Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.Objectives
Methods
Osteoporosis and bone fractures lead to immobility, chronic pain and high patient care costs. Mesenchymal stem cells (MSCs) from postmenopausal women have a slower growth rate and osteogenic differentiation ability causing lower bone density and reduced fracture healing capacity compared to MSCs from premenopausal women. Cellular movement and relocalisation are necessary for many physiologic properties. Local MSCs from injured tissues and circulating MSCs are involved in fracture healing. Cytokines and chemokines such as SDF-1 and its receptor CXCR4 play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. This study investigated the effect of CXCR4 over-expression on the migration of MSCs from ovariectomised, normal and young rats. MSCs were harvested from femora of young, normal and OVX rats, genetically modified to over-express CXCR4and put in a Boyden chamber to establish their migration towards SDF-1. This was compared to the non-transfected stem cells.Background
Methods
Parathyroid hormone-related peptide (PTHrP) has been shown to be an important regulator of bone remodelling1. The aim of this study was to investigate the effect of the N-terminal domain of PTHrP (1–36) on osteogenic and angiogenic gene expression in human osteoblasts (HOB) and human bone marrow stromal cells (hBMSCs). Primary hBMSC's and HOBs were cultured in standard or osteogenic media with different concentrations of PTHrP, either continuously for 8, 24, 48 h and 9 days, or with 3 cycles of intermittent exposure (24 h with PTHrP, 24 h without) over 6 days. Cell lysates were then processed for analysis of gene expression. Expression of the osteogenic markers runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP) and Collagen 1, and the angiogenic marker; vascular endothelial growth factor (VEGF), were measured.Introduction
Materials and Methods
20-70% of patients need blood transfusion postoperatively. There remain safety concerns regarding allogenic blood transfusion. Tranexamic acid (TA) is a synthetic antifibrinolytic agent that has been successfully used to stop bleeding in other specialties. We applied TA topically prior to the wound closure to find out the effect on blood loss as well as need for subsequent blood transfusion. This method of administration is quick, easy, has less systemic side effect and provides a higher concentration at the bleeding site. A double blind randomised controlled trial of 154 patients who underwent unilateral primary cemented total knee replacement. Patients were randomised into tranexamic acid group (1g drug mixed with saline to make up 20mls) or placebo (20ml 0.9% saline). The administration technique and drain protocol was standardised for all patients. Drain output was measured at 24 hours, and both groups compared for need of Blood transfusion. Outcome measures - blood loss, transfusion, complications, Euroqol and Oxford Knee Score.PURPOSE OF STUDY
MATERIALS AND METHODS
We investigated the hypothesis that autologous bone marrow stromal cells (BMSC) sprayed on the surface of acetabular cups would improve bone formation and bone implant contact. Total hip replacements were implanted in 11 sheep, randomly assigned to receive either acetabular implants sprayed with autologous BMSCs suspended in fibrin (study group) or fibrin only (control group). Sheep were sacrificed after six months and the acetabulum with the implant was retrieved and prepared for undcalcified histology. Implant bone contact in both groups was compared, by microscopically noting the presence or absence of new bone or fibrous tissue along the implant at 35 consecutive points (every 1000 μm). The observers undertaking the histological analysis were blinded. Significantly increased bone implant contact was noted in the BMSC treated group 30.71% ± 2.95 compared to the control group 5.14% ± 1.67 (p = 0.014). The mean thickness of fibrous tissue in contact with the implant was greater at the periphery 887.21mm ± 158.89 and the dome 902.45mm ± 80.67 of the implant in the control group compared to the BMSC treated group (327.49mm ± 20.38 at the periphery and 739.1 mm ±173.72 at the centre). Conversely direct bone contact with the implant surface was significantly greater around the cups with stem cells. BMSC sprayed on surface of implants improves bone implant contact. Spraying acetabular cups using stem cells could be used in humans where acetabular bone contact is compromised such as in revision procedures.
Despite advances in total hip arthroplasty, failure of acetabular cup remains a concern. The role of bone marrow stromal cells (BMSCs) to aid osseointegration of orthopaedic implants have been recently studied. We investigated the hypothesis that autologous BMSCs sprayed on the surface of acetabular cups would improve bone formation and bone implant contact. Total hip replacements were implanted in 11 sheep, randomly assigned to receive either acetabular implants sprayed with autologous BMSCs suspended in fibrin (study group) or fibrin only (control group). Sheep were sacrificed after six months and the acetabulum with the implant was retrieved and prepared for undecalcified histology. Implant bone contact in both groups was compared microscopically, by noting the presence or absence of new bone or fibrous tissue along the implant at 35 consecutive points (every 1000 μm). The observers undertaking the histological analysis were blinded. Significantly increased bone implant contact was noted in the BMSC treated group 30.71% ± 2.95 compared to the control group 5.14% ± 1.67 (p = 0.014). The mean thickness of fibrous tissue in contact with the implant was greater at the periphery 887.21mm ± 158.89 and the dome 902.45mm ± 80.67 of the implant in the control group compared to the BMSC treated group (327.49mm ± 20.38 at the periphery and 739.1 mm ± 173.72 at the centre). Conversely, direct bone contact with the implant surface was significantly greater around the cups with BMSCs. Our data demonstrate that BMSC sprayed on surface of acetabular implants improves bone implant contact. Spraying acetabular cups using stem cells could be used in humans where acetabular bone contact is compromised such as in revision procedures.