Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group. The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.Aims
Methods
There is a paucity of mid-term data on modular dual-mobility (MDM) constructs versus large (≥40 mm) femoral heads (LFH) in revision total hip arthroplasties (THAs). The purpose of this study was to update our prior series at 10 years, with specific emphasis on survivorships free of re-revision for dislocation, any re-revision, and dislocation. We identified 300 revision THAs performed at a single tertiary care academic institution from 2011 to 2014. Aseptic loosening of the acetabular component (n=65), dislocation (n=59), and reimplantation as part of a two-stage exchange protocol (n=57) were the most common reasons for index revision. Dual-mobility constructs were used in 124 cases, and LFH were used in 176 cases. Mean age was 66 years, mean BMI was 31 kg/m2, and 45% were female. Mean follow-up was 7 years. The 10-year survivorship free of re-revision for dislocation was 97% in the MDM cohort and 91% in the LFH cohort with a significantly increased risk of re-revision for dislocation in the LFH cohort (HR 5.2; p=0.03). The 10-year survivorship free of any re-revision was 90% in the MDM cohort and 84% in the LFH cohort with a significantly increased risk of any re-revision in the LFH cohort (HR 2.5; p=0.04). The 10-year survivorship free of any dislocation was 92% in the MDM cohort and 87% in the LFH cohort. There was a trend towards an increased risk of any dislocation in the LFH cohort (HR 2.3; p=0.06). In this head-to-head comparison, revision THAs using MDM constructs had a significantly lower risk of re-revision for dislocation compared to LFH at 10 years. In addition, there was a trend towards lower risk of any dislocation. Level of Evidence: IV
The last two decades have seen remarkable technological advances in total hip arthroplasty (THA) implant design. Porous ingrowth surfaces and highly crosslinked polyethylene (HXLPE) have been expected to dramatically improve implant survivorship. The purpose of the present study was to evaluate survival of contemporary cementless acetabular components following primary THA. 16,421 primary THAs performed for osteoarthritis between 2000 and 2019 were identified from our institutional total joint registry. Patients received one of 12 contemporary cementless acetabular designs with HXLPE liners. Components were grouped based on ingrowth surface into 4 categories: porous titanium (n=10,952, mean follow-up 5 years), porous tantalum (n=1223, mean follow-up 5 years), metal mesh (n=2680, mean follow-up 6.5 years), and hydroxyapatite (HA) coated (n=1566, mean follow-up 2.4 years). Kaplan-Meier analyses were performed to assess the survivorship free of acetabular revision. A historical series of 182 Harris-Galante-1 (HG-1) acetabular components was used as reference. The 15-year survivorship free of acetabular revision was >97% for all 4 contemporary cohorts. Compared to historical control, porous titanium (HR 0.06, 95% CI 0.02–0.17, p<0.001), porous tantalum (HR 0.09, 95%CI 0.03–0.29, p<0.001), metal mesh (HR 0.11, 95%CI 0.04–0.31, p<0.001), and HA-coated (HR 0.14, 95%CI 0.04–0.48, p=0.002) ingrowth surfaces had significantly lower risk of any acetabular revision. There were 16 cases (0.1%) of acetabular aseptic loosening that occurred in 8 (0.07%) porous titanium, 5 (0.2%) metal mesh, and 3 (0.2%) HA-coated acetabular components. 7 of the 8 porous titanium aseptic loosening cases occurred in one known problematic design. There were no cases of aseptic loosening in the porous tantalum group. Modern acetabular ingrowth surfaces and HXLPE liners have improved on historical results at the mid-term. Contemporary designs have extraordinarily high revision-free survivorship, and aseptic loosening is now a rare complication. At mid-term follow-up, survivorship of contemporary uncemented acetabular components is excellent and aseptic loosening occurs in a very small minority of patients.
Varus-valgus constrained (VVC) devices are typically used in revision settings, often with stems to mitigate the risk of aseptic loosening. However, in at least one system, the VVC insert is compatible with the primary posterior-stabilized (PS) femoral component, which may be an option in complex primary situations. We sought to determine the implant survivorship, radiological and clinical outcomes, and complications when this VVC insert was coupled with a PS femur without stems in complex primary total knee arthroplasties (TKAs). Through our institution’s total joint registry, we identified 113 primary TKAs (103 patients) performed between 2007 and 2017 in which a VVC insert was coupled with a standard cemented PS femur without stems. Mean age was 68 years (SD 10), mean BMI was 32 kg/m2 (SD 7), and 59 patients (50%) were male. Mean follow-up was four years (2 to 10).Aims
Methods
Diagnosing acute postoperative periprosthetic joint infections (PJIs) after primary total knee arthroplasties (TKAs) remains difficult. Published diagnostic thresholds for ESR, CRP, and synovial fluid analysis have not been replicated. We aimed to validate the optimal cutoffs for detecting acute postoperative PJIs in a large series of primary TKAs. We retrospectively identified 27,066 primary TKAs performed between 2000–2019. Within 12 weeks, 171 knees (170 patients) had a synovial fluid aspiration. Patients were divided into two groups: evaluation <6 weeks or 6–12 weeks. The 2011 MSIS criteria for PJI diagnosed infection in 22 knees. Mann-Whitney U tests compared medians; ROC analyses determined optimal thresholds. Mean follow-up was 5 years.Introduction
Methods
