Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 90 - 90
1 May 2016
Zheng G Nolte L Jaramaz B
Full Access

Introduction

In clinical routine surgeons depend largely on 2D x-ray radiographs and their experience to plan and evaluate surgical interventions around the knee joint. Numerous studies have shown that pure 2D x-ray radiography based measurements are not accurate due to the error in determining accurate radiography magnification and the projection characteristics of 2D radiographs. Using 2D x-ray radiographs to plan 3D knee joint surgery may lead to component misalignment in Total Knee Arthroplasty (TKA) or to over- or under-correction of the mechanical axis in Lower Extremity Osteotomy (LEO).

Recently we developed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation system called “iLeg” for TKA or LEO. Based on a patented X-ray image calibration cage and a unique 2D–3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of cadavers.

Methods

CT data of 12 cadavers (24 legs) were used in the study. For each leg, two DRRs, one from the antero-posterior (AP) direction and the other from the later-medial (LM) direction, were generated following clinical requirements and used as the input to the iLeg software. The 2D–3D reconstruction was then done by non-rigidly matching statistical shape models (SSMs) of both femur and tibia to the DRRs (seee Fig. 1).

In order to evaluate the 2D–3D reconstruction accuracy, we conducted a semi-automatic segmentation of all CT data using the commercial software Amira (FEI Corporate, Oregon, USA). The reconstructed surface models of each leg were then compared with the surface models segmented from the associated CT data. Since the DRRs were generated from the associated CT data, the surface models were reconstructed in the local coordinate system of the CT data. Thus, we can directly compare the reconstructed surface models with the surface models segmented from the associated CT data, which we took as the ground truth. Again, we used the software Amira to compute distances from each vertex on the reconstructed surface models to the associated ground truth models.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 13 - 13
1 Feb 2016
Jaramaz B Nikou C Casper M Grosse S Mitra R
Full Access

Patellofemoral arthroplasty (PFA) is a delicate and challenging procedure. A PFA application has been developed for the Navio semi-active robotic platform (“NavioPFA”), to facilitate both planning and bone preparation. NavioPFA combines image-free navigation and planning with robotically assisted bone shaping, and is open to any implant design, provided that the feasibility and accuracy is confirmed in sawbones and cadaver tests. In this abstract we describe the accuracy tests of NavioPFA, with results for four different implant designs. The accuracy of prosthesis placement with Navio is evaluated by independent measurements that compare the final placement to the planned position.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 33 - 33
1 Feb 2016
Gregori A Smith J Picard F Lonner J Jaramaz B
Full Access

Utilisation of unicondylar knee arthroplasty (UKA) has been limited due in part to high revision rates. Only 8% of knee arthroplasty surgeries completed in England and Wales are UKAs. It is reported that the revision rate at 9 years for Total Knee Arthroplasty (TKA) was 3% compared to 12% for UKAs. In the last decade semi active robots have been developed to be used for UKA procedures. These systems allow the surgeon to plan the size and orientation of the tibial and femoral component to match the patient's specific anatomy and to optimise the balancing the soft tissue of the joint. The robotic assistive devices allow the surgeon to execute their plan accurately removing only ‘planned’ bone from the predefined area. This study investigates the accuracy of an imageless navigation system with robotic control for UKA, reporting the errors between the ‘planned’ limb and component alignment with the post-operative limb and component alignment using weight bearing long leg radiographs. We prospectively collected radiographic data on 92 patients who received medial UKA using an imageless robotic assisted device across 4 centres (4 surgeons). This system is CT free, so relies on accurate registration of intra-operative knee kinematic and anatomic landmarks to determine the mechanical and rotational axis systems of the lower limb. The surface of the condylar is based on a virtual model of the knee created intra-operatively by ‘painting’ the surface with the tip of a tracked, calibrated probe. The burring mechanism is robotically controlled to prepare the bone surface and remove the predefined volume of bone. The study shows the 89% of the patients' post-operative alignment recorded by the system was within 30 of the planned coronal mechanical axis alignment. The RMS error was 1.980. The RMS errors between the robotic system's implant plan and the post-operative radiographic implant position was; femoral coronal alignment (FCA) 2.6o, tibial coronal alignment (TCA) 2.9o and tibial slope (TS) 2.9o. In conclusion, the imageless robotic surgical system for UKA accurately prepared the bone surface of the tibia and femur which resulted in low errors when comparing planned and achieved component placement. This resulted in a high level of accuracy in the planned coronal mechanical axis alignment compared to that measured on post-operative radiographs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 30 - 30
1 Feb 2016
Zheng G Akcoltekin A Schumann S Nolte L Jaramaz B
Full Access

