Tourniquets have potential adverse effects including postoperative thigh pain, likely caused by their ischaemic and possible compressive effects. The aims of this preliminary study were to determine if it is possible to directly measure intramuscular pH in human subjects over time, and to measure the intramuscular pH changes resulting from tourniquet ischaemia in patients undergoing knee arthroscopy. For patients undergoing short knee arthroscopic procedures, a sterile calibrated pH probe was inserted into the anterior fascial compartment of the leg after skin preparation, but before tourniquet inflation. The limb was elevated for three minutes prior to tourniquet inflation to 250 mmHg or 300 mmHg. Intramuscular pH was recorded at one-second intervals throughout the procedure and for 20 minutes following tourniquet deflation. Probe-related adverse events were recorded.Aims
Methods
The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle.Objectives
Materials and Methods
Lower limb muscle power is thought to influence outcome following
total knee replacement (TKR). Post-operative deficits in muscle
strength are commonly reported, although not explained. We hypothesised
that post-operative recovery of lower limb muscle power would be
influenced by the number of satellite cells in the quadriceps muscle at
time of surgery. Biopsies were obtained from 29 patients undergoing TKR. Power
output was assessed pre-operatively and at six and 26 weeks post-operatively
with a Leg Extensor Power Rig and data were scaled for body weight.
Satellite cell content was assessed in two separate analyses, the
first cohort (n = 18) using immunohistochemistry and the second
(n = 11) by a new quantitative polymerase chain reaction (q-PCR)
protocol for Pax-7 (generic satellite cell marker) and Neural Cell
Adhesion Molecule (NCAM; marker of activated cells).Objectives
Methods