Congenital pseudarthrosis of the tibia (CPT) has traditionally been a difficult condition to treat, with high complication rates, including nonunion, refractures, malalignment, and leg length discrepancy. Surgical approaches to treatment of CPT include intramedullary rodding, external fixation, combined intramedullary rodding and external fixation, vascularized fibular graft, and most recently cross-union. The current study aims to compare the outcomes and complication rates of cross-union versus other surgical approaches as an index surgery for the management of CPT. Our hypothesis was that a good index surgery for CPT achieves union and minimizes complications such as refractures and limb length discrepancy. A multicentre study was conducted involving two institutions in Singapore and China. All patients with CPT who were surgically managed between January 2009 and December 2021 were included. The patients were divided based on their index surgery. Group 1 included patients who underwent excision of hamartoma, cross-union of the tibia and fibula, autogenic iliac bone grafting, and internal fixation for their index surgery. Group 2 included patients who underwent all other surgical procedures for their index surgery, including excision of hamartoma, intramedullary rodding, and/or external fixation, without cross-union of the tibia and fibula. Comparisons of the rates of union, refracture, limb length discrepancy, reoperations, and other complications were performed between the two groups.Aims
Methods
Mixed Reality has the potential to improve accuracy and reduce required dissection for the performance of peri-acetabular osteotomy. The current work assesses initial proof of concept of MR guidance for PAO. A PAO planning module, based on preoperative computed tomography (CT) imaging, allows for the planning of PAO cut planes and repositioning of the acetabular fragment. 3D files (holograms) of the cut planes and native and planned acetabulum positions are exported with the associated spatial information. The files are then displayed on mixed reality head mounted device (HoloLens2, Microsoft) following intraoperative registration using an FDA-cleared mixed reality application designed primary for hip arthroplasty (HipInsight). PAO was performed on both sides of a bone model (Pacific Research). The osteotomies and acetabular reposition were performed in accordance with the displayed holograms. Post-op CT imaging was performed for analysis. Cutting plane-accuracy was evaluated using a best-fit plane and 2D angles (°) between the planned and achieved supra (SA)- and retroacetabular (RA) osteotomy and retroacetabular and ischial osteotomies (IO) were measured. To evaluate the accuracy of acetabular reorientation, we digitized the acetabular rim and calculated the acetabular opening plane. Absolute errors of planned and achieved operative inclination and anteversion (°) of the acetabular fragment, as well as 3D lateral-center-edge (LCE) angles were calculated. The mean absolute difference between the planned and performed osteotomy angles was 3 ± 3°. The mean absolute error between planned and achieved operative anteversion and inclination was 1 ± 0° and 0 ± 0° respectively. Mean absolute error between planned and achieved 3D LCE angle was 0.5 ± 0.7°. Mixed-reality guidance for the performance of pelvic osteotomies and acetabular fragment reorientation was feasible and highly accurate. This solution may improve the current standard of care by enabling reliable and precise reproduction of the desired acetabular realignment.
Achilles tendon re-rupture (ATRR) poses a significant risk of postoperative complication, even after a successful initial surgical repair. This study aimed to identify risk factors associated with Achilles tendon re-rupture following operative fixation. This retrospective cohort study analyzed a total of 43,287 patients from national health claims data spanning 2008 to 2018, focusing on patients who underwent surgical treatment for primary Achilles tendon rupture. Short-term ATRR was defined as cases that required revision surgery occurring between six weeks and one year after the initial surgical repair, while omitting cases with simultaneous infection or skin necrosis. Variables such as age, sex, the presence of Achilles tendinopathy, and comorbidities were systematically collected for the analysis. We employed multivariate stepwise logistic regression to identify potential risk factors associated with short-term ATRR.Aims
Methods
Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.Aims
Methods
Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.Aims
Methods
In relation to regenerative therapies in osteoarthritis and cartilage repair, mesenchymal stromal cells (MSCs) have immunomodulatory functions and influence macrophage behaviour. Macrophages exist as a spectrum of pro-(M1) and anti-(M2) inflammatory phenotypic subsets. In the context of cartilage repair, we investigated MSC-macrophage crosstalk, including specifically the priming of cartilage cells by macrophages to achieve a regenerative rather than fibrotic outcome. Human monocytes were isolated from blood cones and differentiated towards M1 and M2 macrophages. Monocytes (Mo), M1 and M2 macrophages were cultured directly and indirectly (trans-well system) with human bone marrow derived MSCs. MSCs were added during M1 polarisation and separately to already induced M1 cells. Outcomes (M1/M2 markers and ligands/receptors) were evaluated using RT-qPCR and flow cytometry. Influence on chondrogenesis was assessed by applying M1 and M2 macrophage conditioned media (CM) sequentially to cartilage derived cells (recapitulating an acute injury environment). RT-qPCR was used to evaluate chondrogenic/fibrogenic gene transcription.Abstract
