header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

QUANTITATIVE ULTRASOUND AND MRI IMAGING OF THE BUTTOCKS AND THIGHS IN A SEATED POSITION

The South African Orthopaedic Association (SAOA) September 2023 Meeting, Cape Town, South Africa, 4–7 September 2023.



Abstract

Pressure ulcers are a common occurrence in individuals with spinal cord injuries, and are attributed to prolonged sitting and limited mobility. This therefore creates the need to better understand soft tissue composition, in the attempt to prevent and treat pressure ulcers. In this study, novel approaches to imaging the soft tissue of the buttocks were investigated in the loaded and unloaded position using ultrasound (US) and magnetic resonance imaging (MRI).

Twenty-six able-bodied participants (n=26, 13 males and 13 females) were recruited for this study and 1 male with a spinal cord injury. Two visits using US were required, as well as one MRI visit to evaluate soft tissue thickness and composition. US Imaging for the loaded conditions was performed using an innovative chair which allowed image acquisition in the seated upright position and MRI was done in the lateral decubitus position and loading was applied to the buttocks using a newly developed MRI compatible loader. The unloaded condition was a lateral decubitus position. Soft tissue was measured between the peak of the ischial tuberosity (IT) and the proximal femur and skin.

Tissue thickness reliability for US was excellent, ICC=0.934–0.981 with no significant differences between the scan days. US and MRI measures of tissue thickness were significantly correlated (r=0.68–0.91). US underestimated unloaded tissue thicknesses with a mean bias of 0.39 – 0.56 for total tissue and muscle + tendon thickness. When the buttocks were loaded, total tissue thickness was reduced by 64.2±9.1%.

US assessment of soft tissue thicknesses was reliable in both positions. The unloaded measurements using US were validated with MRI with acceptable limits of agreement, albeit tended to underestimate tissue thickness. Tissue thickness, but not fatty infiltration of muscle played a role in how the soft tissue of the buttocks responded to loading.


Email: