Advertisement for orthosearch.org.uk
Results 1 - 20 of 715
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 78 - 78
1 Dec 2020
Dandois F Taylan O D'hooge J Vandenneucker H Slane L Scheys L
Full Access

In-situ assessment of collateral ligaments strain could be key to improving total knee arthroplasty outcomes by improving the ability of surgeons to properly balance the knee intraoperatively. Ultrasound (US) speckle tracking methods have shown promise in their capability to measure in-situ soft tissue strain in large tendons but prior work has also highlighted the challenges that arise when attempting to translate these approaches to the in-situ assessment of collateral ligaments strain. Therefore, the aim of this project was to develop and validate an US speckle tracking method to specifically assess in-situ strains of both the MCL and LCL. We hypothesize that coefficients of determination (R. 2. ) would be above 0.90 with absolute differences below 0.50% strain for the comparison between US-based and the reference strain, with better results expected for the LCL compared with the MCL. Five cadaveric legs with total knee implants (NH019 2017-02-03) were submitted to a varus (LCL) and valgus (MCL) ramped loading (0 – 40N). Ultrasound radiofrequency (rf) data and reference surface strains data, obtained with 3D digital image correlation (DIC), were collected synchronously. Prior to processing, US data were qualitatively assessed and specimens displaying substantial imaging artefacts were discarded, leaving five LCL and three MCL specimens in the analysis. Ultrasound rf data were processed in Matlab (The MathWorks, Inc., Natick, MA) with a custom-built speckle tracking approach adapted from a method validated on larger tendons and based on normalized cross-correlation. Digital image correlation data were processed with commercial software VIC3D (Correlated Solutions, Inc., Columbia, SC). To optimize speckle tracking, several tracking parameters were tested: kernel and search window size, minimal correlation coefficient and simulated frame rate. Parameters were ranked according to three comparative measures between US- and DIC-based strains: R. 2. , mean absolute error and strains differences at 40N. Parameters with best average rank were considered as optimal. To quantify the agreement between US- and DIC-based strain of each specimen, the considered metrics were: R. 2. , mean absolute error and strain differences at 40N. The LCL showed a good agreement with a high average R. 2. (0.97), small average mean absolute difference (0.37%) and similar strains at 40N (DIC = 2.92 ± 0.10%; US = 2.99 ± 1.16%). The US-based speckle tracking method showed worse performance for the MCL with a lower average correlation (0.55). Such an effect has been observed previously and may relate to the difficulty in acquiring sufficient image quality for tracking the MCL compared to the LCL, which likely arises due to structural or mechanical differences; notably MCL is larger, thinner, more wrapped around the bone and stretches less. However, despite these challenges, the MCL tracking still showed small average mean absolute differences (0.44%) and similar strains at 40N (DIC = 1.48 ± 0.06%; US = 1.44 ± 1.89%). We conclude that the ultrasound speckle tracking method developed is ready to be used as a tool to assess in-situ strains of LCL. Concerning the MCL strain assessment, despite some promising results in terms of strain differences, further work on acquisition could be beneficial to reach similar performance


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 44 - 44
1 Dec 2020
Torgutalp ŞŞ Korkusuz F
Full Access

Background. Although there are predictive equations that estimate the total fat mass obtained from multiple-site ultrasound (US) measurements, the predictive equation of total fat mass has not been investigated solely from abdominal subcutaneous fat thickness. Therefore, the aims of this study were; (1) to develop regression-based prediction equations based on abdominal subcutaneous fat thickness for predicting fat mass in young- and middle-aged adults, and (2) to investigate the validity of these equations to be developed. Methods. The study was approved by the Local Research Ethics Committee (Decision number: GO 19/788). Twenty-seven males (30.3 ± 8.7 years) and eighteen females (32.4 ± 9.5 years) were randomly divided into two groups as the model prediction group (19 males and 12 females) and the validation group (8 males and 6 females). Total body fat mass was determined by dual-energy X-ray absorptiometry (DXA). Abdominal subcutaneous fat thickness was measured by US. The predictive equations for total fat mass from US were determined as fat thickness (in mm) × standing height (in m). Statistical analyses were performed using R version 4.0.0. The association between the total fat mass and the abdominal subcutaneous fat thickness was interpreted using the Pearson test. The linear regression analysis was used to predict equations for total body fat mass from the abdominal subcutaneous fat thickness acquired by US. Then these predictive equations were applied to the validation group. The paired t-test was used to examine the difference between the measured and the predicted fat masses, and Lin's concordance correlation coefficient (CCC) was used as a further measure of agreement. Results. There was a significant positive moderate correlation between the total fat mass and the abdominal subcutaneous fat thickness × height in the model prediction group of males (r = 0.588, p = 0.008), whereas significant positive very strong correlation was observed in the model prediction group of females (r = 0.896, p < 0.001). Predictive equations for DXA-measured total body fat mass from abdominal subcutaneous fat thickness using US were as follows: for males “Fat mass-DXA = 0.276 × (Fat thickness-US × Height) + 17.221” (R. 2. = 0.35, SEE = 3.6, p = 0.008); for females “Fat mass-DXA = 0.694 x (Fat thickness-US × Height) + 7.085” (R. 2. = 0.80, SEE = 2.8, p < 0.001). When fat mass prediction equations were applied to the validation groups, measured- and estimated-total fat masses in males and females were found similar (p = 0.9, p = 0.5, respectively). A good level of agreement between measurements in males and females was attained (CCC = 0.84, CCC = 0.76, respectively). Conclusion. We developed and validated prediction equations that are convenient for determining total fat masses in young- and middle-aged adults using abdominal subcutaneous fat thickness obtained from the US. The abdominal subcutaneous fat thickness obtained from a single region by US might provide a noninvasive quick and easy evaluation not only in clinical settings but also on the field