Patients undergoing primary total hip arthroplasty (THA) following pelvic radiation have historically had poor survivorship free of aseptic acetabular component loosening. However, several series have reported improved results with tantalum acetabular components. The purpose of this study was to assess implant survivorship, radiographic results, and clinical outcomes of contemporary, non-tantalum, porous acetabular components in the setting of prior pelvic radiation. We retrospectively reviewed 33 patients (38 hips) with prior therapeutic pelvic radiation between 2006 and 2016 who underwent primary THA. The mean overall pelvic radiation dose was 6300 cGy with a mean latency period to THA of 5 years. The most common acetabular component was Pinnacle (Depuy-Synthes) in 76%, followed by Trident (Stryker) in 8%, Tritanium (Stryker) in 8%, Trilogy (Zimmer-Biomet) in 5%, and G7 (Zimmer-Biomet) in 3%. Eighty-seven percent of cups were fixed with screws, of which the mean number used was 3. The mean age at primary THA was 74 years, 76% were male, and the mean BMI was 30 kg/m2. Mean follow-up was 5 years.Introduction
Methods
Mechanical or corrosive failure of total knee arthroplasties (TKAs) is difficult to diagnose with current laboratory and radiographic analyses. As such, the goal of this study was to determine the mean blood concentration of cobalt, chromium, and titanium in a series of revision TKAs with mechanical implant failure and evaluate whether they facilitated identification of the underlying TKA failure mechanism. Serum cobalt, chromium, and titanium levels and synovial fluid characteristics were evaluated in 12 patients (13 aseptic revision TKAs) who underwent revision TKA between 2000 and 2020 at a single academic institution for mechanical implant failure or corrosion. Seventy-five percent were re-revisions of previously revised TKAs. Mean time to revision was 6 years. Modular metallic junctions were present in 100%. Twenty-five percent did not have another Introduction
Methods
Dislocation is a common complication following total hip arthroplasty (THA), and accounts for a high percentage of subsequent revisions. The purpose of this study was to develop a convolutional neural network (CNN) model to identify patients at high risk for dislocation based on postoperative anteroposterior (AP) pelvis radiographs. We retrospectively evaluated radiographs for a cohort of 13,970 primary THAs with 374 dislocations over 5 years of follow-up. Overall, 1,490 radiographs from dislocated and 91,094 from non-dislocated THAs were included in the analysis. A CNN object detection model (YOLO-V3) was trained to crop the images by centering on the femoral head. A ResNet18 classifier was trained to predict subsequent hip dislocation from the cropped imaging. The ResNet18 classifier was initialized with ImageNet weights and trained using FastAI (V1.0) running on PyTorch. The training was run for 15 epochs using ten-fold cross validation, data oversampling and augmentation.Background
Methods
Instability remains a common complication following total hip arthroplasty (THA) and continues to account for the highest percentage of revisions in numerous registries. Many risk factors have been described, yet a patient-specific risk assessment tool remains elusive. The purpose of this study was to apply a machine learning algorithm to develop a patient-specific risk score capable of dynamic adjustment based on operative decisions. 22,086 THA performed between 1998–2018 were evaluated. 632 THA sustained a postoperative dislocation (2.9%). Patients were robustly characterized based on non-modifiable factors: demographics, THA indication, spinal disease, spine surgery, neurologic disease, connective tissue disease; and modifiable operative decisions: surgical approach, femoral head size, acetabular liner (standard/elevated/constrained/dual-mobility). Models were built with a binary outcome (event/no event) at 1-year and 5-year postoperatively. Inverse Probability Censoring Weighting accounted for censoring bias. An ensemble algorithm was created that included Generalized Linear Model, Generalized Additive Model, Lasso Penalized Regression, Kernel-Based Support Vector Machines, Random Forest and Optimized Gradient Boosting Machine. Convex combination of weights minimized the negative binomial log-likelihood loss function. Ten-fold cross-validation accounted for the rarity of dislocation events.Introduction
Methods
There is renewed interest in dislocation after surgical approach with popularization of the direct anterior approach. The purported advantage of both the lateral and direct anterior approaches is decreased risk of dislocation. The purpose of this study was to assess the risk of dislocation by approach following modern primary THA. All primary THAs at a single academic institution from 2010 to 2017 were analyzed through our institutional total joint registry. There were 7023 THAs including 3754 posterior, 1732 lateral, and 1537 direct anterior. Risk of dislocation was assessed against the competing risks of revision surgery and death as well as by individual patient and surgical factors including surgical approach. Risk of revision surgery was considered as a secondary outcome. Step-wise selection was utilized to develop multivariable models. Clinical outcomes were documented with the Harris Hip Score (HHS). Mean age was 63 years, 51% were female, and mean body mass index (BMI) was 30 kg/m2. Minimum follow-up was 2 years.Introduction
Methods
The influence of surgical approach for total hip arthroplasty (THA) on scar healing and scar perception is unknown. The purpose of this study was to evaluate patients’ perception of their scar following direct anterior (DA) or posterior approach (PA) for THA utilizing validated scar assessment scales. Fifty DA and 58 PA THA patients underwent scar assessment using the Patient Observer Scar Assessment Scale (POSAS) and Stony Brook Scar Evaluation Scales (SBSES). Patients were included if they had at least 1-year follow-up, and had no previous surgery or intervention (i.e. radiation) around the assessed hip. The mean age was different between the cohorts (DA 67 vs PA 62 years, p=0.03). Other variables including gender, BMI, Charlson Comorbidity Index, steroid use, diabetes, and smoking were similar (p>0.05 for all comparisons). All patients had subcuticular running closure, secured with skin adhesive glue. Mean time from THA to scar assessment was 3.1 and 3.6 years for the DA and PA groups, respectively (p=0.18).Introduction
Methods