Recently we developed a personalised X-ray reconstruction-based planning and post-operative treatment evaluation system called iLeg for total knee arthroplasty or lower extremity osteotomy. Based on a patented X-ray image calibration cage and a unique 2D-3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of 12 cadavers (24 legs). Our experimental results demonstrated an overall reconstruction accuracy of 1.3±0.2mm.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 38 - 38
1 Feb 2016
Khare R Jaramaz B
Full Access

Postoperative radiological assessment is used to evaluate the success of knee replacement procedures. Load-bearing long-standing anterior-posterior (AP) x-rays are typically used for this assessment. For knee replacement procedures the five landmarks that are identified are: 1) hip centre; 2) femoral knee centre; 3) tibial knee centre; 4) medial malleolus; and 5) lateral malleolus. These landmarks are used to identify the femoral and tibial reference mechanical axes. However, variations in the x-ray acquisition process and foot rotation can lead to errors in this assessment. In the past, researchers have studied the effect of foot rotation and flexion on estimation of knee alignment. In our study, the use of digitally reconstructed radiographs (DRRs) allows us to vary the x-ray acquisition parameters and observe the effect of these changes to estimations of the mechanical axes. We also measured the inter-user variability in these measurements. Our results show that AP x-rays can be used to accurately estimate the femoral and tibial mechanical axes.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 13 - 13
1 Oct 2014
Wallace D Gregori A Picard F Bellemans J Lonner J Marquez R Smith J Simone A Jaramaz B
Full Access

Unicondylar knee arthroplasty (UKA) is growing in popularity with an increase in utilisation. As a less invasive, bone preserving procedure suitable for knee osteoarthritic patients with intact cruciate ligaments and disease confined to one compartment of the knee joint. The long term survival of a UKA is dependent on many factors, including the accuracy of prosthesis implantation and soft tissue balance. Robotic assisted procedures are generally technically demanding, can increase the operation time and are associated with a learning curve. The learning curve for new technology is likely to be influenced by previous experience with similar technologies, the frequency of use and general experience performing the particular procedure. The purpose of this study was to determine the time to achievement of a steady state with regards to surgical time amongst surgeons using a novel hand held robotic device.

This study examined consecutive UKA cases which used a robotic assistive device from five surgeons. The surgeons had each performed at least 15 surgeries each. Two of the surgeons had previous experience with another robotic assistive device for UKA. All of the surgeons had experience with conventional UKA. All of the surgeons have used navigation for other knee procedures within their hospital. The system uses image free navigation with infrared optical tracking with real time feedback. The handheld robotic assistive system for UKA is designed to enable precision of robotics in the hands of the surgeon. The number of surgeries required to reach ‘steady state’ surgical time was calculated as the point in which two consecutive cases were completed within the 95% confidence interval of the surgeon's ‘steady state’ time.

The average surgical time (tracker placement to implant trial acceptance phase) from all surgeons across their first 15 cases was 56.8 minutes (surgical time range: 27–102 minutes). The average improvement was 46 minutes from slowest to quickest surgical times. The ‘cutting’ phase was reported as decreasing on average by 31 minutes. This clearly indicates the presence of a learning curve. The surgeons recorded a significant decrease in their surgical time where the most improvement was in the process of bone cutting (as opposed to landmark registration, condyle mapping and other preliminary or planning steps). There was a trend towards decreasing surgical time as case numbers increase for the group of five surgeons. On average it took 8 procedures (range 5–11) to reach a steady state surgical time. The average steady state surgical time was 50 minutes (range 37–55 minutes).

In conclusion, the average operative time was comparable with clinical cases reported using other robotic assistive devices for UKA. All five surgeons using the novel handheld robotic-assisted orthopaedic system for UKA reported significant improvement in bone preparation and overall operative times within the first 15 cases performed, reaching a steady state in surgical times after a mean of 8 cases. Therefore, this novel handheld device has a similar learning curve to other devices on the market.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 25 - 25
1 Oct 2014
Picard F Gregori A Bellemans J Lonner J Smith J Gonzales D Simone A Jaramaz B
Full Access

For patients suffering from osteoarthritis confined to one compartment of the knee joint, a successful unicondylar knee arthroplasty (UKA) has demonstrated an ability to provide pain relief and restore function while preserving bone and cruciate ligaments that a total knee arthroplasty (TKA) would sacrifice. Long-term survival of UKA has traditionally been inconsistent, leading to decreased utilisation in favour of alternative surgical treatment. Robot-assisted UKA has demonstrated an ability to provide more consistent implantation of UKA prosthesis, with the potential to increase long-term survivorship.

