Arthroplasty has consistently shown ‘beneficial and often dramatic improvements in quality of life'. In developed healthcare systems arthroplasty has evolved to minimised complications through evidence-based implant selection, rigorous infection control and high volume training. The Children's Surgical Centre has performed 256 THAs since 2007, We aim to assess the outcome of arthroplasty in a LMIC. Our primary outcome was all cause of re-operation and our secondary outcome was any complications not requiring return to theatre. A retrospective review of all consecutive THA since 2007 was conducted. Electronic and physical case notes were reviewed and basic demographics, indication for THA, risk factors for complications, implant combinations and complications were recorded. Statistical analysis was performed using MedCalc. A total of 256 THA were identified in 225 patients. The mean age was 43, with a M2:1F ratio. The most common pathologies were (1)AVN (44%), (2)OA (11%) and (3)DDH (11%). Revision rate was 13%. The mean time from implantation to revision was 2.8 years (0–9). The most common reasons for revision were (1)stem fracture (5.8%), (2)aseptic loosening (4.8%) and (3)infection (2.7%). Six different stems have been use over the time period. The best surviving were the Zimmer ML Taper and the UMA Muller stems. The UMA C-Stem was the worst performing which suffered 100% stem fracture. 109 complications were identified in 85 patients (33.2%). The three most common complications were (1)aseptic loosening (10.5%) (2)stem fracture (5.8%) and (3)dislocation (5.8%). Previous surgery (n=44) was found to be a significant risk for complications but not infection. OHS initially improved but began to decline after year 3. Patients present to CSC with neglected hip pathology, disability and significant pre-operative deformity. These patients benefit from THA and the initially high complication rates at CSC are declining suggesting the apex of the ‘learning curve' has passed. Cheap poorly manufactured implants continue to cause catastrophic failure.
Taper corrosion and fretting have been associated with oxide layer abrasion and fluid ingress that contributes to adverse local tissue reactions with potential failure of the hip joint replacement[1,2]. Both mechanisms are considered to be affected by the precise nature of the taper design[3]. Indeed relative motion at the taper interface that causes fretting damage and wear effects, such as pistoning and rocking, have been described following analysis of implants at retrieval[4,5]. However, there is much less reported about the mechanisms that allow the fluid ingress/egress at the taper interface which would drive corrosion. Thus the aim of the present study was to investigate the effect of trunnion design on the gap opening and taper relative motions under different load scenarios and taper designs. A 3-D finite element model of a 40mm CoCr modular femoral head and a Ti6Al4V trunnion was established in Abaqus CAE/2018. Femoral head and trunnion geometries were meshed with an element (C3D8) size of 0.17mm. Tapers were assembled by simulating a range of impact forces (AF); taper interface behaviour was evaluated under physiological forces and frictional moments simulated during walking activity[6], assuming different coefficients of friction (CF), Figure 1. The output involved the total and normal relative motion of the surfaces at the taper interface. The model predicted for a taper mismatch of 0.36° which, when combined with an assembly force of 2kN, generated the largest taper gap opening (59.2mm) during walking, Figure 2. In all trunnion designs the largest normal relative motion coincided with heel strike in the gait cycle (0–5%). The taper gap and normal relative motions were related to the initial taper lock area. Furthermore, the direction of the total motion was different in all three taper mismatches, with a shift in the direction towards the normal of the surface as the taper mismatch increased, Figure 3. By contrast, the direction of the normal relative motions did not change with different trunnion designs. Contact patterns were asymmetrical and contact areas varied throughout the walking activity; contact pressure and the largest taper gap were located on the same side of the taper, suggesting toggling of the trunnion. The relationship between taper gap opening and initial taper lock contact area suggests that the taper contact area functions as a fulcrum in a lever mechanism. Large taper mismatches create larger relative motions that will not only create more wear and fretting damage but also larger normal relative motions. This may allow fluid ingress into the taper interface and/or the egress of fluid along with any metal wear particles into the body. This increased understanding of the taper motion will result in improved designs and ultimately taper performance. For any figures or tables, please contact the authors directly.