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 120 - 120
10 Feb 2023
Mohammed K Oorschot C Austen M O'Loiughlin E
Full Access

We test the clinical validity and financial implications of the proposed Choosing Wisely statement: “Using ultrasound as a screening test for shoulder instability is inappropriate in people under 30 years of age, unless there is clinical suspicion of a rotator cuff tear.”. A retrospective chart review from a specialist shoulder surgeon's practice over a two-year period recorded 124 patients under the age of 30 referred with shoulder instability. Of these, forty-one had already had ultrasound scans performed prior to specialist review. The scan results and patient files were reviewed to determine the reported findings on the scans and whether these findings were clinically relevant to diagnosis and decision-making. Comparison was made with subsequent MRI scan results. The data, obtained from the Accident Compensation Corporation (ACC), recorded the number of cases and costs incurred for ultrasound scans of the shoulder in patients under 30 years old over a 10-year period. There were no cases where the ultrasound scan was considered useful in decision-making. No patient had a full thickness rotator cuff tear. Thirty-nine of the 41 patients subsequently had MRI scans. The cost to the ACC for funding ultrasound scans in patients under 30 has increased over the last decade and exceeded one million dollars in the 2020/2021 financial year. In addition, patients pay a surcharge for this test. The proposed Choosing Wisely statement is valid. This evidence supports that ultrasound is an unnecessary investigation for patients with shoulder instability unless there is clinical suspicion of a rotator cuff tear. Ultrasound also incurs costs to the insurer (ACC) and the patient. We recommend x-rays and, if further imaging is indicated, High Tech Imaging with MRI and sometimes CT scans in these patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 40 - 40
17 Nov 2023
Kuder I Jones G Rock M van Arkel R
Full Access

Abstract. Objectives. Ultrasound speckle tracking is a safe and non-invasive diagnostic tool to measure soft tissue deformation and strain. In orthopaedics, it could have broad application to measure how injury or surgery affects muscle, tendon or ligament biomechanics. However, its application requires custom tuning of the speckle-tracking algorithm then validation against gold-standard reference data. Implementing an experiment to acquire these data takes months and is expensive, and therefore prohibits use for new applications. Here, we present an alternative optimisation approach that automatically finds suitable machine and algorithmic settings without requiring gold-standard reference data. Methods. The optimisation routine consisted of two steps. First, convergence of the displacement field was tested to exclude the settings that would not track the underlying tissue motion (e.g. frame rates that were too low). Second, repeatability was maximised through a surrogate optimisation scheme. All settings that could influence the strain calculation were included, ranging from acquisition settings to post-processing smoothing and filtering settings, totalling >1,000,000 combinations of settings. The optimisation criterion minimised the normalised standard deviation between strain maps of repeat measures. The optimisation approach was validated for the medial collateral ligament (MCL) with quasi-static testing on porcine joints (n=3), and dynamic testing on a cadaveric human knee (n=1, female, aged 49). Porcine joints were fully dissected except for the MCL and loaded in a material-testing machine (0 to 3% strain at 0.2 Hz), which was captured using both ultrasound (>14 repeats per specimen) and optical digital image correlation (DIC). For the human cadaveric knee (undissected), 3 repeat ultrasound acquisitions were taken at 18 different anterior/posterior positions over the MCL while the knee was extended/flexed between 0° and 90° in a knee extension rig. Simultaneous optical tracking recorded the position of the ultrasound transducer, knee kinematics and the MCL attachments (which were digitised under direct visualisation post testing). Half of the data collected was used for optimisation of the speckle tracking algorithms for the porcine and human MCLs separately, with the remaining unseen data used as a validation test set. Results. For the porcine MCLs, ultrasound strains closely matched DIC strains (R. 2. > 0.98, RMSE < 0.59%) (Figure 1A). For the human MCL (Figure 1B), ultrasound strains matched the strains estimated from the optically tracked displacements of the MCL attachments. Furthermore, strains developed during flexion were highly correlated with AP position (R = 0.94) with strains decreasing the further posterior the transducer was on the ligament. This is in line with previously reported length change values for the posterior, intermediate and anterior bundles of the MCL. Conclusions. Ultrasound speckle tracking algorithms can be adapted for new applications without ground-truth data by using an optimisation approach that verifies displacement field convergence then minimises variance between repeat measurements. This optimisation routine was insensitive to anatomical variation and loading conditions, working for both porcine and human MCLs, and for quasi-static and dynamic loading. This will facilitate research into changes in musculoskeletal tissue motion due to abnormalities or pathologies. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 112 - 112
11 Apr 2023
Oliver W Nicholson J Bell K Carter T White T Clement N Duckworth A Simpson H
Full Access