This study reports on 65 patients undergoing UKA using an image-free, handheld robotic assistive navigation system. The condylar surface was mapped by the surgeon intra-operatively using a probe to capture a 3-dimensional representation of the area of the knee joint to be replaced. The intra operative planning phase allows the surgeon to determine the size and orientation of the femoral and tibial implant to suit the patients’ anatomy. The plan sets the boundaries of the bone to be removed by the robotic hand piece. The system dynamically adjusts the depth of bone being cut by the bur to achieve the desired result. The planned mechanical axis alignment was compared with the system's post-surgical alignment and to post-operative mechanical axis alignment using long leg, double stance, weight bearing radiographs.

All 65 knees had knee osteoarthritis confined to the medial compartment and UKA procedures were completed using the handheld robotic assistive navigation system. The average age and BMI of the patient group was 63 years (range 45–82 years) and 29 kg/m2 (range 21–37 kg/m2) respectively. The average pre-operative deformity was 4.5° (SD 2.9°, Range 0–12° varus). The average post-operative mechanical axis deformity was corrected to 2.1° (range 0–7° varus). The post-operative mechanical axis alignment in the coronal plane measured by the system was within 1° of intra-operative plan in 91% of the cases. 3 out of 6 of the cases where the post-operative alignment was greater than 1° resulted due to an increase in the thickness of the tibia prosthesis implanted. The average difference between the ‘planned’ mechanical axis alignment and the post-operative long leg, weight bearing mechanical axis alignment was 1.8°. The average Oxford Knee Score (old version) pre and post operation was 38 and 24 respectively, showing a clinical and functional improvement in the patient group at 6 weeks post-surgery.

The surgical system allowed the surgeons to precisely plan a UKA and then accurately execute their intra operative plan using a hand held robotically assisted tool. It is accepted that navigation and robotic systems have a system error of about 1° and 1mm. Therefore, this novel device recorded accurate post-operative alignment compared to the ‘planned’ post-operative alignment. The patients in this group have shown clinical and functional improvement in the short term follow up. The importance of precision of component alignments while balancing existing soft-tissue structures in UKA has been documented. Utilisation of robotic-assisted devices may improve the accuracy and long-term survivorship UKA procedure.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 74 - 74
1 Aug 2013
Jaramaz B Picard F Gregori A
Full Access

NavioPFS™ unicondylar knee replacement (UKR) system combines CT-free planning and navigation with robotically assisted bone preparation. In the planning procedure, all relevant anatomic information is collected under navigation, either directly with the point probe or by kinematic manipulation. In addition to key anatomic landmarks and the maps of the articulating surfaces of the femur and tibia, kinematic assessment of the joint laxity is performed. Relative positions of femur and tibia are collected through the flexion/extension range, with the pressure applied to fully stretch the collateral ligament on the operative side.

The planning procedure involves three stages: (1) the implant sizing and initial placement,(2) balancing of the gap on the operative side and (3) evaluating the contact points for the recorded flexion data and the planned placement of implants. In the gap balancing stage, the implants are repositioned until they allow for a positive gap, preferably uniform, throughout the entire range of flexion. UKR was planned and prepared on six cadaver knees with the help of NavioPFS system. All knees were normal without any signs of osteoarthritis. Two surgeons have performed medial UKR (4+2), and the bones were prepared using the NavioPFS handheld robotic tool.

Postoperatively, we have re-used the data collected during the planning procedure to compare the kinematic (gap balancing) performance of the used implant with three different commercial implant designs. All implants were placed in the orientation recommended by the respective manufacturer, sized to best fit the original bone geometry, and repositioned optimally balance the gap curve through the entire flexion range, without any negative gaps (overlaps). Since these were nonarthritic cadaver knees, the intent was to restore the original preoperative varus/valgus in neutral (zero) flexion.

The three implant designs demonstrated variable degree of capability to uniformly balance the knee gap over the entire range of flexion. The first implant (A) required a gap larger than 2 mm in one case out of six, the second (B) was capable of producing the positive gap curve under 2mm of gap in all six cases, and the third (C) required a gap larger than 2 mm in 3 (50%) of cases. All three designs exhibit the reduced gap space in mid (30°–90°) flexion.

