The biological pathways responsible for adverse reactions to metal debris (ARMD) are unknown. Necrotic and inflammatory changes in response to Co-Cr nanoparticles in periprosthetic tissues may involve both a cytotoxic response and a type IV delayed hypersensitivity response. Our aim was to establish whether differences in biological cascade activation exists in tissues of patients with end-stage OA compared to those with aseptic loosening of a metal on polyethylene (MoP) THR and those with ARMD from metal-on-metal (MoM) THR. A microarray experiment (Illumina HT12-v4) was performed to identify the range of differential gene expression between 24 patients across 3 phenotypes: Primary OA (n=8), revision for aseptic loosening of MoP THR (n=8) and ARMD associated with MoM THR (n=8). Results were validated using Taqman Low Density Array (TLDA) selecting the top 36 genes in terms of fold-change (FC)>2 and a significant difference (p<0.05) on ANOVA. Pathways of cellular interaction were explored using Ingenuity IPA software.Introduction
Patients & Methods
The advantages of metal on metal (MOM) hip replacement are decreased wear rate, preservation of bone stock, anatomical restoration and enhanced stability. Large amounts of metal wear particles and metal ions are released which may induce adverse reactions including local soft tissue toxicity, hypersensitivity reactions, bone loss and risk of carcinogenesis. Aseptic loosening can be the result of a peri prosthetic osteolysis generated as a result of a biological response to particulate wear debris. Our aim in this study was to determine whether a steeply inclined acetabular component would give rise to a higher concentration of metal ions. Between April 2003 and June 2006, 22 patients had MOM hip replacement for osteoarthritis by a single Surgeon. There were 12 male and 10 female patients. The average age at the time of surgery was 56 years (Range: 44–69 years). We divided the 22 patients into 2 groups, one group (A) of 11 patients with the acetabular inclination angle more than 50 degrees and the other group (B) of 11 patients with the angle less than 50 degrees. The inclination of the acetabular cup was measured using a standard AP radiograph of the pelvis. The patients had metal ion levels (blood chromium and serum cobalt) measured at an average follow up of 3.2 years (Range 2.4 to 5 years).Introduction
Patients and methods
The advantages of large diameter metal on metal total hip arthroplasty (MoM THA) and hip resurfacing arthroplasty are decreased wear rate, preservation of bone stock, anatomical restoration and enhanced stability. Large amounts of metal wear particles and metal ions are released which may induce adverse reactions including local soft tissue toxicity, hypersensitivity reactions, bone loss and risk of carcinogenesis. Aseptic loosening can be the result of a peri-prosthetic osteolysis generated as a result of a biological response to particulate wear debris. No reports in the literature exist as to whether circulating levels of Chromium (Cr) and Cobalt (Co) decrease upon removal of a symptomatic large diameter MoM implant or whether levels remain high due to the effect of metal ions debris left behind in the soft tissues after revision surgery. Between June 2006 and June 2009 we undertook 44 revision surgeries of both large head MoM THAs (femoral head diameter 38mm) and metal-on-metal hip resurfacings for suspected metallosis. Mean time from original implant to revision was 4 years, 8 months (1yr 4mo–7yr 9mo). The mean follow up evaluation was 2 years and 2 months (1yr 2mo–4 years). Blood samples were taken for whole blood Cr and serum Co according to a recognised protocol and compared with reference levels indicated by the Medicines and Healthcare Regulatory Agency recommendation of less than 7ppb for Cr (130nM/L) and Co (119nM/L).INTRODUCTION
PATIENTS AND METHODS