Objectives
Methods
Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers.Abstract
BACKGROUND
OBJECTIVE
Brace treatment is the cornerstone of managing developmental dysplasia of the hip (DDH), yet there is a lack of evidence-based treatment protocols, which results in wide variations in practice. To resolve this, we have developed a comprehensive nonoperative treatment protocol conforming to published consensus principles, with well-defined a priori criteria for inclusion and successful treatment. This was a single-centre, prospective, longitudinal cohort study of a consecutive series of infants with ultrasound-confirmed DDH who underwent a comprehensive nonoperative brace management protocol in a unified multidisciplinary clinic between January 2012 and December 2016 with five-year follow-up radiographs. The radiological outcomes were acetabular index-lateral edge (AI-L), acetabular index-sourcil (AI-S), centre-edge angle (CEA), acetabular depth ratio (ADR), International Hip Dysplasia Institute (IHDI) grade, and evidence of avascular necrosis (AVN). At five years, each hip was classified as normal (< 1 SD), borderline dysplastic (1 to 2 SDs), or dysplastic (> 2 SDs) based on validated radiological norm-referenced values.Aims
Methods
Hip fractures are a major cause of morbidity and mortality, and malnutrition is a critical determinant of these outcomes. This systematic review and meta-analysis aims to determine whether oral nutritional supplementation (ONS) improves postoperative outcomes in older patients with hip fracture. An electronic systematic literature search was conducted in August 2022 using four databases. Randomized trials documenting ONS in older patients with hip fracture (aged 50+) were included. Two reviewers evaluated study eligibility, data extraction and assessed study quality. There were 812 studies identified of which 18 studies involving 1,512 patients met the inclusion criteria. The overall meta-analysis demonstrates that ONS was associated with a significant risk reduction in infective complications (odds ratio (OR) 0.54, 95%CI 0.38, 0.76), pressure ulcers (OR 0.54, 95%CI 0.33, 0.88), total complications rate (OR 0.57, 95%CI 0.42, 0.79). Length of hospital stay (LOS) was also significantly reduced (weighted mean difference (WMD) −2.01, 95%CI −3.52, −0.5), particularly in the rehabilitation LOS (WMD −4.17, 95%CI −7.08, −1.26). There was a tendency towards lower risk in mortality (OR 0.93, 95%CI 0.62, 1.4) and readmission (OR 0.52, 95%CI 0.16, 1.73), though statistical significance was not achieved. The overall compliance to ONS ranged from 64.1% to 100%, but no factors influencing compliance were identified. This systematic review was the first to quantitatively demonstrate that ONS reduces half the risk of infective complications, pressure ulcers, total complication rate and reduces LOS. ONS should be a regular and integrated part of medical practice, especially given that the compliance to ONS is acceptable.
To develop prediction models using machine-learning (ML) algorithms for 90-day and one-year mortality prediction in femoral neck fracture (FNF) patients aged 50 years or older based on the Hip fracture Evaluation with Alternatives of Total Hip arthroplasty versus Hemiarthroplasty (HEALTH) and Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trials. This study included 2,388 patients from the HEALTH and FAITH trials, with 90-day and one-year mortality proportions of 3.0% (71/2,388) and 6.4% (153/2,388), respectively. The mean age was 75.9 years (SD 10.8) and 65.9% of patients (1,574/2,388) were female. The algorithms included patient and injury characteristics. Six algorithms were developed, internally validated and evaluated across discrimination (c-statistic; discriminative ability between those with risk of mortality and those without), calibration (observed outcome compared to the predicted probability), and the Brier score (composite of discrimination and calibration).Aims
Methods
Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay.Aims
Methods
This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA). 3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed.Aims
Methods
Decellularised porcine superflexor tendon (pSFT) provides an off-the-shelf, cost-efficient option for ACL reconstruction (ACLR). During decellularisation, phosphate buffered saline (PBS) is used for washing out cytotoxic solutes and reagents, maintaining tissue hydration. It has been shown to increase water content in tendon, swelling the tissue reducing mechanical properties. End stage PBS washes in the standard protocol were substituted with alternative solutions to study tissue swelling and its impact on the mechanical behaviour and matrix composition of pSFTs. 25%, 100% Ringers and physiological saline test groups were used (n=6 for all groups). pSFTs were subject to tensile and confined compression testing. Relative hydroxyproline (HYP), glycosaminoglycan (GAG) and denatured collagen content (DNC) were quantified. Modified decellularised tendon groups were compared to tendons decellularised using the standard protocol and native tendons. Specimen dimensions reduced (p=0.004) post-decellularisation only in 25% Ringers group. In all other modified groups, less swelling was apparent but not statistically different from standard group. Only 25% Ringers group had higher linear modulus (p=0.0035) and UTS (p=0.013) compared to standard group. All decellularised groups properties were reduced compared to native pSFTs. Stress relaxation properties showed a significant reduction in decellularised groups compared to native. Compression testing showed no significant differences in peak stress for modified decellularised groups compared to native. A reduction (p=0.036) was observed in standard group. Quantification of GAGs and DNC showed no significant differences between groups. HYP content was higher (p<0.0001) for saline group. A significant reduction in tissue swelling could be related to improved mechanical properties of decellularised pSFTs. Alternative solutions in end stage washes had no significant effect on quantities of matrix components, but altered structure/function could explain the differences in tensile and compressive behaviour, and should be further studied. In all decellularised groups, pSFTs retained suitable mechanical properties for ACLR.Abstract