Despite the best attempts, the artificial implants do not fully replicate the healthy knee kinematics. This is manifested by increased tightness in the mid flexion. In order to balance the gap in mid flexion, additional laxity has to be allowed in full flexion, extension, or both. NavioPFS allows for patient specific planning that takes into account this information, only available intraoperatively. This kind of evaluation on a patient specific basis is a very important planning tool and it allows the insight on the implant performance in mid flexion, typically not available using conventional planning techniques. It can also help in improving kinematic performance of future implant designs.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 78 - 78
1 Sep 2012
Jaramaz B Nikou C
Full Access

Introduction

Precision Freehand Sculpting(PFS), is a hand-held semi-active robotic technology for bone shaping that works within the surgical navigation framework. PFS can alternate between two control modes – one based on control of exposure of the cutting bur (“Exposure Control”) and another based on the control of the speed of the cutting bur (“Speed Control”). In this study we evaluate the performance of PFS in preparing the femoral bone surface for unicondylar knee replacement (UKR).

Methods

The experiment is designed to prepare a synthetic bone for unicondylar knee replacement (UKR). The implant plan is mapped to individual specimen using a jig that fit in a unique and repeatable way to all specimens. During bone preparation, the PFS handpiece and the specimen are both tracked with the Polaris Spectra (Northern Digital Inc.) using passive reflective markers. The cutting plan is specified so that the specimens can receive a specially designed implant after the cut is finished. The implant is a modified commercial design with three planar back faces and two pegs. In addition there are 10 conical divots on the implant surface that can be used to register the implant after it is placed on the prepared bone surface. The distal and distal-anterior facets were cut with a 5 mm cylindrical bur using Extension Control. The posterior facet and the post holes were cut using 6 mm spherical bur using Speed Control.

Three subjects cut 5 specimens each. One subject was an experienced PFS user. The second user was somewhat less experienced, and the third user was completely inexperienced with the use of PFS. The performance was evaluated in terms of the implant fit and the performance time. The final implant fit was characterized using a MicroScribe MX desktop coordinate measuring arm.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 474 - 474
1 Nov 2011
Murphy S Chow JC Eckman K Jaramaz B
Full Access

Introduction: Malposition of the pelvis at the time of acetabular component insertion can contribute to malpositioning of the acetabular component. This study measures the variation in intraoperative positioning of the pelvis on the operating table during surgery by matching intraoperative radiographs with pre-operative computed tomograms (CT) using 2D-3D matching.

Methods: This prospective study was comprised of a random sample of 45 patients (n = 45, 26 female, 19 male) who had received a total hip arthroplasty (THA) from a single surgeon from 10/21/2003 to 9/6/2007. No THA candidate was excluded for any reason, including body habitus (mean BMI = 27.7, range 17.5 – 42.3), underlying disease process, age (mean age at surgery = 57, range 27 – 80), sex or side of surgery (21 left THAs, 24 right THAs). According to our standard clinical treatment protocol, each patient had a pre-operative CT scan for CT-based surgical navigation of the hip arthroplasty and each patient had an intraoperative radiograph taken to assess component positioning. All THAs were performed in the lateral decubitus position on a radiolucent peg-board positioning device. Each patient’s intraoperative pelvic radiograph was taken after acetabular component and trial femoral component insertion with the leg placed in a neutral position on the operating table and with the xray plate aligned squarely with the operating table. The orientation of the pelvis on the operating table was calculated by comparing the intraoperative 2D projection to the 3D CT dataset using software that can perform 2D-3D matching (XAlign). This software has been validated previously. By matching the 3D CT dataset to the magnification and orientation of the plain radiograph, the position of the anterior pelvic plane relative to the operating table could be calculated.

Results: The mean pelvic tilt (rotation around the medial-lateral axis) was 6.84 degrees of anterior pelvic tilt (lordosis) with a standard deviation of 7.95 degrees and a range from 27.24 degrees of lordosis to 4.96 degrees of kyphosis. The mean pelvic obliquity (rotation around the longitudinal axis) was 2.89 degrees anterior from neutral with a standard deviation of 9.44 degrees and a range from 29.36 anterior to 16.59 posterior from neutral. The mean pelvic rotation (rotation around the anterior-posterior axis) was 2.56 degrees cephelad, with a standard deviation of 4.10 degrees and a range from 10.88 degrees cephalad to 5.97 degrees caudad. Pearson correlation statistics showed no relation among pelvic position and body mass index or age. A correlation was seen between pelvic obliquity and pelvic rotation.

Conclusion: This study shows a high variability of intraoperative pelvic positioning in the clinical setting using accurate measurement tools. The greatest variation was seen in pelvic obliquity which has the greatest influence on anteversion/retroversion of the acetabular component. Additionally, pelvic obliquity and rotation appear related in our series. Since all of our intraoperative radiographs were taken with the leg in a neutral position, it is likely that the pelvis is even more greatly malpositioned at other times during the surgery when forces applied by retractors or upon the leg may be greater.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 110 - 110
1 Mar 2010
Murphy S Chow JC Eckman K Jaramaz B
Full Access

INTRODUCTION: Malposition of the pelvis at the time of acetabular component insertion can contribute to malpositioning of the acetabular component. This study measures the variation in intraoperative positioning of the pelvis on the operating table during surgery by matching intraoperative radiographs with pre-operative computed tomograms (CT) using 2D-3D matching.

METHODS: This prospective study was comprised of a random sample of 45 patients (n = 45, 26 female, 19 male) who had received a total hip arthroplasty (THA) from a single surgeon from 10/21/2003 to 9/6/2007. No THA candidate was excluded for any reason, including body habitus (mean BMI = 27.7, range 17.5 – 42.3), underlying disease process, age (mean age at surgery = 57, range 27 – 80), sex or side of surgery (21 left THAs, 24 right THAs). According to our standard clinical treatment protocol, each patient had a pre-operative CT scan for CT-based surgical navigation of the hip arthroplasty and each patient had an intraoperative radiograph taken to assess component positioning. All THAs were performed in the lateral decubitus position on a radiolucent peg-board positioning device. Each patient’s intraoperative pelvic radiograph was taken after acetabular component and trial femoral component insertion with the leg placed in a neutral position on the operating table and with the xray plate aligned squarely with the operating table. The orientation of the pelvis on the operating table was calculated by comparing the intraoperative 2D projection to the 3D CT data-set using software that can perform 2D-3D matching (XAlign). This software has been validated previously. By matching the 3D CT dataset to the magnification and orientation of the plain radiograph, the position of the anterior pelvic plane relative to the operating table could be calculated.

RESULTS: The mean pelvic tilt (rotation around the medial-lateral axis) was 6.84 degrees of anterior pelvic tilt (lordosis) with a standard deviation of 7.95 degrees and a range from 27.24 degrees of lordosis to 4.96 degrees of kyphosis. The mean pelvic obliquity (rotation around the longitudinal axis) was 2.89 degrees anterior from neutral with a standard deviation of 9.44 degrees and a range from 29.36 anterior to 16.59 posterior from neutral. The mean pelvic rotation (rotation around the anterior-posterior axis) was 2.56 degrees cephelad, with a standard deviation of 4.10 degrees and a range from 10.88 degrees cephalad to 5.97 degrees caudad. Pearson correlation statistics showed no relation among pelvic position and body mass index or age. A correlation was seen between pelvic obliquity and pelvic rotation.

CONCLUSION: This study shows a high variability of intraoperative pelvic positioning in the clinical setting using accurate measurement tools. The greatest variation was seen in pelvic obliquity which has the greatest influence on anteversion/retroversion of the acetabular component. Additionally, pelvic obliquity and rotation appear related in our series. Since all of our intraoperative radiographs were taken with the leg in a neutral position, it is likely that the pelvis is even more greatly malpositioned at other times during the surgery when forces applied by retractors or upon the leg may be greater.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 17 - 17
1 Jan 2004
Mor A Moody J LaBarca R Sell D Nikou C Omer A Jaramaz B DiGioia A
Full Access

Surgical navigation, coupled with preoperative plans, allows surgeons to plan and execute procedures to improve the likelihood of positive outcomes. In real life these navigation systems, which track both the patient and the surgical tools, are not absolutely accurate. Therefore, there is a need to know how much error there may be in the navigation system, so that the surgeon can assess the effects of possible errors in positioning.

The methodology for assessing the accuracy of a surgical navigation system is similar across surgical specialties. We developed a framework for assessing the accuracy of the HipNav system, a computer assisted surgical system used for planning and intra-operative surgical navigation for total hip arthroplasty. This framework can be adapted to other systems and surgical procedures. To assess navigational accuracy, we compared acquired values to a ground-truth model: rigid plastic Sawbones pelvii with mounted fiducials and acetabular implants, whose positions were measured with a coordinate measuring machine. We then identified the individual components of the system that can contribute to overall accuracy, and characterised their contributions to the accuracy of the system. We also measured the end-to-end accuracy of the HipNav system, from initial CT scan through to acetabular cup orientation. This value is of direct importance to the practicing surgeon, and indicates how far off the final measured orientation of the cup may be from its actual location. For the HipNav system, we found that the end-to-end square root of the mean square error was 0.82° in abduction and 0.76° in version.

The accuracy of a surgical navigation system is of vital importance to insure that a preoperative plan is executed properly. To measure the accuracy of a navigation system, accurate models that reflect the relevant anatomy are necessary, and allow true measurement of end-to-end and component accuracy. This example shows how the accuracy of HipNav was assessed, and that the final orientation of the acetabular implant was accurately guided.