header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

OSSEOINTEGRATION OF ACETABULAR CUPS IN TOTAL HIP ARTHROPLASTY: THE ROLE OF BONE MARROW STROMAL CELLS



Abstract

Despite advances in total hip arthroplasty, failure of acetabular cup remains a concern. The role of bone marrow stromal cells (BMSCs) to aid osseointegration of orthopaedic implants have been recently studied. We investigated the hypothesis that autologous BMSCs sprayed on the surface of acetabular cups would improve bone formation and bone implant contact.

Total hip replacements were implanted in 11 sheep, randomly assigned to receive either acetabular implants sprayed with autologous BMSCs suspended in fibrin (study group) or fibrin only (control group). Sheep were sacrificed after six months and the acetabulum with the implant was retrieved and prepared for undecalcified histology. Implant bone contact in both groups was compared microscopically, by noting the presence or absence of new bone or fibrous tissue along the implant at 35 consecutive points (every 1000 μm). The observers undertaking the histological analysis were blinded.

Significantly increased bone implant contact was noted in the BMSC treated group 30.71% ± 2.95 compared to the control group 5.14% ± 1.67 (p = 0.014). The mean thickness of fibrous tissue in contact with the implant was greater at the periphery 887.21mm ± 158.89 and the dome 902.45mm ± 80.67 of the implant in the control group compared to the BMSC treated group (327.49mm ± 20.38 at the periphery and 739.1 mm ± 173.72 at the centre). Conversely, direct bone contact with the implant surface was significantly greater around the cups with BMSCs.

Our data demonstrate that BMSC sprayed on surface of acetabular implants improves bone implant contact. Spraying acetabular cups using stem cells could be used in humans where acetabular bone contact is compromised such as in revision procedures.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org