Wear debris and metal ions originating from metal on metal hip replacements have been widely shown to recruit and activate macrophages. These cells secrete chemokines and pro-inflammatory cytokines that lead to an adverse local tissue reaction (ALTR), frequently requiring early revision. The mechanism for this response is still poorly understood. It is well documented that cobalt gives rise to apoptosis, necrosis and reactive oxygen species generation. Additionally, cobalt stimulates T cell migration, although the effect on macrophage motility remains unknown. This study tests the hypothesis that cobalt ions and nanoparticles affect macrophage migration stimulating an ALTR. This study used Co2+ ions (200µM) and cobalt nanoparticles (CoNPs, 100µM, 2–60nm diameter). PMA differentiation of the U937 cell line was used as macrophage-like cells. The effect of cobalt on macrophage migration was investigated by live cell imaging. After 12 hours of each treatment, timelapse images of 20 cells were collected over a 6 hour period with images captured every 5 min. Migration of individual cells was tracked in 2D using ImageJ software. The transwell migration assay was also applied to study the effect of cobalt on macrophage directional migration. U937 cells in serum free medium were added to the upper chamber of a 8µm pore size Transwell insert in the presence of cobalt, whilst the lower chamber was filled with medium plus 10% FBS. After 6 hours treatment, cells remaining on the membrane were fixed, stained with crystal violet and counted. Cellular F-actin and podosomes were visualized by labeling with TRITCconjugated phalloidin and anti-vinculin antibody after 12 hours of cobalt exposure (Co2+ and CoNPs).Introduction
Methods
The decision to undertake prophylactic pinning to prevent contralateral slipped upper femoral epiphysis (SUFE) remains controversial; we hypothesised that the grade of initial SUFE could predict the grade of a second SUFE and risk of poor outcome. We retrospectively reviewed radiographs of all children who presented to Alder Hey with a new diagnosis of SUFE between 2007–2014. Of those who developed a contralateral SUFE, grade of first and second SUFE was determined radio-graphically using %
slip and Southwick angle on frog lateral radiograph.Purpose
Method
There will be occasions when standards and guidelines stymie the development of new methods. For example, the majority of simulator studies utilized the international guideline specifying that cups will be positioned “Anatomically” (ISO-14242), i.e. acetabular liner is positioned above oscillating femoral head (Fig. 1). This can be disadvantageous for studies of “edge wear” in steeply inclined cups (Williams 2008, Leslie 2009, Angadji 2009). Importantly, such an “Anatomical” cup is fixed with respect to the resultant load-axis (Fig. 1d: R). This produces a constant edge-wear throughout the simulator's cycle. Our supposition was that it is more likely patients experience edge-wear intermittently, i.e. at extremes of motion. This intermittent effect can be best replicated with the cup mounted “Inverted” (Fig. 2), the rotating cam allowing precise selection of edge-wear at extreme of motion (Fig. 2c). An advantage of this method is that the wear-pattern in the orbiting cup is now much larger (Bowsher, 2009: x3.8 ratio), making edge-wear easier to achieve. Our hypotheses were that (1) the Inverted test would provide both “normal” and “edge wear” as defined (Clarke, 2015: steep-cup algorithm), (2) MOM wear rates under edge-wear condition would be greater than in standard simulator tests (Bowsher 2016) and (2) intermittent edge-wear of MOM cups (Inverted) would be less severe than in prior Anatomical tests (Williams 2008, Leslie 2009, Angadji 2009). The 60mm MOM bearings (DJO, Austin TX) were selected on the basis of prior Anatomical study (Bowsher, 2009), were run with cups Inverted, using identical test methods as before, in the orbital simulator. Wear-rates in 60mm heads revealed both run-in and steady-state wear phases (Fig. 3a). The weight-loss method showed perturbations due to protein contaminants but these appeared of minor concern over 10-million cycles. One cup was damaged during set-up, did not