoid these drawbacks,
The standard approach of diagnosing and monitoring scoliosis involves using the Cobb angle from posteroanterior (PA) radiograph. This approach has two key limitations: 1) It involves exposing the patients to ionising radiation during a period of heightened radiosensitivity. 2) The 2D x-ray image is a projection image of a 3D deformity and the Cobb angle represents only lateral rotation. 3DUS would overcome both these limitations. We developed a 3DUS system by combining motion capture technology, a conventional 2D ultrasound scanner and bespoke software. An ex vivo experiment and a pilot clinical study were carried out to demonstrate the system's ability in identifying vertebrae landmarks and quantifying the curvature. For the ex vivo validation, a spine phantom was created by 3D-printing a segmented abdo-pelvis CT scan. The spine phantom was then scanned using 3DUS and the level of agreement in the dimensions measured using 3DUS and CT was assessed. An 11 year old female with adolescent idiopathic scoliosis (AIS) was scanned with 3DUS. The SP co-ordinates were projected on a plane of best-fit to compare the curvature angle from 3DUS with the Cobb angle from the x-ray image. The spinous (SP), transverse processes and the laminae demonstrated high echogenicity and were easily identifiable. The difference between the spine phantom inter-SP dimension measurements made in 3DUS and CT was <2.5%. The PA x-ray of the AIS patient revealed 47° (L4-T11) and 52° (T6-T11) curves. 3DUS was able to represent the deformity in 3D revealing complex curvatures in all planes. The curvature angle from derived from 3DUS for the L4-T11 and T6-T11 curves were 132° (48°) and 125° (55°) respectively. The results of this pilot study demonstrate 3DUS as a promising tool for imaging spine curvature
Introduction. Bony deformities in the hip that cause femoroacetabular impingement (FAI) can be resected in order to delay the onset of osteoarthritis and improve hip range of motion. However, achieving accurate osteoplasty arthroscopically is challenging because the narrow hip joint capsule limits field of view. Recently, image-based navigation using a preoperative plan has been shown to improve the accuracy of femoral bone surfaces following arthroscopic osteoplasty for FAI. The current standard for intraoperative monitoring, 3D x-ray fluoroscopy, is accurate at the initial registration step to within 0.8±0.5mm but involves radiation. Intraoperative
Background. Previously, we demonstrated the effectiveness of phase symmetry (PS) features for segmentation and localisation of bone fractures in
Previously, we demonstrated the effectiveness of phase symmetry (PS) features for segmentation and localisation of bone fractures in
Radiographs are the most common imaging modality used to guide orthopaedic interventions. Ultrasound (US) imaging offers potential advantages for intraoperative imaging by its portability and ability to produce real-time 2D or 3D images without radiation to either the patient or surgical team. Our objective in this study was to determine in a live emergency room setting, if a newly-developed image processing method for 3D US would allow us to accurately extract (reproduce) the surfaces of fractured bones. We obtained both CT scans and US images from consenting patients admitted to our Level 1 Trauma Centre for radius or pelvic fractures clinically requiring a CT scan. All US examinations in this clinical study were performed with a GE Voluson 730 machine with a 3D RSP5-12 transducer (a mechanized probe in which a linear array transducer is swept through an arc range of 20). Dorsal, volar, and radial views were obtained in the case of radial fractures and iliac crest views in the case of pelvic fractures. The bone surfaces on CT were extracted using a thresholding algorithm [1]. Standard, clinical 3D reconstructions were also created using GE Voxtool 4.0.1 to serve as a qualitative comparison. The US images were processed using the phase-processing algorithm described in [2] then registered to the CT images using a manually-supervised anatomical landmark-based rigid registration algorithm. The quality of the resulting surface matching was evaluated by computing the root mean square distance between the two surface representations [2] and by inter-observer agreement of the registered images to the clinical renderings.Purpose
Method
X-ray is the standard method for monitoring fracture healing however it is not ideal; signs of healing are not normally visible on X-ray until around 6–8 weeks post fracture. Ultrasonography allows the detection of both the initial haematoma, usually formed immediately after fracture, and the small calcium deposits laid down between broken bone ends in the first stages of fracture healing. It has been reported that these early indicators of the healing process are visible as early as 1–2 weeks after fracture. We use Freehand
Purpose of study: To compare the medial gastrocnemius (MG) muscle belly length and volume in children with spastic diplegic cerebral palsy (SDCP) with that of normally developing (ND) children, and to assess the effect of gastrocnemius recession (GR) on MG muscle belly length and volume in the SDCP group. Method: The MG muscle belly length and volume at the resting ankle angle were assessed with
Imaging of the musculoskeletal system is vital for delivering optimum treatment particularly in the assessment of fracture healing. X-ray and CT are adequate imaging methods for bone but, soft tissue needs other modalities such as MRI and Ultrasound. We propose the use of Freehand
The cause of intermetatarsal neuromas is unclear even if there is a mechanically induced degenerative neuropathy of the intermetatarsal nerve. Treatment of Morton’s neuroma includes conservative methods such as steroid or local anaesthetic injection, orthotic devices and surgical therapy. Surgical therapy has a reported failure rate of between 7% and 24%, depending on the case histories. Dockery in 1999 and Masala et al. in 2001 presented their results on alcoholisation of Morton’s neuroma. The aim of this study is to prove the reproducibility of the aforementioned procedure and its results. Between December 2001 and March 2004, 30 patients with Morton’s neuroma were examined with US and treated with alcohol injections under US guidance by the same operator. Among these 23 were women and seven men with age ranging between 37 and 70 years. Fifteen patients presented with more than one neuroma in the same foot or in both feet. The standard US was followed by a 3D US in order to extend the diagnosis in treated patients. Alcohol-sclerosing intralesional treatment was performed in 45 neuromas. The treatment consists of an injection cycle (minimum 1, maximum 4), composed of 50% ethyl alcohol (95%) and 50% of a 2% aqueous solution of carbocaine. A total of 90 injections were performed, with an average of two for each neuroma. The patients were examined after the treatment by both authors. On 31 (69%) neuromas, the alcohol-sclerosing intralesional treatment was successful; 14 (31%) neuromas had only a partial improvement and therefore the patients underwent a surgical excision. No procedure-related complications were observed. The results of this study indicate that, even considering the failure rate, compared to surgery the alcoholisation treatment of neuroma under US guidance is a valuable conservative procedure because of its low morbidity and cost-effectiveness. Alcoholisation under US guidance thus could be a useful tool for orthopaedic surgeons in order to determine whether surgical excision is really necessary.