Matrilin-3 is a member of the recently described matrilin family of extracellular matrix proteins containing von Willebrand factor A-like domains. The matrilin-3 subunit can form homotetramers as well as hetero-oligomers together with subunits of matrilin-1 (cartilage matrix protein). It has a restricted tissue distribution and is strongly expressed in growing skeletal tissues. Detailed information on expression and distribution of extracellular matrix proteins is important to understand cartilage function in health and in disease like osteoarthritis.
Matrilin-3 expression was analysed on decalcified normal cartilage/bone sections (N = 5) and decalcified cartilage/ bone sections with minor (N= 10), moderate (N = 10), and severe osteoarthritic lesions (N = 10). Osteoarthritic changes were classified histomorphologically, using the grading system of Mankin. Matrilin-3 expression was investigated by immunohistochemistry, in situ hybridization, Western blot analysis, and quantitative PCR. For immunohistochemistry, a polyclonal antibody against matrilin-3 was used. For Western blot analysis, cartilage extracts were obtained from normal and osteoarthritic samples, partially purified, and separated in SDS poly-acrylamide gelelectrophoreses. After blotting onto nitro-cellulose, matrilin-3 was visualized by incubation with the polyclonal anti-matrilin-3 antibody and chemiluminescence detection. Matrilin-3 -mRNA expression was determined by in situ hybridization using a digoxigenin-labeled anti-sense probe.
Our results indicate that matrilin-3 is a mandatory component of mature articular cartilage with its expression being restricted to chondrocytes from the tangential zone and the upper middle cartilage zone. Osteoarthritic cartilage samples with only moderate morphological osteoarthritic destructions have elevated levels of matrilin-3 mRNA. In parallel, we found an increased deposition of matrilin-3 protein in the cartilage matrix. Matrilin-3 staining was diffusely distributed in the cartilage matrix, with no cellular staining being detectable. In cartilage samples with minor osteoarthritic lesions, matrilin-3 deposition was restricted to the middle zone and to the upper deep zone. A strong correlation was found between enhanced matrilin-3 gene and protein expression and the extent of tissue damage. Sections with severe osteoarthritic destruction showed the highest amount of matrilin-3 mRNA, strong signals in in situ hybridization, and prominent protein deposition in the middle and deep cartilage zone.
We conclude that matrilin-3 is an integral component of human articular cartilage matrix and that the enhanced expression of matrilin-3 in osteoarthritis may be a cellular response to the modified microenvironment in the disease.
Growth factors produced by inflammatory cells and mesenchymal progenitors are required for proper bone regeneration. Signaling pathways activated downstream of these proteins work in concert and synergistically to drive osteoblast and/or
Bone healing outcome is highly dependent on the initial mechanical fracture environment [1]. In vivo, direct bone healing requires absolute stability and an interfragmentary strain (IFS) below 2% [2]. In the majority of cases, however, endochondral ossification is engaged where frequency and amplitude of IFS are key factors. Still, at the cellular level, the influence of those parameters remains unknown. Understanding the regulation of naïve hMSC differentiation is essential for developing effective bone healing strategies. Human bone-marrow-derived MSC (KEK-ZH-NR: 2010–0444/0) were embedded in 8% gelatin methacryol. Samples (5mm Ø x 4mm) were subjected to 0, 10 and 30% compressive strain (5sec compression, 2hrs pause sequence for 14 days) using a multi-well uniaxial bioreactor (RISystem) and in presence of chondro-permissive medium (CP, DMEM HG, 1% NEAA, 10 µM ITS, 50 µg/mL ascorbic acid, and 100 mM Dex). Cell differentiation was assessed by qRT-PCR and histo-/immunohistology staining. Experiments were repeated 5 times with cells from 5 donors in duplicate. ANOVA with Tukey post-hoc correction or Kurskal-Wallis test with Dunn's correction was used. Data showed a strong upregulation of hypertrophic related genes COMP, MMP13 and Type 10 collagen upon stimulation when compared to chondrogenic SOX9, ACAN, Type 2 collagen or to osteoblastic related genes Type 1 Collagen, Runx2. When compared to chondrogenic control medium, cells in CP with or without stimulation showed low proteoglycan synthesis as shown by Safranine-O-green staining. In addition, the cells were significantly larger in 10% and 30% strain compared to control medium with 0% strain. Type 1 and 10 collagens immunostaining showed stronger Coll 10 expression in the samples subjected to strain compared to control. Uniaxial deformation seems to mainly promote hypertrophic-like
Introduction. Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in
Purpose of the study: Monolayer cultures of chondrocytes multiply and rapidly lose their chondrocyte phenotype, limiting their potential for tissue engineering. Mesenchymatous stem cells can preserve their phenotypic characteristics after several monolayer passages, offering a promising alternative for cartilage repair. The purpose of this work was to study the influence of transforming growth factor beta-1 (TGF-beta1) and bone morphogenic protein-2 (BMP2) and/or culture supplements (hyaluronic acid) on matrix synthesis and
