Leucocytes represent a very important host defence against a number of invading pathogens and neoplasia. However, the activity of phagocytic leucocytes has been heavily implicated in the development of
Introduction: The paradoxical further damage done to ischaemic tissue when blood flow and oxygenation are restored is termed
Summary Statement. Ischaemic preconditioning protected skeletal myotubes against the effects of ischaemia-reperfusion in vitro. This protection was associated with increased Nrf2 signalling. Introduction. Ischaemic preconditioning (IPC) is a well recognised and powerful phenomenon where a tissue becomes more tolerant to a period of prolonged ischaemia when it is first subjected to short bursts of ischaemia/reperfusion. While much is known about the ability of ischaemic preconditioning to protect myocardial tissue against
Introduction and Aims: To determine whether taurine influences skeletal muscle
Introduction: Limb reperfusion in patients following pneumatic tourniquet-controlled surgery is associated with nitric oxide (NO) generation. Meanwhile, NO mediates vascular endothelial growth factor (VEGF)-cytoprotection in myocardial
To determine whether systemic nitric oxide production in tourniquet-induced skeletal muscle ischaemia-reper-fusion injury (SMRI) is dependent on release of vascular endothelial growth factor (VEGF), a modulator of nitric oxide cytoprotection in myocardial
Introduction. Ischaemic preconditioning (IPC) is a phenomenon whereby a tissue is more tolerant to an insult if it is first subjected to short bursts of sublethal ischaemia and reperfusion. The potential of this powerful mechanism has been realised in many branches of medicine where there is an abundance of ongoing research. However, there has been a notable lack of development of the concept in Orthopaedic surgery. The routine use of tourniquet-controlled limb surgery and traumatic soft tissue damage are just two examples of where IPC could be utilised to beneficial effect in Orthopaedic surgery. Methods. We conducted a randomized controlled clinical trial looking at the role of a delayed remote IPC stimulus on a cohort of patients undergoing a total knee arthroplasty (TKA). We measured the effect of IPC by analysing gene expression in skeletal muscle samples from these patients. Specifically we looked at the expression of Heat shock protein-90 (HSP-90), Catalase and Cyclo-oxygenase-2 (COX-2) at the start of surgery and at one hour into surgery. Gene analysis was performed using real time polymerase chain reaction amplification. As a second arm to the project we developed an in-vitro model of IPC using a human skeletal muscle cell line. A model was developed, tested and subsequently used to produce a simulated IPC stimulus prior to a simulated