The primary aim was to assess the reliability of ultrasound in the assessment of humeral shaft fracture healing. The secondary aim was to estimate the accuracy of ultrasound assessment in predicting humeral shaft nonunion. Twelve patients (mean age 54yrs [20–81], 58% [n=7/12] female) with a non-operatively managed humeral diaphyseal fracture were prospectively recruited and underwent ultrasound scanning at six and 12wks post-injury. Scans were reviewed by seven blinded observers to evaluate the presence of sonographic callus. Intra- and inter-observer reliability were determined using the weighted kappa and intraclass correlation coefficient (ICC). Accuracy of ultrasound assessment in nonunion prediction was estimated by comparing scans for patients that united (n=10/12) with those that developed a nonunion (n=2/12). At both six and 12wks, sonographic callus was present in 11 patients (10 united, one developed a nonunion) and sonographic bridging callus (SBC) was present in seven patients (all united). Ultrasound assessment demonstrated substantial intra- (6wk kappa 0.75, 95% CI 0.47-1.03; 12wk kappa 0.75, 95% CI 0.46-1.04) and inter-observer reliability (6wk ICC 0.60, 95% CI 0.38-0.83; 12wk ICC 0.76, 95% CI 0.58-0.91). Absence of sonographic callus demonstrated a sensitivity of 50%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 91% in nonunion prediction (accuracy 92%). Absence of SBC demonstrated a sensitivity of 100%, specificity 70%, PPV 40% and NPV 100% (accuracy 75%). Of three patients at risk of nonunion based on reduced radiographic callus formation (Radiographic Union Score for HUmeral fractures <8), one had SBC on 6wk ultrasound (and united) and the other two had non-bridging or absent sonographic callus (both developed a nonunion). Ultrasound assessment of humeral shaft fracture healing was reliable and predictive of nonunion, and may be a useful tool in defining the risk of nonunion among patients with reduced radiographic callus formation


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 488 - 488
1 Apr 2004
Biggs D Haber M Seeff J
Full Access

Introduction Ultrasound is a readily available and widely used tool in the investigation of rotator cuff pathology in the shoulder. Reports in the literature as to the diagnostic accuracy of ultrasound in diagnosing cuff tears vary widely. Accuracy rates varying from 50% to 100% have been reported. Most reports reflect the accuracy rates from a single sub-specialized institution. Method Sity-one consecutive patients with rotator cuff pathology diagnosed on ultrasound, underwent arthroscopy of the shoulder and rotator cuff repair, if a full thickness tear was found at surgery. Most patients had their ultrasound ordered by the referring doctor, prior to my initial review. The ultrasounds were performed at various suburban practices. Most were performed at branch practices of one of the three ‘corporate’ practices in Sydney. All full thickness tears were repaired arthroscopically. Results Ultrasound correctly identified rotator cuff tears in 80.3%. Four of 61 patients (6.6%) were reported as having partial thickness tears and at surgery were found to have small full-thickness tears. Six of 61 patients (9.8%) had small full thickness tears diagnosed on ultrasound, but were found to have partial thickness tears at surgery. One patient (1.6%) had an ultrasound diagnosis of a tear but had an intact tendon at surgery. One patient (1.6%) was found to have a full thickness tear with an ultrasound that reported an intact tendon. Conclusions Ultrasound is a valuable tool on the investigation of patients with rotator cuff pathology. It is not reliable in differentiating partial thickness from small full thickness cuff tears. This differentiation is not critical and should not significantly change the patient’s treatment. Reasons for false positive and false negative ultrasounds will be given. Ultrasound for the diagnosis of rotator cuff tendon tears, as performed in suburban practices, is accurate in up to 97% of cases


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 39 - 39
1 Dec 2017
Alsinan Z Cieslak M He P Rupertus N Spinelli C Vives M Hacihalioglu I
Full Access

