Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
Bone & Joint Open
Vol. 5, Issue 6 | Pages 464 - 478
3 Jun 2024
Boon A Barnett E Culliford L Evans R Frost J Hansen-Kaku Z Hollingworth W Johnson E Judge A Marques EMR Metcalfe A Navvuga P Petrie MJ Pike K Wylde V Whitehouse MR Blom AW Matharu GS

Aims

During total knee replacement (TKR), surgeons can choose whether or not to resurface the patella, with advantages and disadvantages of each approach. Recently, the National Institute for Health and Care Excellence (NICE) recommended always resurfacing the patella, rather than never doing so. NICE found insufficient evidence on selective resurfacing (surgeon’s decision based on intraoperative findings and symptoms) to make recommendations. If effective, selective resurfacing could result in optimal individualized patient care. This protocol describes a randomized controlled trial to evaluate the clinical and cost-effectiveness of primary TKR with always patellar resurfacing compared to selective patellar resurfacing.

Methods

The PAtellar Resurfacing Trial (PART) is a patient- and assessor-blinded multicentre, pragmatic parallel two-arm randomized superiority trial of adults undergoing elective primary TKR for primary osteoarthritis at NHS hospitals in England, with an embedded internal pilot phase (ISRCTN 33276681). Participants will be randomly allocated intraoperatively on a 1:1 basis (stratified by centre and implant type (cruciate-retaining vs cruciate-sacrificing)) to always resurface or selectively resurface the patella, once the surgeon has confirmed sufficient patellar thickness for resurfacing and that constrained implants are not required. The primary analysis will compare the Oxford Knee Score (OKS) one year after surgery. Secondary outcomes include patient-reported outcome measures at three months, six months, and one year (Knee injury and Osteoarthritis Outcome Score, OKS, EuroQol five-dimension five-level questionnaire, patient satisfaction, postoperative complications, need for further surgery, resource use, and costs). Cost-effectiveness will be measured for the lifetime of the patient. Overall, 530 patients will be recruited to obtain 90% power to detect a four-point difference in OKS between the groups one year after surgery, assuming up to 40% resurfacing in the selective group.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_18 | Pages 1 - 1
1 Dec 2023
Osmani H Nicolaou N Anand S Gower J Metcalfe A McDonnell S
Full Access

Introduction

The knee is the most commonly injured joint in sporting accidents, leading to substantial disability, time off work and morbidity (1). Treatment and assessment vary around the UK (2), whilst there remains a limited number of high-quality randomised controlled trials assessing first time, acute soft tissue knee injuries (3,4). As the clinical and financial burden rises (5), vital answers are required to improve prevention, diagnosis, treatment, rehabilitation, and delivery of care. In association with the James Lind Alliance, this BASK, BOSTAA and BOA supported prioritising exercise was undertaken over a year.

Methods

The James Lind Alliance methodology was followed; a modified nominal group technique was used in the final workshop. An initial survey invited patients and healthcare professionals to submit their uncertainties regarding soft tissue knee injury prevention, diagnosis, treatment, rehabilitation, and delivery of care. Seventy-four questions were formulated to encompass common concerns. These were checked against best available evidence. Following the interim survey, 27 questions were taken forward to the final workshop in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritisation by groups of healthcare professionals, patients, and carers.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 34 - 34
17 Nov 2023
Elliott M Rodrigues R Hamilton R Postans N Metcalfe A Jones R McGregor A Arvanitis T Holt C
Full Access

Abstract

Objectives

Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in biomechanical studies are often small and there is limited ways to share or combine data from across institutions or studies. This is essential for applying modern machine learning methods, where large, complex datasets can be used to identify patterns in the data. Using these data-driven approaches, it could be possible to better predict the optimal interventions for patients at an early stage, potentially avoiding pain and inappropriate surgery or rehabilitation. In this project we developed a prototype database platform for combining and sharing biomechanics datasets. The database includes methods for importing and standardising data and associated variables, to create a seamless, searchable combined dataset of both healthy and knee OA biomechanics.