recover, and was not included in the analysis (Fig. 3b). Cup wear rates over 10-million cycles appeared very stable with excellent consistency (Fig. 3c). By end of test, the edge-wearing cups averaged 3.7 times higher wear than mating heads. Overall MOM wear averaged 1.6mm3 per million cycles. Apart from the first 100,000 cycles of run-in, no lubricant changed color during entire test. In this first study of its kind, we demonstrated both normal and edge-wear wear-patterns in accordance with predictions of the steep-cup algorithm (Clarke 2015), satisfying hypothesis #1. Wear rates with Inverted cups averaged 2.7 times greater wear than those in similar Anatomical study (Bowsher, 2009), satisfying hypothesis #2. The 60mm MOM wear rates Inverted were mid-range to those in the prior steep-cup Anatomical tests (range 1.3 – 1.9mm3 per 106 cycles). This neither satisfied nor eliminated hypothesis #3, perhaps due to confounding effects, i.e. different designs, MOM diameters and methods. In conclusion, the Inverted test in the simulator appears to offer considerable merit, perhaps analogous to patients who experience edge-wear only intermittently. In contrast the Anatomical test mode appears analogous to patients with mal-positioned cups, who therefore walk on the cup rim constantly throughout their gait cycle.
Revision of total hip replacements (THRS) is predominantly due to aseptic loosening, pain and infection [1]. The current method used to address the risk of infection is to administer antibiotics and to include antibacterial agents into bone cement (if used) and on implant coatings [2–4]. Currently, silver (Ag) coatings have only been applied to titanium hip stems [3]. Cobalt chromium alloy (CoCr) is a widely used orthopaedic alloy which is commonly used as a bearing surface; revisions of joints using this material often describe adverse reactions to the particulate wear debris [1]. This study considers an Ag containing CrN based coating on a CoCr substrate with the aim to reduce cobalt (Co) release and promote antibacterial silver release. Silver Chromium Nitride (CrNAg) coatings were developed and applied onto the bearing surfaces of 48 mm diameter metal-on-metal THRs. Three coatings were evaluated: high Ag at the surface (CrNAg+), low Ag at surface (CrNAg-) and uniform Ag (CrNAg=). All bearings were tested under ISO 14242-3 conditions for 0.17 million cycles (mc) representing approximately 2 months use Introduction
Methods
Vitamin-E has been introduced into highly-crosslinked polyethylene liners to reduce the oxidation potential of the material while maintaining low wear rates. However, little has been reported on adverse testing of the material with one test on diffused vitamin-E polyethylene [1] and no adverse tests of vitamin-E blended polyethylene reported. Adverse testing of crosslinked polyethylene has focused on the use of large diameters, the incorporation of third body particles, roughening of the counterface or severe activity [2–4]. This investigation considers the wear of vitamin-E blended highly-crosslinked polyethylene under standard and adverse conditions articulating against uncoated and chromium nitride (CrN) coated metal heads. Seven metal heads were tested against prototype ϕ52 mm 0.1 wt% vitamin-E blended highly-crosslinked polyethylene liners (Corin, UK). Three heads remained as cast double heat treated metal (MoP) while four, of similar metallurgy, were coated with CrN via electron beam physical vapour deposition (CrNoP) (Tecvac, UK) and polished to a similar surface finish. Tests were conducted for 5 million cycles (mc) under conditions described in ISO 14242–3: 2009. Alumina particles (mean size 2.4 μm) at concentrations of 0.15 mg/mL were added to the lubricant for 1 mc to consider the effect of severe head damage. Testing continued for a further 1 mc without the presence of the particles and then 3 jogging intervals (14,400 cycles each) were conducted at slow, medium and fast speeds [3]. Wear volume was determined gravimetrically for the heads and liners and fluid collected throughout the testing was analysed for cobalt concentration using graphite furnace atomic absorption spectroscopy.Introduction
Methods