In recent years, there has been a growing interest to incorporate ultrasound into computer assisted orthopaedic surgery procedures in order to provide non-ionizing intra-operative imaging alternative to traditional fluoroscopy. However, identification of bone boundaries still continues to be a challenging process due low signal to noise ratio and imaging artifacts. The quality of the collected images also depends on the orientation of the ultrasound transducer with respect to the imaged bone surface. Shadow region is an important feature indicating the presence of a bone surface in the collected ultrasound data. In this work, we propose a framework for the enhancement of shadow regions from extended field of view spine ultrasound data. First bone surfaces are enhanced using a combination of local phase based image features. The combination of the phase features provides a more compact representation of vertebrae bone surfaces with supressed soft tissue interfaces. These enhanced features are used as an input to a L1 norm based regularisation method which emphasised uncertainty in the shadow regions. Validation on phantom and in vivo experiments achieve a mean dice coefficient value of 0.93 and 0.9 respectively


Introduction. Patellar tendinopathy is a highly prevalent clinical diagnosis supported by ultrasound changes. Numerous interventions are targeted at improving both symptoms and structure of dysfunctional tendons, however little is known of the diagnostic value in a changing ultrasound profile whilst patient reported outcome measures determine recovery. The aim of this study was to assess if change in ultrasound measure is congruent with change in Victorian Institute of Sport Assessment – Patella (VISA-P) score and therefore indicates the use of using ultrasound to assess patellar tendinopathy during symptom change. Method. Four databases (PubMed, Web of Science, Embase, Cinahl) were search in January 2014. Studies selected contained ultrasound and VISA-P scores from ≥ 2 type points. All included studies were quality assessed depending on type and available data underwent meta-analysis. Result. 10 papers of varying study type, of limited to high quality, were synthesised. Meta-analysis indicated that change in ultrasound measure was not congruent with change in VISA-P score. Conclusion. The variation in study quality, along with significant heterogeneity of ultrasound measure outcomes and reporting may influence the congruency of the data, but the association between gradual structure change and varying vascularity with pain or function is questionable throughout tendinopathy literature


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 136 - 136
2 Jan 2024
Manferdini C Gabusi E Dolzani P Trucco D Lenzi E D'Atri G Vannozzi L Cafarelli A Ricotti L Lisignoli G
Full Access

In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel. ASCs at 2*10. 6. cells/mL were embedded in a 3D VitroGel RGD. ®. hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and immunohistochemistry (COL2, aggrecan, SOX9, COL1)and inflammatory cytokines were evaluated. Ultrasound stimulation significantly induced chondrogenic differentiation of ASCs loaded into 3D piezoelectric hydrogels under basal conditions: COL2, aggrecan and SOX9 were significantly overexpressed, while the fibrotic marker COL1 decreased compared to control samples. LIPUS also has potent anti-inflammatory effects by reducing IL6 and IL8 and maintaining its ability to boost chondrogenesis. These results suggest that the combination of LIPUS and piezoelectric hydrogels promotes the differentiation of ASCs encapsulated in a 3D hydrogel by reducing the inflammatory milieu, thus representing a promising tool in the field of cartilage TE. Acknowledgements: This work received funding from the European Union's Horizon 2020 research and innovation program, grant agreement No 814413, project ADMAIORA (AdvanceD nanocomposite MAterIals for in situ treatment and ultRAsound-mediated management of osteoarthritis)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 84 - 84
1 Dec 2022
du Toit C Dima R Jonnalagadda M Fenster A Lalone E
Full Access

The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures. Three-dimensional ultrasound imaging may be an option to address the clinical need for a rapid and safe point of care imaging device. The purpose of this research project is to validate the use of mechanically translated 3D-US in CMC OA patients to assess the measurement capabilities of the device in a clinically diverse population in comparison to MRI. Four CMC1-OA patients were scanned using the 3D-US device, which was attached to a Canon Aplio i700 US machine with a 14L5 linear transducer with a 10MHz operating frequency and 58mm. Complimentary MR images were acquired using a 3.0 T MRI system and LT 3D coronal photon dense cube fat suppression sequence was used. The volume of the synovium was segmented from both 3D-US and MR images by two raters and the measured volumes were compared to find volume percent differences. Paired sample t-test were used to determine any statistically significant differences between the volumetric measurements observed by the raters and in the measurements found using MRI vs. 3D-US. Interclass Correlation Coefficients were used to determine inter- and intra-rater reliability. The mean volume percent difference observed between the two raters for the 3D-US and MRI acquired synovial volumes was 1.77% and 4.76%, respectively. The smallest percent difference in volume found between raters was 0.91% and was from an MR image. A paired sample t-test demonstrated that there was no significant difference between the volumetric values observed between MRI and 3D-US. ICC values of 0.99 and 0.98 for 3D-US and MRI respectively, indicate that there was excellent inter-rater reliability between the two raters. A novel application of a 3D-US acquisition device was evaluated using a CMC OA patient population to determine its clinical feasibility and measurement capabilities in comparison to MRI. As this device is compatible with any commercially available ultrasound machine, it increases its accessibility and ease of use, while proving a method for overcoming some of the limitations associated with radiography, MRI, and 2DUS. 3DUS has the potential to provide clinicians with a tool to quantitatively measure and monitor OA progression at the patient's bedside


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 31 - 31
19 Aug 2024
Polesello GC Ricioli W Gonçalves CI
Full Access

The objective of this study is to evaluate the effectiveness and safety of percutaneous tenotomy of the iliopsoas tendon with the aid of ultrasound in cadavers. An anatomical and descriptive study of the technique of percutaneous tenotomy of the iliopsoas tendon guided by ultrasound and to share our experience in performing it and its reproducibility in clinical practice. Out of 20 tenotomies, 17 were total, performed at the level of the superior border of the acetabulum. Three tenotomies were partial, with more than 75% of the tendon being sectioned in all three. During one of the tenotomies, there was a partial injury to the femoral nerve. Measurements were made of the distance between the site where the blade was inserted and the femoral nerve, a noble structure that would be at greater risk during the procedure, with an average distance of 8.4 millimeters. Ultrasound-guided iliopsoas tendon release procedures have the ability to be performed in a cadaveric model, consistently achieving complete tendon release, except in cases of obesity, with minimal repercussions on adjacent structures, and require approximately 4 minutes to complete


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_2 | Pages 1 - 1
1 Mar 2022
Lacey A Chiphang A
Full Access

16 to 34% of the population suffer from shoulder pain, the most common cause being rotator cuff tears. NICE guidance recommends using ultrasound scan (USS) or MRI to assess these patients, but does not specify which is preferable. This study assesses the accuracy of USS and MRI in rotator cuff tears in a DGH, to establish the most appropriate imaging modality. Patients who had at least two of shoulder ultrasound, MRI or arthroscopy within a seven month period (n=55) were included in this retrospective study. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) were calculated using arthroscopy as the true result, and kappa coefficients calculated for each pairing. 59 comparisons were made in total. Sensitivity for MRI in full supraspinatus tears was 0.83, and for USS 0.75. Specificity for MRI in these tears was 0.75, and for USS 0.83. Values were much lower in other tears, which occurred less frequently. USS and MRI completely agreed with each other 61.3% of the time. Both modalities were only completely accurate 50% of the time. Kappa coefficient between arthroscopy and MRI for supraspinatus tears was 0.658, and for USS was 0.615. There was no statistical difference between MRI and USS sensitivity or specificity (p=1), suggesting that one modality cannot be recommended over the other for full supraspinatus tears. They also do not tend to corroborate one another, suggesting that there is no benefit from doing both scans. Further research is needed to see how both modalities can be improved to increase their accuracy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 41 - 41
17 Nov 2023
Samir A Abdelghany A Metwally A
Full Access

Abstract. Objectives. To compare the effectiveness of phonophoresis (PH) and conventional therapeutic ultrasound (US) on the functional and pain outcomes of patients with knee osteoarthritis. Methods. We conducted an electronic search through PubMed, Cochrane Central Register of Clinical Trials (CENTRAL), Web of Science (WOS), and Scopus databases. We screened the retrieved articles to include only English full-text randomized controlled trials that examined the effect of phonophoresis versus conventional therapeutic ultrasound on patients with knee osteoarthritis. Two reviewers screened, extracted the data, and independently assessed the quality of the included articles. Results. A total of five randomized controlled trials met our inclusion criteria out of 267 studies screened. Our results showed no statistically significant differences between the PH and US groups (1), (2), (3),(4), and (5). The PH group demonstrated more significant effects than the UT group in reducing VAS pain scores (P=0.009) and improving WOMAC scores, although this did not reach the level of significance (P=0.143) (5). In the long term, PH therapy was found to be superior to US in improving painless walking duration and distance VAS scores (p=0.034, 0.017) respectively, as well as walking and resting walking VAS scores (p=0.03, 0.007) respectively, which were found to be permanent (3). Conclusions. Both therapies improve pain and function. However, we suggest conducting more high-quality trials with larger sample sizes and do not recommend the use of these therapies in clinical practice due to limitations in gender selection and high risk of bias. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 116 - 116
1 Nov 2021
Manferdini C Gabusi E Trucco D Dolzani P Saleh Y Cafarelli A Ricotti L Lisignoli G
Full Access