Methods

Data was curated through calls to members of the OATech Network+ (https://www.oatechnetwork.org/). The requirements were 3D motion capture data from previous studies that related to analysing the biomechanics of knee OA, including participants with OA at any stage of progression plus healthy controls. As a minimum we required kinematic data of the lower limbs, plus associated kinetic data (i.e. ground reaction forces). Any additional, complementary data such as EMG could also be provided. Relevant ethical approvals had to be in place that allowed re-use of the data for other research purposes. The datasets were uploaded to a University hosted cloud platform. The database platform was developed using Javascript and hosted on a Windows server, located and managed within the department.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 39 - 39
17 Nov 2023
FARHAN-ALANIE M Gallacher D Kozdryk J Craig P Griffin J Mason J Wall P Wilkinson M Metcalfe A Foguet P
Full Access

Abstract

Introduction

Component mal-positioning in total hip replacement (THR) and total knee replacement (TKR) can increase the risk of revision for various reasons. Compared to conventional surgery, relatively improved accuracy of implant positioning can be achieved using computer assisted technologies including navigation, patient-specific jigs, and robotic systems. However, it is not known whether application of these technologies has improved prosthesis survival in the real-world. This study aimed to compare risk of revision for all-causes following primary THR and TKR, and revision for dislocation following primary THR performed using computer assisted technologies compared to conventional technique.

Methods

We performed an observational study using National Joint Registry data. All adult patients undergoing primary THR and TKR for osteoarthritis between 01/04/2003 to 31/12/2020 were eligible. Patients who received metal-on-metal bearing THR were excluded. We generated propensity score weights, using Sturmer weight trimming, based on: age, gender, ASA grade, side, operation funding, year of surgery, approach, and fixation. Specific additional variables included position and bearing for THR and patellar resurfacing for TKR. For THR, effective sample sizes and duration of follow up for conventional versus computer-guided and robotic-assisted analyses were 9,379 and 10,600 procedures, and approximately 18 and 4 years, respectively. For TKR, effective sample sizes and durations of follow up for conventional versus computer-guided, patient-specific jigs, and robotic-assisted groups were 92,579 procedures over 18 years, 11,665 procedures over 8 years, and 644 procedures over 3 years, respectively. Outcomes were assessed using Kaplan-Meier analysis and expressed using hazard ratios (HR) and 95% confidence intervals (CI).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 75 - 75
7 Aug 2023
Mackay N Bausch N McGoldrick N Krishnan H Shah F Smith N Thompson P Metcalfe A Spalding T
Full Access

Abstract

Background

Osteochondral allograft (OCA) transplantation is a clinically and cost-effective option for symptomatic cartilage defects. In 2017 we initiated a program for OCA transplantation for complex chondral and osteochondral defects as a UK tertiary referral centre.

Aim

To characterise the complications, re-operation rate, graft survivorship and clinical outcomes of knee OCA transplantation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 87 - 87
7 Aug 2023
Ahmed I Dhaif F Khatri C Parsons N Hutchinson C Staniszewska S Price A Metcalfe A
Full Access

Abstract

Background

Meniscal tears affect 222 per 100,000 of the population and can be managed non-operatively or operatively with an arthroscopic partial meniscectomy (APM), meniscal repair or meniscal transplantation. The purpose of this review is to summarise the outcomes following treatment with a meniscal tear and explore correlations between outcomes.

Methodology

A systematic review was performed of MEDLINE, EMBASE, AMED and the Cochrane Central Register of Controlled Trials to identify prospective studies describing the outcomes of patients with a meniscal tear. Comparisons were made of outcomes between APM and non-operative groups. Outcomes were graphically presented over time for all treatment interventions. Pearson's correlations were calculated between outcome timepoints.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 88 - 88
7 Aug 2023
Ahmed I Dhaif F Khatri C Parsons N Hutchinson C Price A Staniszewska S Metcalfe A
Full Access

Abstract

Introduction

Recent research has questioned the role of arthroscopic meniscectomy in patients with a meniscal tear leading to the development of treatment recommendations for these patients. There is a clear need to understand patient perceptions of living with a meniscal tear in order to plan future research and treatment guidelines.

Aims

To explore the experiences and expectations of treatment of young patients with a meniscal tear of the knee


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 62 - 62
7 Aug 2023
Khatri C Harrison C Scott C Clement N MacDonald D Metcalfe A Rodrigues J
Full Access

Abstract

Background

The Forgotten Joint Score (FJS) is a 12-item patient reported outcome measurement instrument. It was developed with classical test theory, without testing assumptions such as unidimensionality (all items reflect one underlying factor), appropriate weighting of each item, no differential item function (DIF, different groups answer the same way), and monotonicity (people with higher function have higher score). We applied item response theory (IRT) to improve the validity of FJS to contemporary standards to optimise it for ongoing use.

Research Questions

Does the FJS reflect one latent trait? Can an IRT model be fitted to the FJS to provide interval-scaled measurement?