Cartilage is a realistic target for tissue engineering given the avascular nature and cellular composition of the tissue. Much of the work in this field has been largely empirical, indicating the need for alternative approaches to the design of cartilage formation protocols. Given the heterogeneity associated with human mesenchymal populations, continuous cell lines may offer an alternative to model and simplify cartilage generation protocols. We therefore exploited the potential of the murine chondrocytic ATDC5 cell line to, i) delineate the process of
Introduction. In vitro expansion of human articular chondrocytes (HACs) is required for cell-based strategies to treat cartilage defects. We have earlier shown that culturing HACs at increased osmolarity (i.e., 380 mOsm), as compared to plasma osmolarity (i.e., 280 mOsm), increases collagen type II (COL2A1) expression in vitro. Our earlier results showed that knockdown of TGF-β2, a prototypic member of the TGF-β superfamily and an accepted key regulator of
Adult chondrocytes experience a hypoxic environment in vivo. Culturing chondrocytes under oxygen tension that more closely resembles the in vivo situation, i.e. hypoxic conditions, has been shown to have positive effects on matrix synthesis. During redifferentiation of expanded chondrocytes, hypoxia increased collagen type II expression. However, the mechanism by which hypoxia enhances redifferentiation is still incompletely elucidated. We employed micro-bioreactor technology to elucidate the contribution of TGF-β superfamily ligands to the
Background. Transcription factor nuclear factor E2p45-related factor 2 (Nrf2) is crucial for controlling the antioxidant response and maintaining cellular redox homeostasis. Binding of Nrf2 to antioxidant response elements (ARE) promotes the expression of anti-oxidative stress enzymes. In osteoblasts, Nrf2 directly interacts with Runx2, a strong transcriptional activator of osteoblast-specific genes. Sox9, a key regulator of
Background. Treatment of cartilage defects requires in vitro expansion of human articular chondrocytes (HACs) for autologous chondrocyte implantation (ACI). During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype (i.e. collagen type II (COL2) expression). This de-differentiation makes them inappropriate for ACI. Physiological osmolarity (i.e. 380 mOsm) improves COL2 expression in vitro, but the underlying reason is unknown. However, an accepted key regulator of
As cartilage has poor intrinsic repair capacity, in vitroexpansion of human articular chondrocytes (HACs) is required for cell-based therapies to treat cartilage pathologies. During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype and de-differentiate, which makes them inappropriate for autologous chondrocyte implantation. It has been shown that physiological osmolarity (i.e. 380 mOsm) increases collagen type II (COL2) expression in vitro, but the underlying molecular mechanism is unknown. Transforming growth factor beta (TGFβ) super family members are accepted key regulators of
To regenerate the complex tissue such as bone-cartilage construct using tissue engineering approaches, controllable differentiation of mesenchymal stem cells (BMSCs) into chondrogenic and osteogenic lineages is crucially important. Although bilayered scaffolds have been investigated in vitro and in vivo, no culture system is available to test BMSCs differentiation into bone and cartilage simultaneously in bilayered scaffolds. This study investigated a defined culture media, which supported osteoblast and
Introduction: Autologous chondrocyte transplantation (ACT) has been shown to be a promising method for restoring hyaline cartilage defects. Since it was first reported by Brittberg et al nine years worth of clinical follow up studies indicate that ACT has provided an excellent outcome in the restoration of hyaline cartilage. As ACT relies on the use of cultured cells and the biosynthetic profile of cultured chondrocytes has been shown to be altered during in vitro expansion, cultivation of chondrocytes for ACT has presented many technical and quality control challenges. Aim: To perform an assessment of the cellular phenotype of cultured chondrocytes, consistent with differentiation of articular hyaline cartilage, to ensure the delivery of ACT for restoration of hyaline cartilage. Methods: Using RT-PCR and flow cytometry analyses, we characterised the cellular phenotype of culture chondrocytes used for ACT. We examined several transcriptional factors, cytokines and matrix proteins necessary for the
Purpose: A major drawback of current cartilage and intervertebral disc tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients express type X collagen (COL10), a marker of late-stage chondrocyte hypertrophy (associated with endochondral ossification). Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) regulate endochondral ossification by inhibiting
