Abstract
Adult chondrocytes experience a hypoxic environment in vivo. Culturing chondrocytes under oxygen tension that more closely resembles the in vivo situation, i.e. hypoxic conditions, has been shown to have positive effects on matrix synthesis. During redifferentiation of expanded chondrocytes, hypoxia increased collagen type II expression. However, the mechanism by which hypoxia enhances redifferentiation is still incompletely elucidated. We employed micro-bioreactor technology to elucidate the contribution of TGF-β superfamily ligands to the chondrocyte differentiation process under hypoxic conditions in vitro.
Dedifferentiated chondrocytes in alginate were cultured for 48 hours under hypoxic (1% pO2) or normoxic (20%) conditions, using specialized bioreactor technology. Gene expression of chondrocyte-specific markers (SOX9, COL2A1, COL1A1, AGC1 and MMP13) as well as established hypoxia-controlled genes (GDF1-, PHD3, HAS2, VEGF, COX2) and components of the TGF-β superfamily signaling pathways were analyzed by qPCR and protein expression after 48 hours in combination with TGF-β superfamily ligand-specific siRNA as well as selected TGF-β superfamily receptor inhibitors.
Hypoxic culture showed robust upregulation of the selected hypoxia-specific marker genes. In addition, well-established chondrocyte-specific markers like SOX9 and collagen type II were upregulated. TGF-β isoforms were selectively upregulated under hypoxia on both mRNA and protein level. In addition, both Activin receptor-like kinases, ALK1 and ALK5, were upregulated under hypoxia, while respective type II and III receptors were unresponsive. The hypoxia-induced COL2 expression was abrogated by TGF-β2 siRNA, as was ALK5 inhibition. Our data strongly indicates that TGF-β superfamily signaling pathways are involved in chondrocyte redifferentiation under low oxygen tension in vitro.