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 89 - 89
7 Aug 2023
Ahmed I Dhaif F Bowes M Parsons N Hutchinson C Staniszewska S Price A Metcalfe A
Full Access

Abstract

Introduction

Previous research has demonstrated no clinically significant benefit of arthroscopic meniscectomy in patients with a meniscal tear, however, patients included in these studies would not meet current treatment recommendations. Prior to further randomised controlled trials (RCTs) research is needed to understand a younger population in more detail.

Aim

To describe the baseline characteristics of patients with a meniscal tear and explore any association between baseline characteristics and outcome.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 12 - 12
7 Aug 2023
Osmani H Nicolaou N Anand S Metcalfe A McDonnell S
Full Access

Abstract

Introduction

The knee is the most commonly injured joint in sporting accidents. They cause substantial disability, time off work and long-term problems. There remains a limited number of high-quality randomised controlled trials assessing first time, acute soft tissue knee injuries. Key areas requiring answers include prevention, diagnosis, treatment, rehabilitation and delivery of care. In association with the James Lind Alliance, this BASK, BOSTAA and BOA supported prioritising exercise was undertaken over a year.

Methodology

The James Lind Alliance methodology was followed. An initial survey invited patients and healthcare professionals to submit their uncertainties regarding soft tissue knee injury prevention, diagnosis, treatment, rehabilitation and delivery of care. Over 1000 questions were submitted. Seventy-four questions were formulated to encompass common concerns. These were checked against best available evidence. Following the interim survey, 27 questions were taken forward to the final workshop in January 2023, where they were discussed, ranked and scored in multiple rounds of prioritisation by groups of healthcare professionals, patients and carers.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 43 - 43
1 Jul 2022
Bailey M Dewan V Al-Hourani K Metcalfe A Hing C
Full Access

Abstract

Introduction

The paediatric population present unique challenges to the knee surgeon, particularly when treating recurrent patellofemoral instability(PFI), the management of which is poorly standardised. Through the EPPIC BASK National Trainee Collaborative, we aimed to identify which procedures (and in which combination) are being used to surgically manage recurrent PFI in skeletally immature patients across the UK.

Methods

A retrospective national service evaluation via a trainee collaborative analysing local trust data between 1st January 2014 and 31st December 2019. Data from institutions registered for EPPIC was compiled and compared to the national guidelines for adults.


Abstract

Design

A pragmatic, multicentre, parallel-group, randomised controlled trial to determine whether the intervention is superior to comparator

Setting

20 NHS Hospitals


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 28 - 28
1 Dec 2021
Ahmed I Moiz H Carlos W Edwin C Staniszewska S Parsons N Price A Hutchinson C Metcalfe A
Full Access

Abstract

Objectives

Magnetic resonance imaging (MRI) is one of the most widely used investigations for knee pain as it provides detailed assessment of the bone and soft tissues. The aim of this study was to report the frequency of each diagnosis identified on MRI scans of the knee and explore the relationship between MRI results and onward treatment.

Methods

Consecutive MRI reports from a large NHS trust performed in 2017 were included in this study. The hospital electronic system was consulted to identify whether a patient underwent x-ray prior to the MRI, attended an outpatient appointment or underwent surgery.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 16 - 16
1 Aug 2021
Gupta V Thomas C Parsons H Metcalfe A Foguet P King R
Full Access

Total hip arthroplasty (THA) is one of the most successful surgical procedures of modern times, however debate continues as to the optimal orientation of the acetabular component and how to reliably achieve this. We hypothesised that functional CT-based planning with patient specific instruments using the Corin Optimised Positioning System (OPS) would provide more accurate component alignment than the conventional freehand technique using 2D templating.

A pragmatic single-centre, patient-assessor blinded, randomised control trial of patients undergoing THA was performed. 54 patients (age 18–70) were recruited to either OPS THA or conventional THA. All patients received a cementless acetabular component. Patients in both arms underwent pre- and post-operative CT scans, and four functional x-rays (standing and seated). Patients in the OPS group had a 3D surgical plan and bespoke guides made. Patients in the conventional group had a surgical plan based on 2D templating x-rays, and the pre-operative target acetabular orientation was recorded by the surgeon. The primary outcome measure was the difference between planned and achieved acetabular anteversion and was determined by post-operative CT scan performed at 6 weeks. Secondary outcome measures included Hip disability and Osteoarthritis Outcome Score (HOOS), Oxford Hip Score (OHS), EQ-5D and adverse events.