Introduction. Articular cartilage injuries have a limited potential to heal and, over time, may lead to osteoarthritis, an inflammatory and degenerative joint disease associated with activity-related pain, swelling, and impaired mobility. Regeneration and restoration of the joint tissue functionality remain unmet challenges. Stem cell-based tissue engineering is a promising paradigm to treat cartilage degeneration. In this context, hydrogels have emerged as promising biomaterials, due to their biocompatibility, ability to mimic the tissue extracellular matrix and excellent permeability. Different stimulation strategies have been investigated to guarantee proper conditions for mesenchymal stem cell differentiation into chondrocytes, including growth factors, cell-cell interactions, and biomaterials. An interesting tool to facilitate chondrogenesis is external ultrasound stimulation. In particular, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to have a role in regulating the differentiation of adipose mesenchymal stromal cells (ASCs). However, chondrogenic differentiation of ASCs has been never associated to a precisely measured ultrasound dose. In this study, we aimed to investigate whether dose-controlled LIPUS is able to influence chondrogenic differentiation of ASCs embedded in a 3D hydrogel. Materials and Methods. Human adipose mesenchymal stromal cells at 2∗10. 6. cells/mL were embedded in a hydrogel ratio 1:2 (VitroGel RGD®) and exposed to LIPUS stimulation (frequency: 1 MHz, intensity: 250 mW/cm. 2. , duty cycle: 20%, pulse repetition frequency: 1 kHz, stimulation time: 5 min) in order to assess its influence on cell differentiation. Hydrogel-loaded ASCs were cultured and differentiated for 2, 7, 10 and 28 days. At each time point cell viability (Live&Dead), metabolic activity (Alamar Blue), cytotoxicity (LDH), gene expression (COL2, aggrecan, SOX9, and COL1), histology and immunohistochemistry (COL2, aggrecan, SOX9, and COL1) were evaluated respect to a non-stimulated control. Results. Histological analysis evidenced a uniform distribution of ASCs both at the periphery and at the center of the hydrogel. Live & Dead test evidenced that the encapsulated ASCs were viable, with no signs of cytotoxicity. We found that LIPUS induced chondrogenesis of ASCs embedded in the hydrogel, as demonstrated by increased expression of COL2, aggrecan and SOX9 genes and proteins, and decreased expression of COL1 respect to the non-stimulated control. Conclusions. These results suggest that the LIPUS treatment could be a valuable tool in cartilage tissue engineering, to push the differentiation of ASCs encapsulated in a 3D hydrogel


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2019
Dessinger G Mahfouz M Fatah EEA Johnson J Komistek R
Full Access

Introduction. At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use 3D ultrasound as alternative to CT, MRI and X-rays. Methods. The 3D reconstruction process utilizes statistical shape atlases in conjunction with the ultrasound RF data to build the patient anatomy in real-time. The ultrasound RF signals are acquired using a linear transducer. Raw RF data is then extracted across each scan line. The transducer is tracked using a 3D tracking system. The location and orientation for each scan line is calculated using the tracking data and known position of the tracker relative to the signal. For each scan line, a detection algorithm extracts the location on the signal of the bone boundary, if any exists. Throughout the scan process, a 3D point cloud is created for each detected bone signal. Using a statistical bone atlas for each anatomy, the patient specific surface is reconstruction by optimizing the geometry to match the point cloud. Missing regions are interpolated from the bone atlas. To validate reconstructed models output models are then compared to models generated from 3D imaging, including CT and MRI. Results. 3D ultrasound, which now has FDA approval in the United States, is presently available for an orthopaedic surgeon to use. Error analyses have been conducted in comparison to MRI and CT scans and revealed that 3D ultrasound has a similar accuracy of less than 1.0 mm in the creation of a 3D bone and soft-tissues. Unlike CT and MRI scans that take in excess of 2–3 weeks to create human bones, 3D ultrasound creates bones in 4–6 minutes. Once the bones are created, the surgeon can assess bone quality, ligament and cartilage conditions, assess osteophytes, fractures and guide needles into the 3D joint space. The creation of 3D bones has been accurately assessed for the spine, shoulder, knee, hip and ankle joints. A 3D joint pre-operative planning module has also been developed for a surgeon to size and position components before surgery. Discussion. 3D ultrasound is an exciting new imaging technology available for orthopaedic surgeons to use in their practice. Existing CPT codes are readily available for 3D ultrasound procedures. A surgeon can now evaluate and diagnose bone and soft- tissue conditions, in 3D, using ultrasound, which is safer and is an easier procedure compared to CT, MRI and X-rays. This new ultrasound technology is a highly accurate imaging technique that will allow a surgeon to diagnose bone and soft-tissue concerns in 3D, under weight-bearing, dynamic conditions and guide needle injections to correct location, in 3D


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 22 - 22
1 Jul 2020
Tsang J Gwynne P Gallagher M Simpson H
Full Access

Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, with cumulative treatment costs for all prosthetic joint infections estimated to be ∼ $1 billion per annum (UK and North America). Its ability to develop resistance or tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explored, but preliminary work has shown potential benefit, especially when combined with existing antibiotics. Low intensity pulsed ultrasound is already licensed for clinical use in fracture management and thus could be translated quickly into a clinical treatment. Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, biofilms were challenged with gentamicin +/− low-intensity ultrasound (1.5MHz, 30mW/cm2, pulse duration 200µs/1KHz) for 180 minutes and 20 minutes, respectively. The primary outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin. The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. Assessment of cellular metabolism was conducted using a liquid-chromatography-mass spectrometry, as well as a triphenyltetrazolium chloride assay coupled with spectrophotometry. There was no clinically or statistically significant (p=0.531) reduction in viable S. aureus following ultrasound therapy alone. The MBEC of gentamicin for this S. aureus strain was 256 mg/L. The MBEC of gentamicin with the addition of ultrasound was reduced to 64mg/L. Metabolic activity of biofilm-associated S. aureus was increased by 25% following ultrasound therapy (p < 0 .0001), with identification of key biosynthetic pathways activated by non-lethal dispersal. Low intensity pulsed ultrasound was associated with a four-fold reduction in the effective biofilm eradication concentration of gentamicin, bringing the MBEC of gentamicin to within clinically achievable concentrations. The mechanism of action was due to partial disruption of the extracellular matrix which led to an increase of nutrient availability and oxygen tension within the biofilm. This metabolic stimulus was responsible for the reversal of gentamicin tolerance in the biofilm-associated S. aureus


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 78 - 78
2 Jan 2024
Larrañaga-Jaurrieta G Abarrategui A Camarero-Espinosa S
Full Access

In the native articular cartilage microenvironment, chondrocytes are constantly subjected to dynamic physical stimuli that maintains tissue homeostasis. They produce extra cellular matrix (ECM) components such as collagens (type II mainly, 50-75%), proteoglycans (10-30%) and other type of proteins. 1. . While collagen offers a large resistance in tension, proteoglycans are the responsible of the viscoelastic response under compression due to the negative charge they confer to the ECM allowing it to entrap a large amount of interstitial fluid. In pathologic states (e.g. osteoarthritis), this ECM is degenerated and the negative charge becomes unbalanced, losing the chondroprotective properties and resulting on an overloaded chondrocytes that further degenerate the matrix. Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) has been used to generate acoustic (pressure) waves that create bubbles that collapse with cells, inducing a stimulus that can modulate cell response. 2. This mechanical stimulation promotes the expression of type II collagen, type X collagen, aggrecan and TGF-β, appearing as a great strategy to regenerate cartilage. However, current strategies make use of extrinsic forces to stimulate cartilage formation overlooking the physico-chemical properties of the degenerated cartilage, resulting in an excessive load-transfer to chondrocytes and the consequent hypertrophy and degeneration. Here, interpenetrated networks (IPNs) with different compositions were created using methacrylated gelatin (GelMA), to mimic the collagen, and alginate functionalized with tyramine (Alg-tyr) to mimic glycosaminoglycans and to introduce a negative charge in the model. Within the matrix chondrocytes where encapsulated and stimulated under different conditions to identify the ultrasound parameters that enhance tissue formation. Samples with and without stimulation were compared analysing the expression and deposition of collagen II, aggrecan, collagen X and TGF-β. The results suggested that the chondrogenic marker expression of the samples stimulated for 10 minutes per day for 28 days, was two times higher overall in all of the cases, which was correlated to the tissue formation detected. Acknowledgments: The authors would like to thank the Basque Government for the “Predoctoral Training Program for Non-Doctoral Research Staff 2021-2022” (Grant ref.: PRE_2021_1_0403). This work was supported by the RETOS grant PID2020-114901RA-I00 of the Ministry of Science and Innovation (MICINN)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 67 - 67
7 Nov 2023
Mogale N van Schoor A Scott J Schantz D Ilyasov V Bush TR Slade JM
Full Access

