Abstract
Introduction
The advantages of metal on metal (MOM) hip replacement are decreased wear rate, preservation of bone stock, anatomical restoration and enhanced stability. Large amounts of metal wear particles and metal ions are released which may induce adverse reactions including local soft tissue toxicity, hypersensitivity reactions, bone loss and risk of carcinogenesis. Aseptic loosening can be the result of a peri prosthetic osteolysis generated as a result of a biological response to particulate wear debris.
Our aim in this study was to determine whether a steeply inclined acetabular component would give rise to a higher concentration of metal ions.
Patients and methods
Between April 2003 and June 2006, 22 patients had MOM hip replacement for osteoarthritis by a single Surgeon. There were 12 male and 10 female patients. The average age at the time of surgery was 56 years (Range: 44–69 years). We divided the 22 patients into 2 groups, one group (A) of 11 patients with the acetabular inclination angle more than 50 degrees and the other group (B) of 11 patients with the angle less than 50 degrees. The inclination of the acetabular cup was measured using a standard AP radiograph of the pelvis.
The patients had metal ion levels (blood chromium and serum cobalt) measured at an average follow up of 3.2 years (Range 2.4 to 5 years).
Results
Mean blood chromium level in the group A (146 nM/L) was significantly higher (p=0.005) than in Group B (92 nM/L). Mean serum cobalt level in the group A (245 nM/L) was significantly higher (p=0.002) than in Group B (110 nM/L).
Discussion
The early to mid term published results of MOM hip replacements have been encouraging. There are, however, a number of concerns about the MOM bearing. Although its wear rate is low, it still releases metal ions into the body particularly cobalt and chromium since most metal on metal bearings are made of a cobalt chromium alloy.
The long-term consequences of increased levels of these ions in the body are not known. High concentrations of Co and Cr are toxic and are known to interfere with a number of biological functions. There also have been recent reports of soft tissue reactions with MOM hip replacement. In the light of these concerns, it is important to examine factors which may influence the release of metal ions after MOM hip replacement. It has been reported in the recent literature that the position of the acetabular component will influence the bearing wear inturn leading to the release of metal ions after MOM hip replacement. Our findings indicate that steeply inclined acetabular components with an inclination angle greater than 50 degrees gives rise to higher concentration of metal ions.