In the OPS group, the achieved acetabular anteversion was within 10° of the plan in 96% of cases, compared with only 76% of cases in the conventional group. For acetabular inclination, the achieved position in the OPS group was within 10° of the plan in 96% of cases, compared with in only 84% of cases in the conventional group. These differences were not statistically significant. The clinical outcomes were comparable between the two groups.

Large errors in acetabular orientation appear to be reduced when functional CT-based planning and patient-specific instruments are used compared to the freehand technique, but no statistically significant differences were seen in the difference between planned and achieved angles. Larger studies are needed to analyse this in more detail and to determine whether the reduced numbers of outliers lead to improved clinical outcomes.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 830 - 839
1 May 2021
Ahmed I Chawla A Underwood M Price AJ Metcalfe A Hutchinson CE Warwick J Seers K Parsons H Wall PDH

Aims

Many surgeons choose to perform total knee arthroplasty (TKA) surgery with the aid of a tourniquet. A tourniquet is a device that fits around the leg and restricts blood flow to the limb. There is a need to understand whether tourniquets are safe, and if they benefit, or harm, patients. The aim of this study was to determine the benefits and harms of tourniquet use in TKA surgery.

Methods

We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled trials, and trial registries up to 26 March 2020. We included randomized controlled trials (RCTs), comparing TKA with a tourniquet versus without a tourniquet. Outcomes included: pain, function, serious adverse events (SAEs), blood loss, implant stability, duration of surgery, and length of hospital stay.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 828 - 829
1 May 2021
Ahmed I Chawla A Underwood M Price AJ Metcalfe A Hutchinson CE Warwick J Seers K Parsons H Wall PDH


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 32 - 32
1 Feb 2020
Maag C Peckenpaugh E Metcalfe A Langhorn J Heldreth M
Full Access

Introduction

Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of tibial implants to bone analogs [1]. This study aims to investigate the effect of surgical alignment on fixation failure load after physiological loading.

Methods

Alignment specific physiological loading was determined using telemetric tibial implant data from Orthoload [2] and applying it to a validated finite element lower limb model developed by the University of Denver [3]. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the lower limb model, hip and ankle external boundary conditions were applied to the ATTUNE® knee system for both MA and AA techniques. The 6 degree of freedom kinetics and kinematics for each activity were then extracted from the model for each alignment type. Mechanical alignment (MA) was considered to be neutral alignment (0° Hip Knee Ankle Angle (HKA), 0° Joint Line (JL)) and AA was chosen to be 3° varus HKA, 5° JL. It is important not to exceed the limits of safety when using AA as such it is noted that DePuy Synthes recommends staying within 3º varus HKA and 3º JL. The use of 5º JL was used in this study to account for surgical variation [Depuy-Synthes surgical technique DSUS/JRC/0617/2179].

Following a similar method described by Maag et al [1] ATTUNE tibial implants were cemented into a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. Tibial implant constructs were then subjected to intra-operative ROM/stability evaluation, followed by a hyperextension activity until 15 minutes of cement curing time, and finally 3 additional ROM/stability evaluations were performed using an AMTI VIVO simulator. The alignment specific loading parameters were then applied to the tibial implants using an AMTI VIVO simulator. Each sample was subjected to 50,000 DKB cycles and 120,000 SD cycles at 0.8 Hz in series; approximating 2 years of physiological activity. After physiological loading the samples were tested for fixation failure load by axial pull off.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 63 - 63
1 Feb 2020
Darwish O Langhorn J Van Citters D Metcalfe A
Full Access

Introduction

Patella implant research is often overlooked despite its importance as the third compartment in a total knee replacement. Wear and fracture of resurfaced patellae can lead to implant failure and revision surgeries. New simulation techniques have been developed to analyze the performance of patella designs as they interact with the trochlear groove in total knee components, and clinical validation is sought to ensure that these simulations are appropriate. The objective of this work was to subject several patellar designs to patient-derived deep knee bend (DKB) inputs on a 6 degree of freedom (DOF) simulator and compare the resultant wear scars to clinical retrievals.