Pressure ulcers are a common occurrence in individuals with spinal cord injuries, and are attributed to prolonged sitting and limited mobility. This therefore creates the need to better understand soft tissue composition, in the attempt to prevent and treat pressure ulcers. In this study, novel approaches to imaging the soft tissue of the buttocks were investigated in the loaded and unloaded position using ultrasound (US) and magnetic resonance imaging (MRI). Twenty-six able-bodied participants (n=26, 13 males and 13 females) were recruited for this study and 1 male with a spinal cord injury. Two visits using US were required, as well as one MRI visit to evaluate soft tissue thickness and composition. US Imaging for the loaded conditions was performed using an innovative chair which allowed image acquisition in the seated upright position and MRI was done in the lateral decubitus position and loading was applied to the buttocks using a newly developed MRI compatible loader. The unloaded condition was a lateral decubitus position. Soft tissue was measured between the peak of the ischial tuberosity (IT) and the proximal femur and skin. Tissue thickness reliability for US was excellent, ICC=0.934–0.981 with no significant differences between the scan days. US and MRI measures of tissue thickness were significantly correlated (r=0.68–0.91). US underestimated unloaded tissue thicknesses with a mean bias of 0.39 – 0.56 for total tissue and muscle + tendon thickness. When the buttocks were loaded, total tissue thickness was reduced by 64.2±9.1%. US assessment of soft tissue thicknesses was reliable in both positions. The unloaded measurements using US were validated with MRI with acceptable limits of agreement, albeit tended to underestimate tissue thickness. Tissue thickness, but not fatty infiltration of muscle played a role in how the soft tissue of the buttocks responded to loading


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 65 - 65
1 Mar 2021
Nicholson J
Full Access

Abstract. Objectives. Three-dimensional visualisation of sonographic callus has the potential to improve the accuracy and accessibility of ultrasound evaluation of fracture healing. The aim of this study was to establish a reliable method for producing three-dimensional reconstruction of sonographic callus. Methods. A prospective cohort of ten patients with a closed tibial shaft fracture managed with intramedullary nailing were recruited and underwent ultrasound scanning at 2-, 6- and 12-weeks post-surgery. Ultrasound B-mode capture was performed using infrared tracking technology to map each image to a three-dimensional lattice. Using echo intensity, semi-automated mapping was performed by two independent reviewers to produce an anatomic three-dimensional representation of the fracture. Agreement on the presence of sonographic bridging callus on three-dimensional reconstructions was assessed using the kappa coefficient. Results. Nine of the ten patients achieved union at six months. At six weeks, seven patients had bridging callus at ≥1 cortex on the three-dimensional reconstruction; when present all united. Compared to radiographs, no bridging callus was present in any patient. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8%-sensitive and 100%-specific to predict union). At twelve weeks, nine patients had bridging callus at ≥1 cortex on three-dimensional reconstruction and all united (100%-sensitive and 100%-specific to predict union). Compared to radiographs, seven of the nine patients that united had bridging callus. Three-dimensional reconstruction of the anteromedial and anterolateral tibial surface was achieved in all patients, and detection of sonographic bridging callus on the three-dimensional reconstruction demonstrated substantial inter-observer agreement (kappa=0.78, 95% confidence interval 0.29–1.0, p=0.011). Conclusions. Three-dimensional fracture reconstruction can be created using multiple ultrasound images in order to evaluate the presence of bridging callus. This imaging modality has the potential to identify impaired healing at an early stage in fracture management. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Background: Screening modalities in early detection of DDH remain controversial worldwide despite of universal accessibility to ultrasound and despite of encouraging preliminary results reported about the Austrian and German general ultrasound screening programs. The goal of our investigations was to provide a long time survey on effects following the introduction of the ultrasound exam in prevention of DDH and to proof its beneficial medical and economic effects as well as to analyze possible adverse effects, when utilized by a general screening. Method: Nationwide data about ultrasound screening exams, sonographic follow up exams, frequencies of functional abductive treatment measures as well as hospitalizations due to DDH were requested by different Austrian health care providers. Through a representative recall over a time frame ranging partially back to 1980 a surveillance analysis is provided. The medical effectiveness of the screening was mainly assessed by the annual appearance of early late cases, representing open reductions (O.R.) upon the first two years of life. Other variables as the disease related incidence of age matched annual hospitalizations and the disease prevalence measured by non age matched hospitalizations in relation to the year specific population were analyzed. A cost benefit analysis was performed by comparing the treatment and diagnostic costs in the year before program start (1991) to the last year of surveillance (2004). Results: Since 1980 the functional treatment rate has continuously been reduced from approximately 12 percent to 3.23 percent in 2004. Early late cases (O.R.) due to DDH have been also diminished to an international competitive rate of 0.13 per 1000 newborns, while other age specific early surgical interventions could be almost eradicated. Current additional investments of the program figure only 16.94 € per newborn and embody approximately 1370 € per detection of one affected newborn. Control exams are contributing to roughly 25% of the calculated costs. Interpretation: By founding a nationwide program Austria has introduced a medically efficient screening modality to reduce early late cases and to limit treatment of DDH exposed children to less invasive measures by early diagnosis. In contrary to suspicions of possible adverse effects of such screening, overtreatment has been abandoned while the functional treatment rate has sunken to an acceptable level. Costs saving effects have been already realized on the treatment side. Further savings shall be realized by limiting an unacceptable rate of control exams