Only a few studies have assessed the outcome of ulnar nerve decompression, most comparing various forms of decompression. A review of the case notes of patients undergone ulnar nerve decompressions was undertaken looking at the pre-op symptoms, nerve conduction studies, the co-morbidities, operative procedures and the post-operative outcomes. We reviewed the case notes of ulnar nerve decompressions surgery performed over a period of six year period. Outcome grading was recorded as completely relieved, improved, unchanged or worse. The significance level was set at 5%.Introduction
Material/methods
Metal ion release is a concern with all metal-on-metal (MOM) hip replacements. The Cormet Resurfacing Hip replacement, in use since 1997, has been validated Between September 1997 and November 2003, 383 primary total hip resurfacings were performed in five centres. The mean age of the 196 men (23 bilateral procedures) and 146 women (18 bilateral procedures) was 55.4 years (24 to 73). Mean follow-up was 17 months (3 to 84). At the latest review the mean modified Harris hip score (truncated format) was 77.9 out of 91 (mean 86%), with a range of 49 to 91. The Kaplan Meier survivorship rate was 96% at 7 years. Wear testing has shown that heat treatments do not affect the wear of cast high carbon cobalt chrome alloys and that larger bearings (56-mm and 40-mm diameter) have lower wear rates than conventional 28-mm bearings. Metal ion levels rose initially, then decreased over time. Metal ion release does not appear to be a major long-term concern and medium-term clinical results are very encouraging.
Comparing the 40mm as cast and heat-treated bearings, running-in wear was observed for both material groups in the first million cycles, generating wear rates of 2.3 mm3/million cycles and 2.4 mm3/million cycles for the HIPed/solution heat treated and as cast components respectively, indicating no statistical difference (p >
0.9). Under steady-state wear conditions, the combined normal walking wear rate was also similar for both groups, showing 0.48 mm3/106 cycles (p >
0.2). Under simulated fast jogging cycles, the results again showed no statistical difference in wear performance between the two groups (p >
0.3), generating approximately a 10-fold increase in volumetric wear compared to normal walking, showing 4.4 mm3/106 cycles.
Large diameter metal on metal hip bearings have been shown to display exceptionally low wear in vivo. However, as these components are often cast, they may be heat treated to improve homogeneity, although it has been suggested that this may adversely affect wear. Therefore a hip simulator study was commissioned to investigate this further. Multi-station hip simulator testing was carried out on 40 mm diameter high carbon cast cobalt chrome alloy components, all having similar radial clearances (~100mm), surface finishes (0.01mm Ra) and sphericity deviations (<
10mm). Three bearing couples were hot isostatic pressed (HIPed) and solution heat treated, generating a fine carbide structure, and three bearing couples were left as cast, creating a coarse carbide structure. All sockets were mounted in an MTS hip simulator, inclined at 35° to the horizontal, and subjected to standard walking conditions (2450 N max) using 25% bovine serum as a test lubricant. Wear was calculated gravimetrically using temperature controls. Running-in wear was observed for both groups generating a similar combined head and cup mean wear rate of 2.3 mm3/106 cycles. The mean steady-state wear rate (SE) for the as cast and HIPed components was 0.38 (0.13) and 0.57 (0.11) mm3/106 cycles respectively showing no statistical difference (p >
0.2). Wear was generally higher for the cups than the heads. These wear rates are two orders of magnitude lower than published wear rates of metal-UHMWP E under similar conditions and one order of magnitude lower than lightly crosslinked UHMWPE articulating against CoCrMo under the same conditions. In this test, the effect of HIPing and solution heat treatment on metal-metal wear would therefore appear to be insignificant. This is in contrast to the published influences of both bearing diameter and bearing tolerances, i.e. sphericity and radial clearance on the wear of metal-metal hip joints.