The suprascapular nerve is an ideal target for nerve blockade to alleviate shoulder pain given its widespread innervation to the shoulder girdle. Many techniques have been described. To widen the availability of this treatment we investigate whether an anatomical landmark technique can be easily learned by novice injectors to provide efficacious blockade. Five injectors were recruited with varying experience; from the novice medical student to an orthopaedic consultant. Five torsos (10 shoulders) were used. A single page of written instruction and illustration of the Dangoisse landmark technique was provided prior to injection of a Thiel embalmed cadaver bilaterally. A pre-mixed injectate with blue dye was used. Cadavers were dissected and the presence or absence of dye staining reported by 3 observers and a consensus agreement reached. Dissection demonstrated diffuse staining in the suprascapular fossa. 90% of shoulders were found to have adequate staining of the suprascapular nerve directly, or its distal branches, in a manner which would provide adequate anaesthesia. The inter-observer agreement was good (k = 0.73) for staining at the supraspinous fossa and excellent (k=0.87) for staining distally. The technique was easily performed by novice injectors with a 100% success rate. We demonstrate that this technique is reproducible by a range of clinicians to effectively provide anaesthesia of the SScN. The main risks are ineffective block (10% in this series) and of intravascular injection. Within a resource strained healthcare environment greater uptake of this technique is likely to be of benefit to a wider array of patients.
Elective orthopaedic surgery was cancelled early in the COVID-19 pandemic and is currently running at significantly reduced capacity in most institutions. This has resulted in a significant backlog to treatment, with some hospitals projecting that waiting times for arthroplasty is three times the pre-COVID-19 duration. There is concern that the patient group requiring arthroplasty are often older and have more medical comorbidities—the same group of patients advised they are at higher risk of mortality from catching COVID-19. The aim of this study is to investigate the morbidity and mortality in elective patients operated on during the COVID-19 pandemic and compare this to a pre-pandemic cohort. Primary outcome was 30-day mortality. Secondary outcomes were perioperative complications, including nosocomial COVID-19 infection. These operations were performed in a district general hospital, with COVID-19 acute admissions in the same building. Our institution reinstated elective operations using a “Blue stream” pathway, which involves isolation before and after surgery, COVID-19 testing pre-admission, and separation of ward and theatre pathways for “blue” patients. A register of all arthroplasties was taken, and their clinical course and investigations recorded.Aims
Methods
There remains conflicting evidence regarding cortical bone strength
following bisphosphonate therapy. As part of a study to assess the
effects of bisphosphonate treatment on the healing of rat tibial
fractures, the mechanical properties and radiological density of
the uninjured contralateral tibia was assessed. Skeletally mature aged rats were used. A total of 14 rats received
1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium
chloride (control) daily. Stress at failure and toughness of the
tibial diaphysis were calculated following four-point bending tests.Objectives
Methods
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods
Fractures repair by two mechanisms; direct fracture healing and indirect fracture healing via callus formation. Research concerning the effects of bisphosphonate on fracture repair has solely assessed indirect fracture healing. Patients with osteoporosis on bisphosphonates continue to sustain fragility fractures. A proportion of osteoporotic fractures require plate fixation. Bisphosphonates impair osteoclast activity and therefore, may adversely affect direct fracture healing that predominates with plate fixation. Five skeletally mature Sprague-Dawley rats received daily subcutaneous injections of 1mg/kg Ibandronate (IBAN). Similarly, five control rats received saline (CONTROL). Three weeks following commencement of injections a tibial osteotomy was rigidly fixed with compression plating similar to that seen in routine clinical practice. Fracture healing was monitored with radiographs. Six weeks post plate fixation, animals were sacrificed. Radiographs were performed of the extricated tibiae following plate removal. The visibility of the osteotomy site was scored as totally visible, partially visible or absent as previously described. Mechanical testing was conducted on the healing osteotomies via 4-point bending. Fractures healed without visible external callus. In the IBAN group three animals had totally visible osteotomy lines and two had partially visible osteotomy lines. The CONTROL group had three animals with absent osteotomy lines and two with partially visible osteotomy lines. The mean (±SD) stress at failure for the healing tibial osteotomies at 6 weeks was 28.8 (±23.97)MPa in the IBAN group and 37.4(±29.20) MPa in the CONTROL group (p=0.62)
The effect of bisphosphonates on the mechanical properties of the uninjured contra-lateral cortical bone during fracture healing is poorly reported. There remains conflicting evidence with regards the effect of bisphosphonate therapy on cortical bone strength. We assessed the effect of nine weeks of Ibandronate therapy, in a dose known to preserve cancellous bone BMD and strength, on the mechanical properties of the uninjured rat tibial diaphyses using a standardised model of tibial osteotomy and plate fixation. Skeletally mature ex-breeder rats were used. Stress at failure of the tibial diaphyses was measured by a four-point bending test using a custom made jig for rat tibiae. The mechanical strength was compared with radiographic measurements of bone density. Animals received daily subcutaneous injections. 11 rats received 1μg/kg Ibandronate (IBAN) daily and 17 rats received 1ml 0.9% Sodium Chloride (CONTROL) daily. The IBAN group had a statistically significant, p=0.024, higher stress at failure 212.7 (±42.04) MPa compared to the CONTROL group 171.7 (±46.13)MPa. There was a positive correlation between the mechanical strength of bone and the radiological measure of bone density. Osteopenia is known to occur following a fracture even in the contra-lateral limb. This study demonstrates that ibandronate therapy has no detrimental effect and may even increase the strength of uninjured cortical bone during the fracture healing process. The longer term effect of ibandronate on cortical bone especially in relation to the accumulation of mico-damage requires further study. Bisphosphonate effect on the uninjured limb needs to be considered when reporting proportional strength of fracture repair compared to the uninjured limb.
There were more females in our study population (61.2% v 38.8%). Statistical analysis was performed for males and females after adjusting for age, body mass index and pre -op scores.