Introduction and Aims: There is cumulative evidence that BMP-14 has a role in chondrocyte maturation in endochondral ossification of growth plate. We hypothesise that BMP-14 has a similar role in bone regeneration following fracture. We aim to compare normal versus a gene knock-out mouse to demonstrate histologic, radiographic and biochemical deficiencies in the mouse that lacks the gene for BMP-14. Method: The brachypodism (bp) mouse has a homozygous form (BMP-14 −/−) that does not express BMP-14 and a heterozygous form (BMP-14 +/−) that does. Closed midshaft femur fractures were created and stabilised in eight-week female mice in both types of mice. Mice were euthanised at differing time points and the femurs harvested for DNA, proteoglycan, collagen determinations. Histology was performed with Tri-Chrome staining. Radiographs were taken at each time point to evaluate callus formation. Analysis for all quantitative measures was normalised and statistically evaluated using a two-way ANOVA. Results: Biochemical results show BMP-14 deficient (bp) mice having a five to seven-day delay in attaining peak values of DNA compared with controls. The time-dependent change of cellular proliferation reached significance. Peak values of proteoglycan content were three times less in the bp mouse in the early phase of healing in the bp mouse. Histologically, the BMP-14-deficient animals exhibited a delay in peak area of callus and callus organisation in the regenerating femur fracture. Radiographic analysis shows peak callus area was delayed two weeks, and had a decreased magnitude over that two-week span in the bp mice. Callus was less evident in the bp for time points throughout the study. Conclusion: We have produced evidence in this animal model that deficiency of BMP-14 is associated with a short-term delay in fracture healing. We also can demonstrate that there is a delay in cellular recruitment and
Summary Statement. Wnt/β-catenin gene expression is altered in early osteochondrosis, particularly in chondrocytes surrounding cartilage canals, and may be associated with disease initiation and/or pathogenesis. Introduction. Osteochondrosis (OC) is a disease of articular cartilage development involving abnormal endochondral ossification along the osteochondral junction. Associated etiological factors of OC have included rapid growth rate, biomechanical trauma, abnormal collagen turnover, aberrant paracrine signaling, and altered blood supply involving cartilage canals. Wnt signaling regulates
Summary Statement. Differential expression of canonical and noncanonical Wnt signalling along cartilage canals and osteochondral junctions is dependent on age. Increased gene expression of PTHrP along cartilage canals and Ihh along osteochondral junctions suggests paracrine feedback in articular-epiphyseal cartilage. Introduction. Wnt signaling has been shown to regulate
Chondrogenic differentiation and cartilage homeostasis requires a high cellular translational capacity to meet the demands for cartilaginous extracellular matrix production. Box C/D and H/ACA snoRNAs guide post-transcriptional 2′-O ribose methylation and pseudouridylation of specific ribosomal RNA (rRNA) nucleotides, respectively. How specific rRNA modifications influence rRNA function is poorly documented, but modifications are thought to tune rRNA folding and interaction with ribosomal proteins, which is critical for ribosome function. We hypothesise that chondrocyte translational capacity is supported by snoRNA-mediated post-transcriptional fine-tuning of rRNAs. ATDC5 progenitor cells were differentiated into the chondrogenic lineage, resembling mature and mineralising chondrocytes after 7 or 14 days, respectively. UBF-1 (rRNA transcription factor), fibrillarin (box C/D methyltransferase) and dyskerin (box H/ACA pseudouridylase) expression displayed highest fold induction at day 5/6 in differentiation. Ribosomal RNA content per cell was increased at day 7, but not at day 14 in differentiation. These data suggest that ribosome biogenesis adapts to the
Heterotopic ossi?cation is the abnormal formation of bone in soft tissues and is a frequent complication of hip replacement surgery. Heterotopic ossi?cations are described to develop via endochondral ossification and standard treatment is administration of indomethacin. It is currently unknown how indomethacin influences heterotopic ossi?cation on a molecular level, therefore we aimed to determine whether indomethacin might influence heterotopic ossi?cation via impairing the chondrogenic phase of endochondral ossification. ATDC5, human bone marrow stem cells (hBMSCs) and rabbit periosteal agarose cultures were employed as progenitor cell models; SW1353, human articular chondrocytes and differentiated ATDC5 cells were used as matured chondrocyte cell models. All cells were cultured in the presence of (increasing) concentrations of indomethacin. The action of indomethacin was confirmed by decreased PGE2 levels in all experiments, and was determined by specific PGE2 ELISA. Gene- and protein expression analyses were employed to determine chondrogenic outcome. Progenitor cell models differentiating in the chondrogenic lineage (ATDC5, primary human bone marrow stem cells and ex vivo periosteal agarose cultures) were treated with increasing concentrations of indomethacin and a dose-dependent decrease in gene- and protein expression of chondrogenic and hypertrophic markers as well as decreased glycosaminoglycan content was observed. Even when hypertrophic differentiation was provoked the addition of indomethacin resulted in decreased hypertrophic marker expression. Interestingly, when mature chondrocytes were treated with indomethacin, a clear increase in collagen type 2 expression was observed. Similarly, when ATDC5 cells and bone marrow stem cells were pre-differentiated to obtain a chondrocyte phenotype and indomethacin was added from this time point onwards, low concentrations of indomethacin also resulted in increased chondrogenic differentiation. Indomethacin induces differential effects on in vitro endochondral ossification, depending on the
Introduction: Fibroblast growth factor receptor 3 (FGFR3) is a tyrosine kinase membrane-spanning protein whose function is to regulate