The purpose was to compare operative treatment with a volar plate and nonoperative treatment of displaced distal radius fractures in patients aged 65 years and over in a cost-effectiveness analysis. A cost-utility analysis was performed alongside a randomized controlled trial. A total of 50 patients were randomized to each group. We prospectively collected data on resource use during the first year post-fracture, and estimated costs of initial treatment, further operations, physiotherapy, home nursing, and production loss. Health-related quality of life was based on the Euro-QoL five-dimension, five-level (EQ-5D-5L) utility index, and quality-adjusted life-years (QALYs) were calculated.Aims
Methods
Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes. A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications.Aims
Methods
In the human knee, the cells of the articular cartilage (AC) and subchondral bone (SB) communicate via the secretion of biochemical factors. Chondrocyte-based AC repair strategies, such as articular chondrocyte implantation, are widely used but there has been little investigation into the communication between the native SB cells and the transplanted chondrocytes. We hypothesise that this communication depends on the health state of the SB and could influence the composition and quality of the repair cartilage. An indirect co-culture model was developed using transwell inserts, representing a chondrocyte/scaffold-construct for repair of AC defects adjoining SB with varying degrees of degeneration. Donor-matched populations of human bone-marrow derived mesenchymal stromal cells (BM-MSCs) were isolated from the macroscopically and histologically best and worst osteochondral tissue, representing “healthy” and “unhealthy” SB. The BM-MSCs were co-cultured with normal chondrocytes suspended in agarose, with the two cell types separated by a porous membrane. After 0, 7, 14 and 21 days, chondrocyte-agarose scaffolds were assessed by gene expression and biochemical analyses.Abstract
Objectives
Methods
Current tools to measure pain are broadly subjective impressions of the impact of the nociceptive impulse felt by the patient. A direct measure of nociception may offer a more objective indicator. Specifically, movement-induced physiological responses to nociception may offer a useful way to monitor knee OA. In this proof-of-concept study, we evaluated whether integrated biomechanical and physiological sensor datasets could display linked and quantifiable information to a nociceptive stimulus. Following ethical approval, we applied a quantified thermal pain stimulus to a volunteer during stationary standing in a gait lab setting. An inertial measurement unit (IMU) and an electromyography (EMG) lower body marker set were tested and integrated with ground reaction force (GRF) data collection. Galvanic skin response electrodes and skin thermal sensors were manually timestamp linked to the integrated system.Abstract
Objectives
Method
Bone marrow-derived mesenchymal stem cells obtained from bone marrow aspirate concentrate (BMAC) with platelet-rich plasma (PRP), has been used as an adjuvant to hip decompression. Early results have shown promise for hip preservation in patients with osteonecrosis (ON) of the femoral head. The purpose of the current study is to examine the mid-term outcome of this treatment in patients with precollapse corticosteroid-induced ON of the femoral head. In all, 22 patients (35 hips; 11 males and 11 females) with precollapse corticosteroid-induced ON of the femoral head underwent hip decompression combined with BMAC and PRP. Mean age and BMI were 43 years (SD 12) and 31 kg/m² (SD 6), respectively, at the time of surgery. Survivorship free from femoral head collapse and total hip arthroplasty (THA) and risk factors for progression were evaluated at minimum five-years of clinical follow-up with a mean follow-up of seven years (5 to 8).Aims
Methods
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article:
Few studies have investigated potential consequences of strained surgical resources. The aim of this cohort study was to assess whether a high proportion of concurrent acute surgical admissions, tying up hospital surgical capacity, may lead to delayed surgery and affect mortality for hip fracture patients. This study investigated time to surgery and 60-day post-admission death of patients 70 years and older admitted for acute hip fracture surgery in Norway between 2008 and 2016. The proportion of hospital capacity being occupied by newly admitted surgical patients was used as the exposure. Hip fracture patients admitted during periods of high proportion of recent admissions were compared with hip fracture patients admitted at the same hospital during the same month, on similar weekdays, and times of the day with fewer admissions.Aims
Methods