Materials and Methods

Previously reported DKB profiles were developed based on in vivo patellofemoral data and include a wide range of patient variability. The profiles chosen for this body of work were based on the stress in the patellar lateral facet; maximizing this stress whilst maintaining the ability to run the profile stably on the simulator. Load/kinematic profiles were run on three patellar designs (n=3 per group) for 220,000 cycles at 0.8Hz on an AMTI VIVO joint simulator. A comparison cohort of clinically retrieved devices of the same design was identified in an IRB-approved database. Exclusion criteria included gross delamination, cracking secondary to oxidation, and surgeon-reported evidence of malalignment leading to mal-tracking. 29 Patellae were included for analysis: PFC® All Poly (n=14), ATTUNE® Anatomic (n=6), and ATTUNE®Medialized Dome (n=9). Mean in vivo duration was 70.1 months. Patellae were analyzed under optical microscope in large-depth-of-field mode to map the surface damage profile. Burnishing ‘heat-maps’ were generated for retrievals and simulated patellae by normalizing the patellar size and overlaying silhouettes from each component of the same type using a custom-developed MatLAB code.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 131 - 131
1 Apr 2019
Peckenpaugh E Maag C Metcalfe A Langhorn J Heldreth M
Full Access

Introduction

Aseptic loosening of total knee replacements is a leading cause for revision. It is known that micromotion has an influence on the loosening of cemented implants though it is not yet well understood what the effect of repeated physiological loading has on the micromotion between implants and cement mantle. This study aims to investigate effect of physiological loading on the stability of tibial implants previously subjected to simulated intra-operative lipid/marrow infiltration.

Methods

Three commercially available fixed bearing tibial implant designs were investigated in this study: ATTUNE®, PFC SIGMA® CoCr, ATTUNE® S+. The implant designs were first prepared using a LMI implantation process. Following the method described by Maag et al tibial implants were cemented in a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. The samples were subjected to intra- operative range of motion (ROM)/stability evaluation using an AMTI VIVO simulator, then a hyperextension activity until 15 minutes of cement cure time, and finally 3 additional ROM/stability evaluations were performed.

Implant specific physiological loading was determined using telemetric tibial implant data from Orthoload and applying it to a validated FE lower limb model developed by the University of Denver. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the above model, 6 degree of freedom kinetics and kinematics for each activity was determined for each posterior stabilized implant design.

Prior to loading, the 3-D motion between tibial implant and bone analog (micromotion) was measured using an ARAMIS Digital Image Correlation (DIC) system. Measurement was taken during the simulated DKB at 0.25Hz using an AMTI VIVO simulator while the DIC system captured images at a frame rate of 10Hz. The GOM software calculated the distance between reference point markers applied to the posterior implant and foam bone. A Matlab program calculated maximum micromotion within each DKB cycle and averaged that value across five cycles.

The implant specific loading parameters were then applied to the three tibial implant designs. Using an AMTI VIVO simulator each sample was subjected to 50,000 DKB and 120,000 SD cycles at 0.8Hz in series; equating to approximately 2 years of physiological activity. Following loading, micromotion was measured using the same method as above.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 39 - 39
1 Jan 2019
Williams D Metcalfe A Madete J Whatling G Kempshall P Forster M Holt C
Full Access

One of the main surgical goals when performing a total knee replacement (TKR) is to ensure the implants are properly aligned and correctly sized; however, understanding the effect of alignment and rotation on the biomechanics of the knee during functional activities is limited. Cardiff University has unique access to a group of local patients who have relatively high frequency of poor alignment, and early failure. This provides a rare insight into how malalignment of TKR's can affect patients from a clinical and biomechanical point of view to determine how to best align a TKR. This study aims to explore relationship clinical surgical measurements of Implant alignment with in-vivo joint kinematics.

28 patient volunteers (with 32 Kinemax (Stryker) TKR's were recruited. Patients undertook single plane video fluoroscopy of the knee during a step-up and step-down task to determine TKR in-vivo kinematics and centre of rotation (COR). Joint Track image registration software (University of Florida, USA) was used to match CAD models of the implant to the x-ray images. Hip-Knee-Ankle (HKA) was measured using long-leg radiographs to determine frontal plane alignment.

Posterior tibial slope angle was calculated using radiographs. An independent sample t-test was used to explore differences between neutral (HKA:-2° to 2°), varus (≥2°) and valgus alignment (≤-2°) groups. Other measures were explored across the whole cohort using Pearson's correlations (SPSS V23).

There was found to be no statistical difference between groups or correlations for HKA. The exploratory analysis found that tibial slope correlated with Superior/Inferior translation ROM during step up (r=−0.601, p<0.001) and step down (r=−.512, p=0.03) the position of the COR heading towards the lateral (r=−.479, p=0.006) during step down.

Initial results suggest no relationship between frontal plane alignment and in-vivo. Exploratory analyses have found other relationships that are worthy of further research and may be important in optimizing function.